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Abstract 
Flow forecasting is used in activities requiring stream flow data such as irriga-
tion development, water supply, and flood control and hydropower develop-
ment. Real time flow forecasting with special interest to flooding is one of the 
most important applications of hydrology for decision making in water re-
sources. In order to meet flood and flow forecasts using hydrological models 
may be used and subsequently be updated in accordance with residuals. There-
fore in this study, different flood forecasting methods are evaluated for their 
potential of stream flow forecasting using Galway River Flow Forecasting and 
Modeling System (GFFMS) in Lake Tana basin, upper Blue Nile basin, Ethi-
opia. The areal rainfall and temperature data was used for the model input. 
Three forecast updating methods, i.e., autoregressive (AR), linear transfer func-
tion (LTF) and neuron network updating (NNU) methods were compared 
for stream flow forecasting, at one to six days lead time. The most sensi-
tive parameters were fine-tuned first and modeled for a calibration period of 
1994-2004 for three selected watersheds of the Tana basin. The results indicate 
that with the exception of the simple linear model, an acceptable result could 
be obtained using models embedded in the software. Artificial neural network 
model performed well for Gilgel Abay (NSE = 0.87) and Gumara (NSE = 0.9) 
watersheds but for Megech watershed, SMAR model (NSE = 0.78) gave a bet-
ter forecast result. In capturing the peak flows LTF and NNU in forecast up-
dating mode performed better for Gilgel Abay and Megech watersheds, re-
spectively. The results of this study implied that GFFMS can be used as a use-
ful tool to forecast peak stream flows for flood early warning in the upper Blue 
Nile basin. 
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1. Introduction 

The application of rainfall-runoff models is essential for understandings of hy-
drological processes and to provide a practical remedy to water resource prob-
lems [1]. However, data demands and lack of parsimony (simplicity with mini-
mum data requirement) in model parameters can still be a major constraint when 
it comes to apply models in real life problem solving [2]. Appropriate stream flow 
forecasts can be used to protect property damages and to avoid losses of lives. 
They shed relying more on rainfall data and observed stream flows. These inputs 
will then be used by computerized hydrological models to simulate the amount 
of runoff generated in a specified watershed and timing of peak runoff. Usually 
hydrologists evaluate and forecast stream flows at the outlets and sub watershed 
levels on the days’ time scale for the study of water resources and management 
of watersheds. The forecast can be employed to minimize flood damages using 
measures such as through early warning systems. 

In the Lake Tana Basin of Ethiopia, flood is occurring frequently and damage 
associated area is high on the eastern and north eastern parts of Lake Tana called 
the Fogera and Dembia flood plains. This is mostly attributed to overflow of river 
banks that cause inundation of flood plains, though the rise of the lake level has its own 
influence. In the (sub) humid monsoonal climate of Lake Tana sub-basin, rivers 
build up from continuous and intense rainfall in the watersheds and when coupled 
with the local rainfall on the flood plains, result in severe flooding problems.  

Different hydrological models for predicting discharge from various inputs 
have been tested with water balance approach in the Lake Tana basin, for instance 
the Parameter Efficient semi-Distributed Watershed Model (PED-WM) devel-
oped by [3] and used in Lake Tana basin by [4] [5] [6]. Hydrologiska Byrans 
Vatten balansav delning-Integrated Hydrological Modeling System (HBV-IHMS), 
a daily time step watershed model [7] was tested by [8] and Soil Water Assess-
ment Tool (SWAT) developed by [9], was used by [6] [10] in the Lake Tana ba-
sin. However each of the models area is not tested for the flood forecasting sys-
tem in Lake Tana basin. Testing the applicability of flood forecasting models 
would be vital to predict the flood in the flood prone basin of Lake Tana for the 
purposes of mapping the extent of flooding and for developing flood early warn-
ing systems.  

In the Lake Tana basin, testing the applicability of flood forecasting models 
like GFFMS that have a number of flood forecasting packages are important be-
cause they provides different forecasting packages based on the availability of 
data and catchment characteristics. Therefore, in this study the performance of 
the Flood Forecasting and Modeling System (GFFMS) was evaluated for stream 
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flow forecasting with lead times of one up to six days. In addition, the effective-
ness of GFFMS forecasting tool in providing stream flow forecasting is evaluated 
and three forecast updating methods: Autoregressive (AR), linear transfer func-
tion (LTF) and neuron network updating (NNU) were tasted for the applicabili-
ty in three major rivers (Gumara, Megech and Gilgel Abay) in the Upper Blue 
Nile basin of the sub-humid Ethiopian highlands. However, the study only com-
pares methods embedded in GFFMS for stream flow forecasting but not forecast 
stream flow quantiles for the three rivers in the basin.  

2. Materials and Methods 
2.1. Description of the Study Area 

Lake Tana Basin (Figure 1) is the major source of the head waters of the Blue Nile 
River, which lies in a natural drainage basin of about 15,101 km2 considering 
outlet near Chara-Chara weir [1]. Lake Tana is situated in the northern highlands 
at an altitude of approximately 1800 meters a.s.l. More than 40 rivers are feeding 
the lake with 4 major perennial rivers namely Ribb, Gilgel Abay, Gumara and 
Megech. These Rivers contribute approximately more than 93% of the inflow to 
the Lake Tana [1] [11]. The average temperature in the basin ranges from 21.5˚C 
- 22.5˚C [12] [13]. The annual mean rainfall ranges from 1200 - 2400 mm/year 
based on stations in each watershed in this study. The livelihood of the commu-
nity in the area depends on mainly Agriculture. The description of the study area 
is shown in the Figure 1. 

2.2. Data 

Precipitation and temperature data for the watersheds were from the National 
Meteorological Agency of Ethiopia, Bahir Dar branch. Daily discharge data for the 
three watersheds were collected from Ministry of Water Irrigation and Electricity 

 

 
Figure 1. Map of Ethiopia and the Lake Tana sub-basin and locations of the study water-
sheds. 
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(MoWIE). Potential evapo-transpiration (PET) was estimated for both of the wa-
tersheds using the temperature method [14].  

2.3. GFFMS Model Description 

The GFFMS model is developed at the department of engineering hydrology na-
tional university of Ireland, Galway, Ireland. The five models embedded in the 
software are; system theoretic models; simple linear model (SLM), linear per-
turbation model (LPM), linearly varying gain factor model (LVGF) and artificial 
neuron network (ANN) and one conceptual model which is soil moisture ac-
counting and routing (SMAR) model. Ordinary least square solution for (SLM, 
LPM, and LVGF), conjugate gradient algorithm for (ANN) and Rosenbrock, sim-
ple search and genetic optimization methods for (SMAR) are used for calibra-
tion of the model parameters.  

Three model output combination techniques (simple average method-SAM, 
weighted average method-WAM and neural network method-NNM) are eva-
luated to combine model simulation results. The performance of three forecast 
updating methods embedded in the software namely: autoregressive compo-
nent-AR, linear transfer function component—LTF and Neural network updat-
ing—NNU was also evaluated. The Galway River Flow Forecasting and Model-
ing System (GFFMS) are used to forecast stream flow quantiles for a continuous 
long-term watershed scale and in a daily time basis. The software requires readi-
ly available hydro-meteorological data. Descriptions of the models are presented 
below. 

2.3.1. System-Theoretic Models 
1) Simple Linear Model (SLM) 
The SLM [15] is a black-box, single-input single-output model which comprises 

both parametric and non-parametric forms and have a basic assumption of SLM 
is a linear time-invariant relationship between rainfall and discharge. 

2) Linear Perturbation Model (LPM) 
The LPM [16] similar to SLM is a black-box single-input single-output model 

which comprises both parametric and non-parametric forms. The model uses 
the seasonal information inherent in the rainfall and discharge series. It assumes 
that during a year in which the rainfall is identical to its seasonal expectation, the 
corresponding discharge hydrograph will be identical to its seasonal expectation. 
In all other years, when the rainfall and discharge values depart from their re-
spective seasonal expectations, the departure time series is assumed to be related 
by a linear time-variant system [17]. The discrete non-parametric and parame-
tric forms of the LPM will be expressed in a similar fashion as those of SLM with 
input-output system referring to respective departures of rainfall and discharge 
from their seasonal expectations. 

3) Linearly Varying Gain Factor (LVGF) Model 
This model involves the variation of the gain factor with a selected index of 

the prevailing watershed wetness (Zt). The LVGF model [18] output has a dis-
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crete convolution summation equation based on the concept of a time-varying 
gain factor Gt. as indicated Equations (1)-(4). 
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The Gt is linearly related to an index of the soil moisture state Zt of the wa-
tershed as: 

t tG a bZ= +                           (3) 

where, a and b are constants and the soil moisture state can be obtained from the 
outputs of SLM an auxiliary input as follows: 
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where: Q  = The mean of the observed discharge, Gt = gain factor (runoff coef-
ficient), Ĝ  = estimate of gain factor of SLM and ĥ  = estimates of pulse response 
ordinates of SLM. Then gain factor for SLM is calculated from the ratio of the 
total output volume to the total input volume. 

4) Artificial Neural Network Model (ANN) 
In the GFFMS (Figure 2) the neural network model consists of three layers: an 

input layer, one output layer and a hidden layer [19]. For a neuron either in the 
input or in the output layer each received input (Qi) is transferred to its output 
(Qout) by a mathematical function: 
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where: f() = the transfer function, m = total number of inputs/total number of 
neurons in the preceding layer, wo = neural threshold (a base line value inde-
pendent of the input) and wi input connection pathways weight. The non-linear 
transfer function adopted for the neurons of the hidden and output layers is the 
widely used logistic/sigmoid function bounded in the range [0, 1] and wi, wo and 
σ are parameters of the network configuration determined by conjugate gradient 
method [19]. Graphically the overall schematic representation of this model is shown 
in Figure 3. 
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2.3.2. Conceptual Rainfall-Runoff Model 
1) Soil Moisture Accounting and Routing (SMAR) Model 
The SMAR Model is a development of water balance layers conceptual rainfall- 

runoff model introduced by [20], its water balance component being based on 
the Nash model [21]. The non-linear water balance (soil moisture accounting)  
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Figure 2. Schematic diagram of SMAR model (Source: [19]). 

 

 
Figure 3. Transformation processes of inputs to outputs for ANN model (Shamseldin, et 
al., 1997). 

 
component preserves the balance between rainfall, the evaporation, the generat-
ed runoff and the changes in the various layers of soil moisture storage. The routing 
component simulates the attenuation and the diffusive effects of the watershed by 
routing the various generated runoff components through linear time-invariant sto-
rage elements. For each time step, the combined output of the two routing elements 
adopted becomes the simulated discharge forecast produced by the model [20].  

The three alternative automatic optimization algorithms, i.e., the genetic algo-
rithm [22], the Rosenbrock method [23] and simplex method [24] are available 
for the calibration of the SMAR model. These methods were used individually 
and the best optimization method (in terms of numerical efficiency criteria) was 
selected. The version of SMAR used in the present study has nine parameters, five 
of which control the overall operation of the water budget component, while the 
remaining four control the operation of the routing component and the schematic 
diagram of SMAR model is as shown in Figure 2. 

2) Model Output Combination Techniques (MOCTs) 
In stream flow forecast it is common to combine models forecast outputs, for 

this purpose GFFMS provides Simple Average Method (SAM), Weighted Aver-
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age Method (WAM) and Neural Network Method (NNM) combination tech-
niques [19]. The SAM is the simplest method for combining the outputs of dif-
ferent individual models and was used to combine outputs of models having near-
ly the same stream flow forecasts. The WAM is another method of forecast out-
puts combination which can give more weight to outputs of better performing mod-
els than the SAM. The NNM; was used when a non-linear function is needed for 
the combinations of the outputs. In GFFMS, the multi-layer feed-forward neural 
network is used for combination technique consists of an input layer, output layer 
and hidden layer between the input and output layers. 

2.3.3. GFFMS Methods in Updating Mode 
Ideally, the simulation model should so resemble the actual system that the re-
siduals in the calibration period should be a series of unrelated quantities of zero 
expectation and of small variance. However, in most actual fittings, persistence 
in the residual is observed. This phenomenon results from inadequacies in the 
model structure, incorrect estimation of model parameters, errors in the data 
and absence of any consistence relationship in the data. Therefore observation of 
the structure of this persistence can provide the basis for an updating procedure 
whereby the output from the model can be modified, prior to issuing the fore-
cast. 

Autoregressive Method (AR): this model is used to forecast the errors of si-
mulations from each model and then use these errors to update the simulated 
discharges. Linear Transfer Function Method (LTF): the operation of a continuous 
linear time-invariant system can usually be defined by a general linear differen-
tial equation of the form: 

( ) ( )2 2
1 2 1 21 1t t bA D A D Y G B D B D X −+ + + = + + +           (7) 

where: 

D  is a deferential operator d
dt

 
 
 

 and G  is a gain factor.  

The parameter B allows for a pure delay. For a linear system, the coefficients 
must be independent of X and Y and none of the powers of the derivatives can 
be greater than unity, although the order of the derivatives may be unlimited. 
When the input and output are observed at discrete intervals (in blocks of aver-
age intensity) is the LTF model defined by a linear-difference equation of the 
form: 

1
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where: jα  is an AR parameters with 0 1α = , jw  = MA parameters and b = 
pure time delay restricted to integer values only; with addition of an error term 
(E) Equation (8) can be written as: 
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The parameters of the model are estimated by method of OLS [25]. The order 
of the model (r, s) i.e., the numbers of AR and MA terms and the extent of the 
pure lag must be pre-selected. To ensure optimum values of r, s and b the calcu-
lation was repeated with different selections of these parameters. Using past ob-
served values of y as input, the model automatically provides an updating pro-
cedure, because recently observed values of Y are used in obtaining the new es-
timated values of Y. Forecast values of the input variables will be needed for the 
computation of one and to six day lead time flow values. The forecast origin is 
the last data in the observed series.  

Neural Network Updating (NNU): this model is a non-linear input-output 
updating model which enables the forecasting of the future values on the basis of 
the values of one/more exogenous input time series. The simulation mode dis-
charge time series produced by the simulative models constitutes the exogenous 
input, which is used with the observed discharge in providing the updated dis-
charge forecasts of the method. The ANN may be used as a real-time discharge 
forecast updating technique [26], wherein the ANN operates on both the dis-
charge forecasts and on the recent observed discharge values in order to pro-
duce updated forecasts, these input discharge forecasts being either those of an 
individual basic rainfall-runoff model or those produced by a forecast combi-
nation method (i.e., as an alternative to use AR model for forecast error up-
dating).  

2.4. Evaluation of Model Performance 

Nash Sutcliffe efficiency (NSE), Index of Agreement (IOA), Relative Volume Error 
(RVE) and Relative Error of the Peak (REP) objective functions was used to describe 
the predictive accuracy of the model as long as there is observed discharge. The 
NSE [27] measures the efficiency of the model (overall fit of the hydrographs). 
The IOA is used to overcome the insensitivity of NSE to differences in the ob-
served and forecasted means and variances, the RVE is used to evaluate the agree-
ment in the volume of the forecasted and observed discharges and the REP is 
used to evaluate peak individual stream flows. 

3. Results and Discussion 

In this section, the results are presented in the most logical order; i.e., simula-
tion, updating and forecast mode. Each of the five basic models from the GFFMS 
software is applied to each of the three test watersheds. The hydrological data is 
split in to two: for calibration (about two-third of the data that correspond to 11 
years of data) and validation periods (one-third of the data that correspond to 5 
years of data) for Gumara and Megech watersheds. However, the gauging site for 
Gilgel Abay is moved to another location after December 2005 due to construction 
of the main road that joins Bahir Dar to Addis Ababa. Since the stage-discharge 
relationship is not established for the new gauging site, 8 years of data for cali-
bration and 4 years of data for validation is used for the watershed.  
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3.1. Calibration 
3.1.1. General 
Generally; graphical evaluation of the models result the hydrograph below shows 
that LTF updating model performed better than the other models for one day to 
six days lead time forecast, however, it performed a little bit better for one days 
forecast than the other lead days of the wettest years. In capturing peak values 
the AR updating gave better estimate and graphically it is shown in Figure 4.  

1) Gilgel Abay Watershed 
The selected models were calibrated for Gilgel Abay watershed using concur-

rent hydro-meteorological data covering a time period from January, 1st of 1994 
to December, 31st of 2001. These years were selected for calibration since they 
experienced normal, wet and dry periods. The hydrograph shows the simulation 
and updating results of the wettest years of ANN and LTF (one day lead time) 
models for Gilgel Abay, ANN and NNU (one day lead time) models for Gumara 
but SMAR and LTF (one day lead time) models for Megech watershed. For Gil-
gel Abay watershed, the models overestimated the base flow but underestimated 
the peak flows. The effect of this is that, the model better estimated the overall  

 

 
Figure 4. Rainfall as well as observed and simulated discharge hydrographs of the three case watersheds 
for calibration (simulation and updating mode of one day lead time) for wettest year of Gilgel Abay 
(ANN, LTF), Gumara (ANN, NNU) and Megech (SMAR, L). 
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volume: i.e., the mean of the observed flow due to error compensation (i.e., posi-
tive errors are canceled out by negative errors).  

Note that 1994 belongs to the calibration period and 2003 belongs to the vali-
dation period of Gilgel Abay watershed. The ANN model captured the overall 
pattern of the observed hydrographs of the selected years. The model clearly 
underestimated some of the major peak stream flows in the wettest years; such 
as August 11th, 14th and 12th peak days of 1994 and 5th August, 8th September and 
20th July peak days of 2003. Overall, the result suggests that the model cannot 
provide good forecasts unless these errors in peak flows are corrected. The mod-
els shown in the hydrograph (Figure 4) are the very good performing models; 
ANN for both Gilgel Abay and Gumara but SMAR for Megech watersheds in 
simulation mode. However, in updating these models output departures from 
the observed discharge; the LTF (one day lead time) for Gilgel Abay and Megech 
watersheds but NNU (one day lead time) for Gumara watershed are shown for 
calibrating the model parameters both in simulation and updating modes.  

2) Gumara Watershed 
The selected models were calibrated for Gumara watershed using concurrent 

hydro-meteorological data covering a time period from January, 1st 1994 to July, 
31st 2004. These years were selected for calibration since they experience normal, 
wet and dry periods. The graphical comparison shows the simulation and up-
dating results of wettest years of Gumara watershed for ANN and NNU (one day 
lead time) models. For this watershed the model overestimated the base flows 
and underestimated the peak flows. Note that in the graph 2004 belongs to the 
calibration period and 2005 belongs to the validation period of Gumara watershed. 
The ANN model captured the overall pattern of the observed hydrographs of the 
selected wettest years. However, it clearly has some limitations as it underesti-
mated some of the major peak stream flows of the wettest years for instance; 1st, 
17th August and 25th July days of 2004 but 13th September, 17th August and 15th 
September days of 2005. Overall, the result suggests that the model cannot pro-
vide good forecasts unless these errors in the peak flows are corrected. The sub-
jective model efficiency results in updating mode showed that NNU model per-
formed better than the other models from one day to six days lead time forecast 
for the watershed. However; it performed a little bit better for one days forecast 
than the other lead time days. For capturing the peak values the AR updating 
component gave better estimate.  

3) Megech Watershed 
The selected models were calibrated for Megech watershed using concurrent 

hydro-meteorological data covering a time period from January 1st 1994 to De-
cember, 31st of 2004. These years were selected for calibration since they expe-
rienced normal, wet and dry periods. The hydrograph above shows the simula-
tion results of the wettest years of SMAR model for Megech watershed. For the 
watershed the model overestimated the base flow and underestimated the peak 
flows, this is because the model estimated better the overall volume i.e., the mean 
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of the observed flow. Note that 1995 belongs to for the calibration period and 
2009 belongs to for the validation period of Megech watershed. The SMAR model 
captured the overall pattern of the observed hydrographs of the selected years. 
But, the model clearly underestimated some of the major peak stream flows for 
instance; 4th, 14th and 13th peak days of August in 1995 but 4th and 5th peak days 
of August and 3rd peak day of September in 2009 of the wettest years. Overall, the 
result suggests that the model cannot provide good forecasts unless these errors 
in the peak flows are corrected. The model efficiency results in updating mode 
showed that LTF model performed better than the other models for one day lead 
time forecast for the watershed; however, it performed a little bit better for one 
day forecast than the other lead days. For capturing the peak values the AR up-
dating component gave better estimate than other models.  

3.1.2. Evaluation In Terms of Objective Function 
General 
The outputs of model forecasts were evaluated using objective functions in ad-

dition to graphical comparisons and the results are presented below. 
1) Gilgel Abay Watershed 
In the previous section, the calibration and validation results for the selected 

models are discussed in terms of visual evaluation. To make objective evaluation, 
results of numerical performance criteria are used. In terms of the NSE, the ANN 
model reproduced the pattern of the observed hydrograph of Gilgel Abay watershed 
better than the other models with NSE = 0.87. For the NSE efficiency, the PLPM 
is the best performing with NSE = 0.84 next to ANN model. The least perfor-
mance in terms of NSE is obtained for the two variants of the SLM model with 
the parametric variant of this model resulting in the lowest NSE value of 0.66. 
Over all, the value of NSE for the selected models shows good to very good per-
formance in terms of capturing the pattern of the observed discharge data.  

In terms of IOA model efficiency criterion the ANN model slightly performed 
better than the other models, but SLM is inferior in performance than the others. 
However, note that the difference between the performances of these models is 
very small when compared in terms of IOA. In terms of IVF except SLM the 
other models performed better with IVF of 1.00 in simulation mode. ANN slightly 
better captured the peaks as compared to the other models. However, the per-
formance of all the seven models is unsatisfactory in terms of REP as these mod-
els resulted in REP values much greater than 0.3 for Gilgel Abay. Over all, the si-
mulation from these models resulted in an under prediction of peak discharge quan-
tiles.  

2) Gumara Watershed 
In terms of the NSE criteria, the ANN model reproduced the pattern of the 

observed hydrograph of Gumara watershed better than the other models with 
NSE = 0.90. This result suggests that the pattern of the runoff for this watershed 
can be better reproduced by non-linear transformation of the inputs to the out-
put. The least performance in terms of NSE is obtained for the two variants of 
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the SLM with the parametric variant of this model resulting in the lowest NSE 
value of 0.7. From the NSE efficiency results of each models in simulation mode; 
with a value of NSE = 0.84, the PLPM is secondly best in capturing the pattern of 
the historical hydrograph for the watershed. The NSE value of ANN model cor-
responds to an acceptable match of simulated discharge to the observed discharge 
since the closer the model efficiency is to 1, the more accurate the model is. For 
model output combination technique the WAM and NNM methods performed 
better than SAM and for updating of the model output error series NNU method 
performed better. In updating of predicted error series the NNU model performed 
better followed by LTF than the AR. 

3) Megech Watershed 
In terms of the NSE criteria, the SMAR model reproduced the pattern of the 

observed hydrograph of Megech watershed better than the other models with 
NSE = 0.78. This result suggests that the pattern of the runoff for this watershed 
can be better reproduced by a conceptual transformation of the inputs to the 
output. Poorest performance is obtained for the other six models in terms of 
NSE with values of less than 0.5. This is because Megech watershed is not ade-
quately represented by the linear models due to the flow duration curve (not li-
near). The SMAR model resulted in IOA value of 0.94 and therefore performs 
very well (Connor, 2000). The index of volumetric fit has a value of 0.96 for 
SMAR model in simulation mode. In terms of this efficiency criterion except the 
PSLM the other models performed better with IVF value of between 1.0 and 1.07 
in simulation mode. For updating of the model output error series LTF method 
performed better than NNU and AR in terms of NSE. The LTF model also per-
formed best in terms of IVF followed by NNU than the AR. In capturing peak 
discharge values AR is best than the others. 

3.2. Validation 

The models inputs were prepared for validation purposes and the hydrograph of 
the three test watersheds for validation is presented in Table 1. 

1) Gilgel Abay Watershed 
An independent data set for a period of from January 1st of 2001 to December, 

31st of 2005 has been used to ensure the calibrated parameters perform reasona-
bly well under this data set. The result of performance criteria showed that the 
model predictive capability is reasonable for validation periods. The ANN model 
performed better in terms of NSE for simulation mode, the WAM method for 
model output combination and the LTF model in updating mode for Gilgel Ab-
ay. The hydrographs for validating the calibrated parameters both in simulation 
and updating mode for the wettest years are shown in Figure 5.  

2) Gumara Watershed 
An independent data set from a period of August 1st of 2004 to December, 31st 

of 2009 has been used to ensure that the calibrated parameters perform reasona-
bly well under this data set. The result of performance criteria showed that the  
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Table 1. Results of performances of different models for calibration in simulation mode of the three case watersheds, note 
that the ranking is based on values of NSE. 

Watershed Model NPSLM PSLM NPLPM PLPM LVGF ANN SMAR 

Gilgel Abay 

NSE 0.74 0.66 0.83 0.84 0.81 0.87 0.81 

IOA 0.92 0.88 0.95 0.95 0.94 0.97 0.95 

IVF 1.12 0.97 1 1 1 1.02 1 

RE 0.43 0.37 0.34 0.34 0.26 0.39 0.37 

Rank 6 7 3 2 5 1 4 

Gumara 

NSE 0.76 0.7 0.8 0.8 0.79 0.9 0.78 

IOA 0.93 0.89 0.94 0.94 0.94 0.97 0.94 

IVF 1.07 0.91 1 1 1 1.01 0.98 

RE 0.4 0.39 0.38 0.33 0.2 0.18 0.2 

Rank 6 7 3 2 4 1 5 

Megech 

NSE 0.39 0.16 0.43 0.46 0.48 0.49 0.78 

IOA 0.71 0.46 0.76 0.77 0.79 0.8 0.94 

IVF 1.07 0.51 1 1 0.93 1.01 0.96 

RE 0.79 0.83 0.77 0.72 0.45 0.57 0.22 

Rank 6 7 5 4 3 2 1 

 

 
Figure 5. Rainfall observed and simulated discharge hydrograph of LTF for Gilgel Abay and Megech but NNU for Guma-
ra watershed for validation in simulation and updating mode of one day leads time. 
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model predictive capability is reasonable for the validation period. The model ef-
ficiency criteria showed that the ANN model performed better for simulation 
mode, the NNM method for model output combination and the NNU model in 
updating mode. A difference in model efficiency results of the calibration and 
validation of the models is due to the data considered. The output hydrographs 
for validation of both simulation and updating modes are different from that of 
the calibration; the reason leis in the data used for calibration and validation. 

3) Megech Watershed 
An independent data set from a period of August 1st of 2004 to December, 31st 

of 2009 has been used to ensure that the calibrated parameters performed rea-
sonably well under this data set. The result of performance criteria shows that the 
model predictive capability is reasonable for validation periods. The SMAR model 
performed well for simulation mode and the LTF model in updating mode. A dif-
ference in model efficiency results of the calibration and validation of the models 
are observed because of the data considered; i.e. resent discharge data for valida-
tion but past discharge data for calibration.  

4. Conclusion 

In this study alternative stream flow forecasting models were evaluated and al-
ternative updating flood forecasting methods were compared for selected rivers 
in the upper Blue Nile basin. For watersheds of Gumara and Gilgel Abay, the LPM 
performed better than the other models next to ANN model. For comparably small-
er watershed (Megech) the nine parameter SMAR conceptual model performed 
better than the other models. However, the performance of the SLM is clearly 
inferior to that of the other models. Probably as a result of non-linear behavior 
which matches the runoff generation behavior of large watersheds, the ANN 
model generally performed better than the simpler models. Models in GFFMS 
can be used to adequately forecast stream flows in the rivers of the upper Blue 
Nile basin with a performance efficiency of more than 78% i.e., accounting more 
than 78% of the initial variance for one day lead time. The result of sensitivity 
analysis showed that soil moisture infiltration capacity and rate are the most sensi-
tive parameters in the three case watersheds and the remaining seven SMAR pa-
rameters sensitivity to runoff differs from one watershed to another watershed. From 
the three models output combination methods weighted average method-WAM 
for Gilgel Abay and neural network method-NNM for Gumara performed well. 
The AR updating component performed better in updating peak stream flows 
for all watersheds; however; the LTF for Gilgel Abay and Megech and NNU for 
Gumara watershed performed better in updating the overall volume of the output 
hydrograph.  
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