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Abstract 
Basins in many parts of the world are ungauged or poorly gauged, and in some cases existing 
measurement networks are declining. The purpose of this study was to examine the utility of rea-
nalysis and global precipitation datasets in the river discharge simulation for a data-scarce basin. 
The White Volta basin of Ghana which is one of international rivers was selected as a study basin. 
NCEP1, NCEP2, ERA-Interim, and GPCP datasets were compared with corresponding observed pre-
cipitation data. Annual variations were not reproduced in NCEP1, NCEP2, and ERA-Interim. How-
ever, GPCP data, which is based on satellite and observed data, had good seasonal accuracy and 
reproduced annual variations well. Moreover, five datasets were used as input data to a hydrolog-
ic model with HYMOD, which is a water balance model, and with WTM, which is a river model; 
thereafter, the hydrologic model was calibrated for each datum set by a global optimization me-
thod, and river discharge were simulated. The results were evaluated by the root mean square 
error, relative error, and water balance error. As a result, the combination of GPCP precipitation 
and ERA-Interim evaporation data was the best in terms of most evaluations. The relative errors in 
the calibration and validation periods were 43.1% and 46.6%, respectively. Moreover, the results 
for the GPCP precipitation and ERA-Interim evaporation were better than those for the combination 
of observed precipitation and ERA-Interim evaporation. In conclusion, GPCP precipitation data and 
ERA-Interim evaporation data are very useful in a data-scarce basin water balance analysis. 
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1. Introduction 
A large number of hydrologic models have been developed up to the present. Some models are able to simulate 
water use with human activities as well as natural water cycles (e.g., [1]-[3]). Furthermore, physically sophisti-
cated hydrologic models such as SWAT (Soil and Water Assessment Tool) developed by [4] are opened as a 
public domain model, and nowadays, anyone can run a sophisticated hydrologic model without any difficulties. 
Moreover, these hydrologic models are used in the impact assessment on river discharge of climate change and 
to establish water resources planning based on the simulations. 

However, in developing countries and international rivers, it is often very difficult to obtain meteorological 
and hydrological data which are input into hydrologic models. Also the quality of observation data is extremely 
poor, and the situation that meteorological and hydrological observations have been stopped happens quite often. 
Drainage basins in many parts of the world are ungauged or poorly gauged, and in some cases existing mea-
surement networks are declining [5]. Therefore, sometimes it is impossible to apply a hydrologic model to si-
mulation because of observation, even if there is a hydrologic model. 

On the other hand, datasets from general circulation models and products estimated by satellites have been 
developed drastically recently. The spatial and temporal resolution of those data becomes higher rapidly. A rep-
resentative dataset is re-analysis data, which is frequently used for a water balance analysis in global or conti-
nental scale and climate studies (e.g., [6]-[9]). Moreover, Biemans et al. [10] compared seven global gridded 
precipitation datasets at river basin scale in terms of mean annual and seasonal precipitation. Getirana et al. [11] 
assessed different precipitation datasets including reanalysis data in the Negro River basin which is the most 
important tributary of the Amazon basin. Kotsuki and Tanaka [12] discussed four precipitation data sets to esti-
mate runoff in Southeast Asia. However, simulated runoffs using these data sets have not been examined in 
African basins, which are sometimes hampered by the fact that only little hydro-meteorological information is 
available [13]. 

In this study, the utility of reanalysis and global precipitation datasets are examined in the rainfall-runoff 
analysis in the Volta River basin, which is one of the representative basins in Africa. NCEP1 (National Centers 
for Environmental Prediction and National Center for Atmospheric Research Reanalysis 1), NCEP2 (NCEP and 
Department of Energy Reanalysis 2), ERA-Interim (European Reanalysis-Interim), and GPCP (Global Precipi-
tation Climatology Project) datasets are compared with corresponding observed precipitation data. Datasets are 
used as input data to a hydrologic model and river flows are simulated and the simulation results are compared 
with the observed data. 

2. Study Area 
The Volta River basin which is one of international rivers was selected as a study basin. The Volta River basin 
shared between five riparian countries: Benin, Burkina Faso, Ghana, Ivory Coast and Mali [14]. The Volta River 
basin is very flat. The predominant land use types are Guinea savannah in the southern and Sudan savannah in 
the northern part. The main geological systems of the basin are Precambrian platform and a sedimentary layer, 
the Voltaian sandstone basin [13]. The predominant soil types are lixisols in the southern and arenosols in the 
northern part.  

The Volta River basin is situated in the semi-arid to sub-humid climate zone with mean annual temperature 
between 27˚C and 36˚C in the northern and between 24˚C and 30˚C in the southern part [13]. Mean annual pre-
cipitation ranges from less than 300 mm (North) to more than 1500 mm in the South whereof around 80% falls 
between July and September. Evapotranspiration is a very important factor in this region. The mean annual po-
tential evaporation lies between 2500 mm in the North and 1500 mm in the South [13]. 

3. Methods 
3.1. Data 
Reanalysis data are a consistent and high quality historical analysis dataset spanning the past several decades 
using the latest data assimilation system, numerical prediction models, and a high-performance supercomputer 
(e.g., [15]). Some numerical prediction centers carried out their reanalysis projects and open those data by a web 
site. In this study, NCEP1 [16] made by NCEP (National Centers for Environmental Prediction) and NCAR 
(National Center for Atmospheric Research) were selected. NCEP2 [17] made by NCEP and DOE (Department 
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of Energy) and ERA-Interim (European Reanalysis-Interim) [18] developed by ECMWF (European Centre for 
Medium-Range Weather Forecasts) were also selected (Table 1). Daily precipitation and evaporation data can 
be collected up to the present. However, collection period is from 1997 to 2009, considering other meteorologi-
cal data. 

In addition to reanalysis data, some high resolution global precipitation data are developed using satellite data 
and ground observation data. GPCP (Global Precipitation Climatology Project) one-degree daily [19] is selected 
in these data sets (Table 1). These data are based on multiple passive microwaves, infrared satellite observations 
and gauge observations. Its temporal resolution is daily and spatial resolution is 1˚ × 1˚ latitude/longitude grid. 
Since GPCP is only precipitation dataset and other metrological data are not distributed, ERA-Interim evapora-
tion data are therefore used because its spatial resolution is the highest among reanalysis datasets. The data pe-
riod is from 1997 to 2009 which is the same as reanalysis data sets. 

In order to validate the accuracy of reanalysis and global precipitation datasets, daily rainfall data at Tamale 
city from Ghana Meteorological Agency (GMet) was collected. The data from 1975 to 2009 could be collected. 
When the accuracy of reanalysis data and global precipitation datasets are compared, the data from 1997 to 2009 
(13-year) are used, which is the same as reanalysis and global precipitation datasets. 

River flow data from GRDC (Global Runoff Data Centre) was also collected. A hydrologic model described 
in 3.2 with reanalysis data and global precipitation data sets are run. Simulated runoff is then compared with the 
river flow data from GRDC to validate the accuracy of datasets. Considering the observation period and data 
qualities, NAWUNI station in White Volta River was selected as a target point (Figure 1). The basin area up to 
NAWUNI is about 92,950 km2. River flow data from 1975-2006 could be collected. However, considering the 
period of reanalysis data and global precipitation datasets, the river flow data from 1997 to 2006 is used to 
compare simulation and observation. 

3.2. Hydrologic Model and Its Application 
Whole study area is from −6˚W to 3˚W and 5˚N to 15˚N, which covers whole Volta River basin. This domain 
(9˚ × 10˚) is divided by 0.5˚ latitude-longitude spatial resolution (18 × 20 grids). At each grid cell, a water bal-
ance model which is explained in 3.2.2 and 3.2.3 is applied to calculate runoff which is subsequently routed 
through a grid-based flow network to simulate stream flows at selected points within the basin. Grid-based flow 
network is based on STN-30 (Simulated Topological Network) made by [20] and its flow directions were mod-
ified by a map indicating actual river flow routes and locations. 

HYMOD (Hydrology Model) was adopted as a water balance model (Figure 2), developed by [21]. The 
model assumes that the soil moisture storage capacity (c) varies across the catchment and, therefore, that the 
proportion of the catchment with saturated soils varies over time. The spatial variability of soil moisture capacity 
is described by the following distribution function 

( )
max

1 1 cF c
c

β
 

= − − 
 

                                    (1) 

where maxc : maximum soil moisture storage (mm), β : degree of spatial variability of the stores (-). Evapora-
tion from the soil moisture store occurs at the rate of the potential evaporation. Following evaporation, the re-
maining rainfalls are used to fill the soil moisture stores. Excess rainfall is sent to the routing module. The 
routing module divides the excess rainfall using split parameter ( )α  and routes these through parallel concep-
tual linear reservoir meant to simulate the quick and slow flow response of the system. The flow from each re-
servoir is controlled by the quick flow residence time ( )qK  and the slow flow residence time ( )sK . The si-
mulated stream flow is therefore the addition of the outputs from each of these reservoirs. Number of parameters 
is five. Maximum and minimum values (Table 2) are decided based on the past research [22]. 

WTM (Water Transport Model) was adopted as a river flow simulation proposed by [23]. This model is a qu-
asi-linear reservoir model that computes discharge through each grid cell of the simulated river basin based on 
runoff inputs from HYMOD, a river networking system, channel transfer rates, and the timing and extent of 
floodplain inundation. For a single grid cell the flow and continuity equations are 
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Table 1. Data sets used in this study.                                                                               

Name Institute Grids Period 

NCEP1 NCEP/NCAR 192 × 94 (1.875) 1948-present 

NCEP2 NCEP/DOE 192 × 94 (1.875) 1979-present 

ERA Interim ECMWF 240 × 121 (1.5) 1979-present 

GPCP GSFC 360 × 180 (1.0) 1997-present 

 
Table 2. HYMOD parameters.                                                                                         

Parameter Minimum Maximum 

maxc  (mm) 0 2000 

β  (-) 0 7 

α  (-) 0 1 

( )qK d  1 7 

( )sK d  7 20,000 

 

 
Figure 1. Map of the Volta River basin.                                         
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Figure 2. Diagram of the HYMOD conceptual hydrologic model [22].                                           

 
where cS : channel storage (m3), fS : floodplain storage (m3), K : downstream transfer coefficient (-), A : 
grid cell area (m2), n : number of upstream donor cells, R : runoff simulated by HYMOD (mm), uQ : upriver 
inflow (m3), dQ : discharge exported downstream (m3), gQ : runoff generated locally within the grid cell con-
sidered (m3), fQ : exchange between channel and flood plain (m3), dmaQ : long term mean annual downstream 
discharge (m3). The coefficient fr  determines the fraction (0.0 to 1.0) of potential volume change that is as-
signed to floodplain storage, and fc  is the flood initiation parameter, giving the proportion (0.0 to 1.0) of 
long-term mean annual flow required to invoke floodplain exchanges. Maximum and minimum values (Table 3) 
are decided based on the past research. 

Reanalysis data contain precipitation and evaporation data. However, GPCP is only precipitation data sets. 
Therefore, GCPC is combined with ERA-Interim evaporation data, because ERA-Interim is the highest spatial 
resolution among the reanalysis datasets used in this study. Observed meteorological data are also precipitation 
data only, and is combined with ERA-Interim evaporation data (Table 4). These five pattern data sets are used 
as input data to the hydrologic model, and optimized parameter is calibrated for each data and validated in terms 
of accuracy. 1997 to 2000 (4-year) is used as a calibration period and 2001 to 2006 (6-year) is used as a valida-
tion period. 

ES (Evolution Strategy) was used to calibrate five parameters of HYMOD (Table 2) and three parameters of 
WTM (Table 3). ES is one of the global optimization methods [24]-[26] and is more powerful or efficient than 
SCE-UA (Shuffled Complex Evolution) method developed by University of Arizona. SCE-UA is most fre-
quently used in parameter calibrations. Objective function to express the differences between observations and 
simulations is RMSE (Root Mean Square Error) which is tend to balance water volume and emphasizes the error 
at high flows. 

( )2

1

1RMSE
N

ci oi
i

Q Q
N =

= −∑                                     (7) 

where oiQ : observed runoff, ciQ : simulated runoff, and N : number of data. 

4. Results and Discussion 
4.1. Precipitation 
The accuracy of precipitation data sets is compared. NCEP1, NCEP2, ERA-Interim, and GPCP of grid precipi-
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tation which includes Tamale city are compared with observed rainfall data (Figure 3). This figure shows that 
correlation coefficient is 0.64 - 0.66 in NCEP1 and NCEP2. On the other hand, correlation coefficient of ERA is 
0.79, indicating that ERA is the best performance among reanalysis datasets. On the other hand, GPCP made by 
satellite and ground rainfall data has better correlation coefficient (0.86) than reanalysis data. Therefore, it is 
found that GPCP is the best datasets in terms of monthly rainfall accuracy among the sets. 

Moreover, each data set and observed rainfall in annual rainfall were compared (Figure 4). This figure shows 
that NCEP1 and NCEP2 are quite overestimation compared with observations and annual variability does not 
match observations. Although ERA-Interim has a tendency to underestimate in later periods (2005-2009), an-
nual variability quite matches with observations and much better accuracy than NCEP1 and NCEP2. On the 
other hand, annual variability of observed rainfall is quite well reproduced by GPCP, and its accuracy is the best 
in the data sets. Scatter plots of annual precipitations are shown in Figure 5. In NCEP1 and NCEP2, correlation 
coefficient is −0.18 - 0.15, indicating almost no-correlation in annual period. ERA-Interim is much better than  
 
Table 3. WTM parameters.                                                                                         

Parameter Minimum Maximum 

K  (-) 0 1 

fr  (-) 0 1 

fc  (-) 0 1 

 
Table 4. Input data sets used in this study.                                                                             

Name Precipitation Potential evaporation 

NCEP1 NCEP1 NCEP1 

NCEP2 NCEP2 NCEP2 

ERA Interim ERA ERA 

GPCP GPCP ERA 

OBS Observed rainfall in Tamale city ERA 

 

 
Figure 3. Scatter plot of monthly rainfall for each data set.                             
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Figure 4. Time series of annual rainfall for each data set.                 

 

 
Figure 5. Scatter plot of annual rainfall for each data set.                    

 
NCEP1 and NCEP2, but correlation coefficient is 0.46 and the performance is not good very much. On the other 
hand, GPCP of correlation coefficient is 0.70 and it is found that GPCP is much better than other data sets. 

4.2. River Flow 
Model parameters are calibrated for each data set (Table 4) using the ES, and simulation and observation are 
shown in Figure 6. In addition to RMSE as an objective function, relative error and water balance error are 
shown in Tables 5-7. 

1

1Relative error
N

ci oi

i oi

Q Q
N Q=

−
= ∑                                  (8) 

1 1

1

Water balance error 100

N N
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i i

N
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i
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Q
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=

−
= ×
∑ ∑

∑
                            (9) 

From Figure 6, it is found that simulation by NCEP1, NCEP2, and ERA is good accuracy in terms of season-
al variations, even if annual precipitation pattern is not well produced (Figure 5). However, relative error is 66.0% -  
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Figure 6. Time series of river flow for each data set.                                          

 
Table 5. RMSE (m3/s) for simulated river discharge.                                                                    

Period NCEP1 NCEP2 ERA GPCP OBS 

Calibration 266.6 193.8 230.8 111.4 309.4 

Validation 253.4 278.2 217.0 147.5 280.5 

 
Table 6. Relative error (%) for simulated river discharge.                                                                 

Period NCEP1 NCEP2 ERA GPCP OBS 

Calibration 157.9 66.0 79.1 43.1 188.3 

Validation 234.1 53.5 72.2 46.6 201.4 

 
Table 7. Water balance error (%) for simulated river discharge.                                                              

Period NCEP1 NCEP2 ERA GPCP OBS 

Calibration 32.7 −2.4 6.5 5.5 28.9 

Validation 57.4 −30.2 −13.8 13.7 21.8 

 
157.9 % and water balance error is −2.4% - 32.7% even in calibration period (Table 6 and Table 7). And it is 
found that it is difficult to use these data sets in actual applications (e.g., water resources planning, construction, 
future prediction and so on). On the other hand, simulation results by GPCP are quite good agreement in hydro-
graph shapes. In terms of three evaluations (RMSE, Relative error, water balance error), the results of GPCP is 
the best performance in all except water balance error of validation period. Relative error is 43.1% in calibration 
and 46.6% in validation. Although observed data are not completely used in GPCP simulations, its accuracy is 
extremely good and it is quite surprising. Moreover, the simulation results done by OBS (observed precipitation 
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at Tamale city and ERA-Interim evaporation) are the worst results among all data sets used in this study. It is 
found that only one observed precipitation datum does not represent spatial variability of rainfall in the basin. 

The correlation coefficient between GPCP and observed data in monthly is 0.79 (Figure 3) and the correla-
tion coefficient between GPCP and observed data in annual is 0.70 (Figure 5). Moreover, time series of annual 
rainfall were quite well reproduced by GPCP (Figure 4) and time series of river flows were quite well repro-
duced by the combination of GPCP and ERA-Interim (Figure 6). From these results, precipitation of GPCP and 
evaporation of ERA-Interim make good performance in rainfall-runoff analysis in data-scarce basin that use 
meteorological data cannot be used at all. 

5. Conclusion 
The utility of reanalysis data and global precipitation data were examined in the rainfall-runoff analysis for an 
ungauged basin. NCEP1, NCEP2, ERA-Interim, and GPCP data were compared with corresponding observed 
precipitation data. Although the reanalysis data such as NCEP1, NCEP2, and ERA had fair seasonal accuracy, 
annual variations were not reproduced in these data. However, GPCP data, which are based on remote sensing 
data, had good seasonal accuracy and reproduced annual variations, making it the best among the data sets ex-
amined. Furthermore, five pattern data sets were used as input data to a hydrologic model with HYMOD, which is 
a water balance model, and with WTM, which is a river model; thereafter, the hydrologic model was calibrated 
for each data set, and river flows were simulated. The results were evaluated by considering the root-mean-square 
error, relative error, and water balance error. The results indicate that the combination of GPCP precipitation and 
ERA evaporation data was the best in terms of most evaluations. The relative errors in the calibration and valida-
tion periods were 43.1% and 46.6%, respectively. Moreover, the results for the GPCP precipitation-ERA evapo-
ration were better than those for the combination of observed precipitation and ERA evaporation. It was found 
that GPCP precipitation data and ERA evaporation data are very useful in an ungauged basin water balance anal-
ysis. 
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