
Journal of Transportation Technologies, 2017, 7, 50-69
http://www.scirp.org/journal/jtts

ISSN Online: 2160-0481
ISSN Print: 2160-0473

DOI: 10.4236/jtts.2017.71004 January 11, 2017

Touch-and-Go Mobile Payment System

Peter Rulić, Bojan Kotnik, Saša Klampfer, Amor Chowdhury

Margento R & D, Maribor, Slovenia

Abstract
Contactless mobile payment devices are fast, convenient and user friendly
means for executing small value business transactions. This kind of transac-
tions is preferred to be executed conveniently and on the fly by just tapping a
mobile payment device to a mobile terminal. Mobility, convenience and fast
transaction execution are very important payment system properties in poten-
tially crowded places such as in public transportation. These properties are in
practice causing transaction execution problems, such as: delays in offline
transaction execution, transaction atomicity failures caused by mobile data
communication drops, lack of central control on mobile transaction system
components and increased vulnerability risk caused by easy physical access to
the mobile transaction system components. This paper describes a holistic
transaction processing model for resolving mentioned problems in micro-
payment mobile touch-and-go transaction systems. Defined processing model
was implemented on real public transportation mobile payment system where
it was proven as a robust solution for execution of small value touch-and-go
mobile ticketing transactions.

Keywords
Mobile Transaction System, Business Transaction, NFC, Mobile Payment

1. Introduction

Basic general requirements for an arbitrary transaction system are today known
as ACID, which stands for atomicity, consistency, isolation and durability. ACID
term was first used by [1], and it is widely used for describing transactions [2]
[3] [4]. ACID properties of a mobile transaction system are often challenged,
because of frequent disconnections on mobile data transmission channels. More-
over, real mobile micropayment systems have to meet the following additional
requirements:

How to cite this paper: Rulić, P., Kotnik,
B., Klampfer, S. and Chowdhury, A. (2017)
Touch-and-Go Mobile Payment System.
Journal of Transportation Technologies, 7,
50-69.
http://dx.doi.org/10.4236/jtts.2017.71004

Received: November 7, 2016
Accepted: January 8, 2017
Published: January 11, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jtts
http://dx.doi.org/10.4236/jtts.2017.71004
http://www.scirp.org
http://dx.doi.org/10.4236/jtts.2017.71004
http://creativecommons.org/licenses/by/4.0/

P. Rulić et al.

51

• Fast business transaction execution by users. In practice, the so-called small
value or micropayment touch and go transactions have to be executed in
negligible time, where the user does not have to confirm the transaction ex-
ecution or enter a pin number. Quick execution of business transactions re-
duces congestions in crowded places and it is necessary in various cases, such
as public transportation check-ins, where transactions are executed quickly
with a single tap of contactless devices to the point of sale terminal.

• User-friendly and always available execution of business transactions. Busi-
ness transaction system has to be available for transaction execution regard-
less of various disconnections on mobile data transmission channels. Users
have to be able to conveniently and autonomously execute business transac-
tions on mobile terminals with various contactless devices, such as contact-
less smartcards or smart phones [5] [6].

• Reliable automated central control on mobile transaction system compo-
nents. Mobile terminals can temporary work in offline mode, during discon-
nections on mobile data transmission channels. Offline operation makes va-
rious transaction failures and failures on mobile transaction system equip-
ment hard to detect, because of missing real-time operational data. Operator
of mobile business transaction system has automated full control on mobile
parts of transaction system such as mobile terminals.

• Enhanced transaction system security. Practical transaction system security
has to be based on strong cryptographic techniques for data protection and
maintained with appropriate transaction system security procedures. Such
type of security has to provide automatic monitoring on business transaction
system for potential security breaches based on business transaction rules.
Therefore potential security breaches can be rapidly detected and rehabili-
tated, which is essential for damage mitigation. Another practical aspect for
enhanced security in mobile micropayment systems is transaction execution
without confirmation with pin number.

We will abbreviate these special requirements as FUCS (F for fast transaction
execution, U for user friendly execution of transactions, C for reliable control on
the transaction system components and S for the enhanced security). In this pa-
per we will present a processing model of the mobile micropayment near real-
time business transaction system, based on ISO/IEC 14443 or its extension Near
Field Communication (NFC) [7] compatible contactless devices, such as con-
tactless smartcards, NFC enabled mobile phones or similar devices [8] [9] [10]
with ACID and FUCS requirements.

1.1. Description of the Paper Structure

This paper is composed of six main sections and end literature section and is
organized as follows: The second section describes implemented mobile transac-
tion system architecture and provides basic insight into the mobile environment
for execution of business transactions. The detailed business transaction logic
and the problem of ACID and FUCS requirements are defined in the third sec-

P. Rulić et al.

52

tion.
We continue with the central processing system description in fourth section,

where business account synchronization, managing NFC disconnections and
enhanced control and security are defined. In fifth section the practical imple-
mentation case of public transport City Card Urbana is presented, meanwhile
sixth section concludes the paper.

1.2. Research Motivation

The motivation for this research was a gap between requirements and practical
problems, which emerged with implementation of micropayment NFC mobile
business transaction system called Urbana, which is Margento mobile payment
system [11] [12] used for public transportation ticketing and mobile payments.
Urbana is required to operate with intermittent mobile data transmission chan-
nels with ACID and FUCS properties.

Special challenge represents resolving unverified commit operations caused by
single tap NFC transactions (see third chapter, where mathematical model of
terminal transaction processing is described) on a MTD (Mobile Transaction
Device). Unverified MTD data commit operations lead to transaction atomicity
failures. These failures in practice occur when data communication between
terminal and MTD is disconnected during commit verification of a single tap
transaction.

Additional challenge is ensuring security and control over mobile components
of the transaction system. Terminals and MTDs are mobile components, which
can operate offline and are therefore vulnerable for potential malfunctions or
system intrusions.

1.3. State of the Art-Related Work

Our transaction system relates to three basic transaction system designs: trans-
action processing systems, real-time systems and batch processing systems [2].

The transactions of transaction processing systems are initiated on terminals
with terminal programs, where user requests are converted into executable trans-
actions. Transactions are transferred to central processing system, where they
are completed. Transaction data is finally stored in database system. Real-time
systems are online systems, with limited time for transaction execution. Ideally,
mobile transaction system is a real-time online system, where transactions are
executed online and committed in negligible time. Unreliable mobile data trans-
mission channels are preventing real-time transaction execution. In contrast to
real-time systems, execution time is not critical for batch processing systems,
where transactions are packed in batches and saved. Batches with transactions
are processed at a later time.

Disconnections between mobile and fixed hosts can generally be managed
with the basic idea behind a batch processing system: mobile hosts can operate
offline and locally store transaction data while mobile connection is unavailable.
At a later time when connection is available, the transaction data is transferred

P. Rulić et al.

53

between local and fixed hosts and processed. This concept is a base for various
relaxed ACID transaction models such as: pro-motion [13], pre-commit [14],
zippering [15], where with relaxing one or more ACID properties, the mobile
transaction can be successfully executed, despite disconnections between mobile
and fixed hosts. The same basic idea is used in our mobile transaction system,
where disconnection problems between terminals and central processing system
are solved with offline terminal operation where transactions are packed in
batches on terminals. Fast transaction execution is required in our business
transaction system, that’s the reason why our transactions are committed on
MTDs immediately at the time of execution. Such transactions cannot be can-
celed, which is similar as in the pre-commit transaction model.

Managing presented disconnections on NFC data transmission channel re-
quires transaction failure recovery, similar to [16] [17], where different strategies
for transaction repairing are used.

The presented related work is mainly focused at resolving ACID problems
caused by intermittent connections in mobile transaction systems. Related work
does not cover practical problems of mobile payment systems. Similar prototype
transaction system for mobile payment, which was presented in [18] [19] is fo-
cused mainly on user’s acceptance and opinion on convenience of NFC pay-
ments. It does not cover ACID and FUCS problems in big mobile payment sys-
tems. Our mobile payment system presents solution to FUCS requirements,
which are not covered in surveyed literature on mobile transaction systems.

2. Transaction System Architecture

The basic architecture of our transaction system is shown in Figure 1.
Business transactions represent interactions between businesses and users.

Business transactions are initiated on mobile terminals with ISO/IEC 14,443 or
NFC compatible devices referred as MTDs. MTDs are secured NFC hardware
devices capable of secure data storing and communicating with terminals. In the
following text business transactions will also be noted simply as transactions.
Terminals are hardware devices capable of secured running of terminal pro-
grams and storing the transaction data. Terminals are connected with the trans-
action processing center over a mobile network, which supports internet proto-
col [20] such as GPRS [21] [22], UMTS [23] or similar. Transaction processing
center uses relational SQL database [24] [25] for transaction data storage.

Figure 1. Architecture of the NFC transaction system.

P. Rulić et al.

54

Secure data storing on terminals and MTDs and encrypted data transmission
between terminals and transaction processing center; allow transactions to be
securely conveyed from terminals to the central processing system.

Transaction data is stored in the database system as presented in Figure 2.
The first is a mobile spread database, where users’ accounts data is stored on

their MTDs. The mobile database has the following properties: A single MTD
contains the data of a single transaction system account. The data on a MTD can
only be accessed by terminals during transaction execution.

These properties impede centralized and random transaction data access on
terminals, because the data on MTDs is available only during transaction execu-
tions on terminals.

The second database is central SQL database, which contains near-real time
copy of the mobile spread database. User account copies in the central database
are synchronized with user accounts on MTDs with transactions executed on
terminals and transferred to the central side of the transaction system. Such da-
tabase system provides centralized system control and random data access.

We can observe the whole mobile transaction system from the top layer where
the transactions take place. In Figure 3 the similarity between the terminal side
and the central side of the transaction system is presented in the sense of trans-
action processing and data storage. Transactions on the terminal side are per-
formed on multiple terminals, where user account data is stored on MTDs.
While the central side uses single software component called offline-processor
for transaction processing and SQL database for data storage. Such transaction
architecture enables user-friendly and always available transaction execution.

Transactions can be executed on mobile terminals offline, without fixed con-
nection to the central processing system. Executed transaction data is temporary
stored on terminals in transaction batches. When mobile connection between a
terminal and the central side is established, transaction batches are sent from a
terminal to the central side of transaction system, where they are processed to
synchronize the SQL database with the mobile spread MTD database.

3. Developed Mathematical Model of Terminal Transaction
Processing

We will present basic business transaction logic with the definition of terminal
transaction processing. Terminal transaction processing is executed when a us-
er’s MTD is taped to a terminal.

Figure 2. Data storage in mobile business transaction system.

P. Rulić et al.

55

Figure 3. Transaction processing and data storage on terminal and central side.

Every user has a business account stored on a MTD. We denote the business

account, also called just the account, as Ai, where index i represents i-th user.
Business account contains electronic wallet, which can be topped up with credit
for cashless payments. The account also allows purchases and validations of var-
ious products such as electronic tickets or vouchers. An arbitrary account con-
tains the following data:

(), , , , ,I W P L Z H A∈ (1)

where I represents a unique identification number of the account A, which cor-
responds to i-th user. W is the account wallet balance credit. P represents details
of purchased products available for use to the user. P is a set of purchased prod-
ucts ()1 2, , Np p p P∈ , where index N represents the number of products. The
time of last transaction execution in the account A is represented by L. Identifi-
cation of the terminal on which last transaction was executed is represented by
Z. All executed transactions on the account A are collected in a set of transac-
tions H, ()1 2, , MB B B H∈ . Index M represents the number of executed trans-
actions.

When transaction is successfully executed, the account data is changed. We
denote the states of an account between two successive transactions with succes-
sive upper script index integers such as Am and Am+1. Similarly we denote the
execution order of successive transactions with notations: Bm and Bm+1.

A transaction of i-th user account in m-th state is executed in a logical order,
where the account state m

iA is changed to 1m
iA + with the transaction m

iB . The
account state on a MTD can be changed with execution of transaction B, which
is represented as a message or log generated by a terminal. Transaction B con-
sists of transaction elements denoted as:

P. Rulić et al.

56

(), , , , , , , , ,nf c t l y z a w p s B∈ (2)

Symbols representing the transaction elements are described as:
• f—Transaction type is used for classification of transactions; We use four

transaction types: f = {refill, debit, purchase, validation}. The transaction type
is set on a terminal during transaction execution, according to the purpose of
the transaction.

• c—MTD identification number is used for identification of user accounts. It
is unique for each MTD device and used for the identification of the accounts.

• t—Time of transaction execution is current time on a terminal.
• l—Time of the last successfully executed transaction is stored on account

from previous successful transaction execution.
• y—Unique terminal identification number on which a transaction was ex-

ecuted.
• z—Terminal identification of the last successfully executed transaction is

stored on account from previous successful transaction execution.
• a—Transaction amount is set on a terminal according to a business price. It

can take positive or negative value.
• w—Wallet balance after an executed transaction is taken from the account.
• pn—Details of n-th purchased product where n = 1… N are chosen on a ter-

minal, if transaction type f = purchase.
• s—Data commit status on a MTD.

With transaction execution the following account values are modified:
Wallet credit i iW A∈ can be increased or decreased by the value i ia B∈ , or

left unchanged:
1m m m

i i iW W a+ = + (3)

New n-th purchased product element pn is added to user’s purchased products
set i iP A∈ with the transaction type purchase. This is expressed with equation

1purchase m m m
i i nf P P P+= ⇒ = ← (4)

where the symbol ← represents insertion of purchased product details pn into the
set Pi.

Last successful time i iL A∈ is set as the current time it B∈ and last ter-
minal identification i iZ A∈ is set as a current terminal identification:

1m m
i iL t+ = (5)

1m m
i iZ y+ = (6)

New transaction is added to the set of transactions H:
1 .m m m

i i iH H B+ = ← (7)

The success of a transaction depends on the success of a MTD data commit
operation. When a transaction B is executed, equations from (3) to (7) change
the account state, only if data commit operation on a MTD is successful. Data
commit operation on a MTD can be either successful or unsuccessful; therefore
a transaction is successful or unsuccessful.

Terminal verifies success of the commit operation in the final stage of transac-

P. Rulić et al.

57

tion execution. The commit operation result is represented with the MTD data
commit status m

is .
{ }successful, unsuccessful, unverifiedm

is = (8)

Verified data commit operation yields successful or unsuccessful data commit
result. The unverified data commit result was introduced because in practice a
terminal cannot always verify the success of data commit operation on a MTD.
Disconnection can occur before a terminal verifies the commit operation. Failed
reconnection or timeout enables a terminal to set unverified data commit status

m
is = unverified and continue executing next transaction.
The unverified data commit result causes atomicity failure. Meanwhile con-

sistency and durability are assured with data commit operation on a MTD. Al-
though the commit result in transaction B is set as unverified as presented with
Equation (8), the actual state of an account A on a MTD is only changed with
successful commit operation, so account A on a MTD remains consistent after
executed transaction. The isolation transaction property is assured with a logical
terminal rule, where only one transaction can be executed on one terminal at a
time. Transaction executions are independent of each other, thus multiple trans-
actions can be executed simultaneously on multiple terminals with isolation
property.

The presented terminal transaction processing logic provides always available,
fast and user friendly execution of transactions. But the defined transaction pro-
cessing on terminals alone, cannot provide atomic transaction execution. More-
over, transaction processing logic on terminals does not provide central control
on executed transactions or random user account data access. The solution to
these drawbacks is provided in the next sections, where details of the central
processing system are described.

4. Developed Mathematical Model of Central Processing
System

After execution the transaction data B is temporary stored in batches on termin-
als. When mobile connection is available, transaction batches are sent to central
processing system where they are processed by the offline-processor interacting
with the SQL database. SQL database contains copies of all user accounts on
MTDs. Central side processing mechanisms synchronize the original business
accounts on MTDs with the central side copies.

Similarly as on the terminal side, the central processing system also uses the
equations from (3) to (7) for transaction processing. The elements of an arbi-
trary account Ai has to have the same values on the terminal and on the central
side after every transaction Bi has been processed. To make further formulation
more understandable, we denote central account values with a right upper script
dash line, e.g. (I/,W/,P/,L/,Z/,H/)∈A/. Ideally, an account on the central side is
processed the same way as on the terminal side.

Processing of transactions on the central side is not as straightforward as on
the terminals. The reason for this is irregular transaction sequence. Transactions

P. Rulić et al.

58

on the terminal side are always executed in an incremental order. The time of
every executed transaction on a terminal m m

i it B∈ is always greater than the
time of the previously last executed transaction 1 1m m

i it B− −∈ , and smaller than
the time of the first next execution time 1 1m m

i it B+ +∈ . For sequential states of an
arbitrary account on MTD 1 1, ,m m m

i i iA A A− +
 , the respective sequential trans-

actions are generated 2 1, ,m m m
i i iB B B− −

 always in an incremental relation:
2 1 m m m

i i it t t− −< < (9)

This is in practice achieved by terminal real-time clock synchronization with
central database time.

Problems with central transaction processing emerge because transactions
cannot be processed in the same time sequential order as on the terminals.
Transactions on terminals are stored in batches, before they are transferred to
the central processing system. Time delays between transaction initiations on
terminals and central processing can cause a transaction m

iB to arrive to the
central side before transaction 1m

iB − . These problems are managed with algo-
rithms for synchronization of user accounts in central processing system.

Transaction parameter chaining is useful transaction property obtained from
Equations (5) and (6). We are using two parameters: t-time of transaction execu-
tion and y-unique terminal identification number for chaining two sequential
successful transactions on the MTD as shown in Figure 4.

Transaction chaining mechanism confines successful transaction execution on
a MTD and enables central processing system to effectively verify consistency of
transactions executed on mobile terminals.

In the following section we will present algorithms for transaction processing
in the central processing system.

4.1. Business Account Synchronization Mathematical Model

Two approaches are possible for account synchronization in central SQL data-
base. First is based on a delayed synchronization, where transactions are pro-
cessed after enough time has passed since their execution on terminals. This de-
lay time assures us that all executed transactions of i-th user have reached the
central processing system and transactions can be processed in execution-se-
quential order as on terminals. Such approach yields simple synchronization, but
it has a drawback. The central accounts are not synchronized fast or near real-
time. To achieve near real-time synchronizations, we have chosen the approach,
where transactions are processed near real-time or just after they are transferred
to the central processing system.

With this approach central accounts are synchronized regardless of the ter-
minal sequential order of transactions. These way transactions can be processed
as soon as they are transferred to the central processing system. Elements of an
account are synchronized in the following way:

Synchronization is unnecessary for account element I/, because it represents
constant identification number. Synchronization is trivial for set of transactions

P. Rulić et al.

59

Figure 4. Sequential successful transaction chaining.

H/, which are just copies of transactions H sent from terminals in batches. Ac-
count elements L/ (the time) and Z/ (the terminal identification) of last success-
fully executed transaction are also easily synchronized, by just taking values
from the last successful transaction transferred to the central processing system.

Synchronization of purchased products P/ is straightforward. User can pur-
chase a product np P∈ for a use within its predefined time period. Every
product has to be validated before it is used. Therefore product purchase trans-
action on a terminal is executed first and validations latter. Disconnection be-
tween the terminal and the central processing system might cause product pur-
chase transaction to be delayed and product validations might arrive to the cen-
tral processing system before purchase. In this case processing conflict occurs in
the central processing system-validation cannot be processed, because there is
no referenced product purchase. To deal with delayed product purchases, special
pending status to product validations is introduced (see Section 4.2.).

4.2. Algorithm for Managing Pending Validation

The algorithm for managing pending validations is presented with flowchart on
Figure 5. Pending validation status can be set only for arbitrary limited time. If
this time has expired, the transaction system alert is set. Alert notifies transac-
tion system administrators that validation without purchased product was ex-
ecuted. This indicates either a potential security breach or a system malfunction.

4.3. Algorithm for Wallet Credit Synchronization

The remaining account element to be synchronized is wallet credit. Synchroni-
zation of the wallet credit is performed with help of the auxiliary-element set Xi

/,
which completes the account Ai

/ on the central side of the transaction system.
The auxiliary set Xi

/ is presented as a record in the central database table used for
synchronization. The auxiliary set contains the following elements:

()/ / / /, ,I U D X∈ (10)

The first element denoted as I/ is used for identification of the account being
synchronized / / / /I X I A I A∈ = ∈ = ∈ . The second element represents time
and is denoted U/. It represents the synchronization time. The last element is
synchronization amount denoted D/.

After a transaction Bi is executed on the terminal, it is transferred to the cen-
tral side of the transaction system. Synchronization of a wallet credit value Wi

/
on the central side is performed with the algorithm presented with flowchart on
Figure 6.

P. Rulić et al.

60

Figure 5. Algorithm for processing pending validations.

Synchronization amount Di

/ represents indicator of the synchronization sta-
tus. Synchronization amount Di

/ is inserted into the auxiliary set table X/ only
when the terminal Ai and the central side Ai

/ accounts are not synchronized.
When all transactions of i-th user have been processed in the central processing
system, every record Xi

/ in the auxiliary table has a synchronization amount Di
/

value equal zero. In this case the synchronization is completed. If some values of
D/ exist, which are different than zero, this indicates that all transactions per-
formed on terminals by i-th user, have not yet been processed due to transaction
transfer delays. In this case the synchronization is not completed. With ideal
functioning of the transaction system the auxiliary records X/ always have syn-
chronization amount values D/ equal zero, after some maximal time has passed
since the transaction execution on a terminal. Transaction system alert is set
when arbitrary maximal time is exceeded and the respective synchronization
amount D/ is still not zero. This indicates either a potential security breach or a
system malfunction.

P. Rulić et al.

61

Figure 6. Algorithm for wallet credit synchronization.

4.4. Managing Disconnections on NFC Data Transmission Channel

Transaction execution between a terminal and a MTD is not always atomic be-
cause of disconnections on NFC data transmission channel, as described earlier
in text. To overcome this problem we use the time of the last successfully ex-
ecuted transaction L.

Transaction m
iB can arrive to the central side of the transaction system with

the MTD commit status m m
i iS B∈ set to unverified. In this case central pro-

cessing system has to verify if transaction m
iB was executed successfully or un-

successfully. Successful transaction m
iB can be verified with the parameter

i il B∈ -time of last successfully executed transaction using the transaction time
chaining relations:

{ }1 1, successful, ,m m m m
i i i it l s s successful unverified+ += = = (11)

where any couple of successive transactions m
iB and 1m

iB + (executed by i-th
user) are connected with time stamp values m

it and 1m
il
+ . Start time of previ-

ously executed successful transaction m
it is always equal to the next transac-

tions last successful time 1m
il
+ , if the next transactions execution status 1m

is + is
successful or unverified. Defined transaction time chaining can undoubtedly cla-
rify unverified commit operation on a MTD and preserves the atomicity. Figure

P. Rulić et al.

62

7 represents the algorithm based on the transaction time chaining, which is used
for managing disconnections on NFC data transmission channel.

Figure 7. Algorithm for managing disconnections on NFC data transmission channel.

P. Rulić et al.

63

When i-th user opens an account, a MTD is initialized. With MTD initializa-
tion, the time of the last change in an account state i iL A∈ is set to the current
initialization time. This enables the first transaction to be verified. By tracking
the chained sequence of successful transactions, we can effectively verify the
MTD commit operation. The presented algorithm assures atomic transaction
execution even in the cases of unverified MTD data commit status on terminals.

The drawback of described method for preserving atomicity is non-real-time
verification. Unverified transactions can only be verified with the next executed
transaction by a user. This represents a relaxation of atomicity in the transaction
system, where atomicity of disconnected transactions is preserved for the cost of
transaction execution delay.

The atomicity drawback is in practice reduced to minimal occurrence with
terminal feedback prompting the user to re-tap MTD when commit operation is
unverified. However, the user can ignore the terminal feedback, refuse or fail to
re-tap the MTD to the terminal. In this case we are relaxing the atomicity prop-
erty and allow the transaction execution to be delayed until the user executes
next transaction.

4.5. Control and Security

Transaction time chaining was utilized for managing disconnections on NFC
data transmission channel. It is also used for control and security purpose, in
combination with the terminal identification chaining.

Practical concern in the mobile transaction system is random malfunction,
when some random terminal didn’t send an executed transaction to the central
processing system. To verify the transaction execution, we need reliable central
control on such failures. This is achieved with transaction time chaining and
terminal identification chaining.

A transaction contains the element of terminal identification y B∈ and the
element of terminal identification of the last successfully executed transaction
z B∈ . Any couple of successive transactions m

iB and 1m
iB + executed by i-th

user are chained with terminal identifications as:

{ }1 1, , ,m m m m
i i i iy z s successful s successful unverified+ += = = (12)

where terminal identification of previous successful transaction m
iy is always

equal to the next transactions last terminal identification 1m
iz + , if the next

transactions execution status 1m
is + is successful or unverified.

Automated central control on transaction system is based on detection of
consistency failures during transaction processing such as:
• missing transactions during account synchronizations,
• missing or invalid timestamps in transaction time chaining defined with Eq-

uation (11),
• other invalid transaction parameters.

Detected irregularities can be supplemented with the terminal identification
chaining, defined with Equation (12). With terminal identification chaining the

P. Rulić et al.

64

malfunctioned terminal can be rapidly detected, even if the terminal is discon-
nected from the central processing system.

Security is another important concern in the mobile transaction system. Mo-
bile transaction system components such as terminals and MTD’s are particu-
larly vulnerable, because mobility enables offline transaction execution without
connection to the central processing system. Moreover, potential attackers have
easy physical access to these mobile components. Generally it is hard to predict
all possible attack methods on MTDs [26] [27] therefore we are proposing a
consistency verification method for fraud detection. Comprehensive transaction
system security is the topic beyond the scope of this text. We are presenting a
basic approach for security hardening in the mobile payment system.

Encryption represents the basic defense against attacks on mobile transaction
system. Mobile transaction system data is protected with encryption of accounts
on MTDs, secured transaction execution on terminals and encrypted data trans-
fer between terminals and central processing system. If an attacker manages to
break the encryption, it would be trivial to execute unauthorized transactions.
Breaking encryption on a MTD or terminal could lead to:
• unauthorized electronic wallet credit modifications,
• unauthorized electronic product purchases,
• copying and duplication of a MTD account.

Presented central transaction processing mechanisms offer enhanced security
with rapid detection of potential data breaches on the terminal side of the trans-
action system. Security breach on the terminal side can be detected with defined
consistency verification during account synchronization or managing NFC dis-
connections on the central side. Every inconsistency between terminal and cen-
tral side of an arbitrary account represents potential security breach. For exam-
ple: unauthorized product purchases can be detected with defined synchroniza-
tion of purchased products, unauthorized wallet balance modification can be
detected with the wallet credit synchronization. Copying or duplication of a
MTD account can be detected with the following transaction consistency rela-
tion:

, , successful, successfulu m m m u u
i i i i i il l u m s B s B≠ ≠ ∈ = ∈ = (13)

where any couple of successful transactions u
iB and m

iB , executed by i-th user,
always have different values of last successful time. Copy and duplication of ac-
count on a MTD is detected by comparing last successful time of processed
transaction with last successful time of any previous transactions executed by
i-th user and stored in the central database. If two successful transactions on a
MTD with the same last successful time are detected, this indicates potential
unauthorized copying and duplication of a MTD account. Such transaction con-
sistency confinement provides the effective detection of miscellaneous attacks on
the terminal side, and increases attack difficulty. This is because undetectable
attack requires simultaneous account data modification on the terminal side and
on the central side of the transaction system.

P. Rulić et al.

65

5. Implementation Case City Card Urbana

In this section we will present practical operational data of the defined transac-
tion processing model. The presented processing model was implemented in real
big mobile transaction system called “City card Urbana” or simply Urbana. Re-
sults are obtained from real transaction data gathered from Urbana in December
2015, which represents typical operation. Urbana is used in the city of Ljubljana
as a stored value card business transaction system for purchasing small value
public city transportation services, city parking services, public library services,
city tourist services, etc. Urbana contains approximately 860,000 active user ac-
counts and 1600 mobile terminals.

The chart in Figure 8 shows daily number of successful transactions. On a
typical work day Urbana exceeds 200,000 successful transactions. While on
weekends, national holidays, school holidays there are notably smaller number
of transactions. This is expected daily distribution, since city services are used
more frequently during work days.

We performed the measurements on the transaction system operational data
in December 2015, which are presented in Table 1.

These measurements are:
• Average frequency of disconnections between terminals and central pro-

cessing system during transmission of transaction batches.
• Average daily number of disconnections on NFC data transmission channel.
• Averagetime for transaction execution on terminals for contactless smart-

cards.
• Average time for transaction execution on terminals for NFC compatible

mobile phones.
Urbana terminals use GPRS mobile data transmission channel for transferring

transaction data to the central processing system. Frequency of disconnections
in Table 1 is calculated as a ratio between number of disconnected and number
of successfully transmitted transaction batches from terminals to the central
processing system. In December 2015 there were 1,319,516 successfully trans-
mitted transaction batches and 26,015 disconnections. The measurement of 0.02
represents approximately one disconnection on 50 successfully transmitted
transaction batches. Defined algorithms for business account synchronization
successfully managed all disconnected transactions assuring ACID and FUCS
properties.

On work week days Urbana receives averagely 226 NFC disconnections,
which affect transaction atomicity discussed earlier. Although the number of
such disconnections is relatively small in comparison to the total daily number
of successful transactions (more than 200,000), the preservation of atomicity is
essential for the transaction system. Processing mechanisms for managing NFC
disconnections enable preservation of atomicity; however atomicity is preserved
with relaxation, where transaction execution on the central side is delayed until a
user executes next transaction. Table 2 presents number of these delays in ac-
cordance to time for NFC disconnections that occurred during December 2015.

P. Rulić et al.

66

Figure 8. Daily number of successful transactions in December 2015.

Table 1. Measurements in Urbana for December 2015.

Average frequency of batch transmission disconnections 0.02

Average daily number of NFC disconnections 226

Average time for transaction execution with contactless smartcards (in seconds) 0.35

Average time for transaction execution with NFC compatible
mobile phones (in seconds)

1.0

(Measurements were performed on work week days-without weekends and national holidays).

Table 2. Delays for managing disconnections on NFC during December 2015.

Number of disconnected
transactions

Verification time in days (24 hours) since
transaction execution

3953 less than 1 day

305 from 1 to 2 days

69 from 2 to 3 days

56 from 3 to 4 days

38 from 4 to 5 days

28 from 5 to 6 days

17 from 6 to 7 days

30 from 7 to 8 days

18 from 8 to 9 days

4 from 9 to 10 days

257 more than 10 days

(Number of all disconnected transactions = 4775).

Table 2 shows that majority of disconnections on NFC are resolved within

one day since the execution of disconnected transaction. The disconnected
transaction is verified with the next transaction after NFC disconnection. Re-
sultsin Table 2 indicate that majority of users use the transaction system regu-
larly every day. Table 2 also shows that 257 disconnected transactions need
more than 10 days for verification. Some of those transactions might never get

P. Rulić et al.

67

verified or verification time will be very long. In the worst case scenario, some
transaction on a MTD gets disconnected and the same MTD is never used again.
Such transaction will never be verified.

FUCS requirements in Urbana are ensured with the defined processing archi-
tecture. Transaction execution is available on mobile terminals regardless of the
availability of mobile transmission channel. Transactions are executed fast and
user friendly. Generally a transaction is executed in a short time after the user
just puts a MTD in front of a terminal: currently in approximately one third of a
second for contactless smartcards and one second for NFC compatible mobile
phones.

6. Conclusions

We have defined a holistic transaction processing model, with algorithms for
mobile account synchronization, verification of transactions, establishing en-
hanced transaction system control and security. Defined processing model is
capable of resolving common problems in mobile micro payment touch-and-go
transaction systems. These problems are offline transaction executions, transac-
tion atomicity failures, central control on mobile transaction system compo-
nents, and supervision on potential security risks.

The processing model was tested in real mobile transaction system environ-
ment, where it operates very well. Presented transaction chaining mechanism
was in practice proven as a good solution for ensuring requirements in real mo-
bile payment system. FUCS properties of the payment processing system can be
further improved in the future, by adding additional parameters for transaction
chaining such as: transaction serial number on a terminal or transaction serial
number on a MTD. A challenge remains in further reduction of NFC transaction
disconnections and in decreasing delays for managing these disconnections.

References
[1] Haerder, T. and Reuter, A. (1983) Principles of Transaction Oriented Database Re-

covery. ACM Computing Surveys, 15, 287-317. https://doi.org/10.1145/289.291

[2] Bernstein, P.A. and Newcomer, E. (2009) Principles of Transaction Processing 2nd
Edition, Morgan Kaufmann, Burlington.

[3] Le, H.N. (2006) A Transaction Processing System for Supporting Mobile Collabora-
tive Works. Doctoral Dissertation, Department of Computer and Information
Science, Norwegian University of Science and Technology, Trondheim.

[4] Weikum, G. and Vossen, G. (2002) Transactional Information Systems, Theory,
Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann, Burlington.

[5] Chen, J.J. and Adams, C. (2004) Short-Range Wireless Technologies with Mobile
Payments Systems. 6th International Conference on Electronic Commerce, Delft,
25-27 October 2004, 649-656. https://doi.org/10.1145/1052220.1052302

[6] Dewan, S.G. and Chen, L.-D. (2005) Mobile Payment Adoption in the USA: A
Cross-Industry, Cross-Platform Solution. Journal of Information Privacy & Securi-
ty, 1, 4-28. https://doi.org/10.1080/15536548.2005.10855765

[7] Finkenzeller, K. (2010) RFID Handbook: Fundamentals and Applications in Con-

https://doi.org/10.1145/289.291
https://doi.org/10.1145/1052220.1052302
https://doi.org/10.1080/15536548.2005.10855765

P. Rulić et al.

68

tactless Smart Cards, Radio Frequency Identification and Near Field Communica-
tion. 3rd Edition, John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9780470665121

[8] Carr, M. (2007) Mobile Payment Systems and Services: An Introduction. Mobile
Payment Forum.

[9] Ondrus, J. and Pigneur, Y. (2007) An Assessment of NFC for Future Mobile Pay-
ment Systems. ICMB International Conference on the Management of Mobile
Business, Toronto, 9-11 July 2007, 43-53. https://doi.org/10.1109/ICMB.2007.9

[10] Ondrus, J. and Pigneur, Y. (2006) Towards a Holistic Analysis of Mobile Payments:
A Multiple Perspectives Approach. Electronic Commerce Research and Applica-
tions, 5, 246–257. https://doi.org/10.1016/j.elerap.2005.09.003

[11] Klampfer, S. and Chowdhury, A. (2015) The Proposed Planning Method as a Paral-
lel Element to a Real Service System for Dynamic Sharing of Service Lines. ISA
Transactions, 57, 403-417. https://doi.org/10.1016/j.isatra.2015.02.010

[12] Svečko, J., Kotnik, B., Mezgec, Z. and Chowdhury, A. (2010) The Margento Auto-
mated Fare Collection System Solution for Public Transport. Proceedings of the 7th
International Conference on Logistics & Sustainable Transport, Maribor, 24-26
June 2010.

[13] Walborn, G.D. and Chrysanthis, P.K. (1997) Pro-Motion: Management of Mobile
Transactions.11th ACM Annual Symposium on Applied Computing, San Jose, 28
February-2 March 1997, 101-108. https://doi.org/10.1145/331697.331718

[14] Madria, S.K. and Bhargava, B. (1998) A Transaction Model for Mobile Computing.
Proceedings of the International Database Engineering and Applications Sympo-
sium, Cardiff, 8-10 July 1998.

[15] Keller, A.M., Densmore, O., Huang, W. and Razavi, B. (1998) Zippering: Managing
Intermittent Connectivity in DIANA. ACM/Kluwer Journal on Mobile Networks
and Applications, 2, 357-364. https://doi.org/10.1023/A:1013661523328

[16] Pedregal-Martin, C. and Ramamritham, K. (2002) Support for Recovery in Mobile
Systems. IEEE Transactions on Computers, 51, 1219-1224.
https://doi.org/10.1109/TC.2002.1039847

[17] VanderMeer, D., Datta, A., Dutta, K., Ramamritham, K. and Navathe, S.B. (2003)
Mobile User Recovery in the Context of Internet Transactions. IEEE Transactions
on Mobile Computing, 2, 132-146. https://doi.org/10.1109/TMC.2003.1217233

[18] Ferreira, M.C., Dias, T.G. and Falcao e Cunha, J. (2014) Design and Evaluation of a
Mobile Payment System for Public Transport: The MobiPag STCP Prototype. 4th
International Conference on Mobile Services, Resources, and Users, Paris, 20-24
July 2014.

[19] Rodrigues, H., José, R., Coelho, A. and Melro, A., Campos Ferreira, M., Falcao e
Cunha, J., Pimenta Monteiro, M. and Ribeiro, C. (2014) MobiPag: Integrated Mo-
bile Payment, Ticketing and Couponing Solution Based on NFC. Sensors, 14, 13389-
13415. https://doi.org/10.3390/s140813389

[20] Stevens, W.R. (1994) TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wes-
ley, Upper Saddle River.

[21] Halonen, T., Romero, J. and Melero, J. (2003) GSM, GPRS and EDGE Performance
Evolution towards 3G/UMTS. 2nd Edition, John Wiley & Sons, Hoboken.
https://doi.org/10.1002/0470866969

[22] Heine, G. and Sagkob, H. (2003) GPRS: Gateway to Third Generation Mobile Net-
works. Artech House Publishers, Norwood.

[23] Sanchez, J. and Thioune, M. (2007) UMTS, ISTE.

https://doi.org/10.1002/9780470665121
https://doi.org/10.1109/ICMB.2007.9
https://doi.org/10.1016/j.elerap.2005.09.003
https://doi.org/10.1016/j.isatra.2015.02.010
https://doi.org/10.1145/331697.331718
https://doi.org/10.1023/A:1013661523328
https://doi.org/10.1109/TC.2002.1039847
https://doi.org/10.1109/TMC.2003.1217233
https://doi.org/10.3390/s140813389
https://doi.org/10.1002/0470866969

P. Rulić et al.

69

[24] Codd, E.F. (1970) A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13, 377-387. https://doi.org/10.1145/362384.362685

[25] Date, C.J. (1995) An Introduction to Database Systems. 6th Edition, Addison Wes-
ley, Upper Saddle River.

[26] Đurić, Z., Marić, O. and Gašević, D. (2007) Internet Payment System: A New Pay-
ment System for Internet Transactions. Journal of Universal Computer Science, 13,
479-503.

[27] Pasquet, M., Reynaud, J. and Rosenberger, C. (2008) Secure Payment with NFC
Mobile Phone in the Smart Touch Project. Proceedings of International Symposium
on Collaborative Technologies and Systems CTS, Irvine, 19-23 May 2008.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jtts@scirp.org

https://doi.org/10.1145/362384.362685
http://papersubmission.scirp.org/
mailto:jtts@scirp.org

	Touch-and-Go Mobile Payment System
	Abstract
	Keywords
	1. Introduction
	1.1. Description of the Paper Structure
	1.2. Research Motivation
	1.3. State of the Art-Related Work

	2. Transaction System Architecture
	3. Developed Mathematical Model of Terminal Transaction Processing
	4. Developed Mathematical Model of Central Processing System
	4.1. Business Account Synchronization Mathematical Model
	4.2. Algorithm for Managing Pending Validation
	4.3. Algorithm for Wallet Credit Synchronization
	4.4. Managing Disconnections on NFC Data Transmission Channel
	4.5. Control and Security

	5. Implementation Case City Card Urbana
	6. Conclusions
	References

