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Abstract 
The repair kit problem seeks an optimal stock of parts for a repair kit for purposes of 
remote repairs. This problem has often been studied when restocking is possible be-
tween each order, or when the number of orders is known between each restocking. 
This research evaluates a model for the repair kit stocking problem for which there is 
multiple-period demand with a known time interval between each restocking, but an 
unknown number of on-site repair visits is required during the restocking period. 
Most previous work focuses on minimum cost subject to some minimum service lev-
el; in the case where the value of technician time and customer service is relatively 
large, the space constraint of the kit and volume of parts comes into play. This work 
contributes to the literature by testing the robustness of a heuristic originally pro-
posed by [1] in a field study. We conduct numerical experiments to evaluate the heu-
ristic over a wide range of parameterizations. Our results indicate that the heuristic 
performs close to optimum, and its performance improves as the problem size grows. 
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1. Introduction 

Many organizations must service products for customers in geographically disperse lo-
cations with mobile service parts inventories (kits) which must contain the most useful 
parts to provide a high service level. Large-scale network industries with remote instal-
lations such as utilities, telecommunications companies and railroads face repair kit 
stocking decisions to support their maintenance and repair operations. Emergency 
ambulance services in health care face the same stocking decisions. Examples also ab-
ound in the corporate and consumer service arenas such as office equipment (e.g., 
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copiers, printers and computers) which is the motivating application of much prior re-
search. 

The challenge in the kit stocking problem is to decide which parts to stock in repair 
kits with limited space in order to complete required repairs. Inventory holding costs of 
parts are substantial, but the parts required to complete a repair are not known until the 
location is visited. Ideally, the repair is completed by a technician in a single visit to 
avoid the cost and lost customer satisfaction of a second trip; thus, it is highly valuable 
to carry the right part to complete the service. The known holding cost of carrying a 
part is weighted against its possible future use in a repair. If the part is not on-hand for 
a repair, then a cost is incurred for having to revisit the site and for the added inconve-
nience to the customer of product down time. 

This work is based on a field study described in [1] in which technicians must stock 
their vehicles for warranty service for household appliances (e.g., washers and dryers, 
refrigerators and ovens, heaters and air conditioners). [1] solved the problem in a spe-
cific case; this research extends that work by testing the approach the more broadly in 
numerical experiments to ensure its robustness and broad applicability, as well as its 
performance relative to optimality. 

2. Literature Review 

This problem is often referred to in the literature as the repair kit problem [2]-[4]. 
Originally proposed by [5] as a single-visit cost minimization problem, [6] resolves the 
problem with a minimum service constraint. The difference in these approaches stems 
from modeling a failure as a cost of revisit and lost customer goodwill (as in [6]), or as a 
constraint on the minimum service level (as in [6]). 

[5] and [6] assume that different parts have independent failure processes and that at 
most one part of each type is required on a single repair. [7] and [8] relax this assump-
tion, extending the single-period model to multiple periods but deterministic number 
of visits. [2] demonstrates a generalized approach for the various specifications. 

In the single-period model, it is assumed the vehicle is restocked after each job. This 
assumption does not apply well when repair locations are remote and vehicle restock-
ing costs are high. In this case, a technician may visit multiple repair sites between res-
tocking events. [3] and [4] allow for multiple repair visits (known as a “tour”) between 
vehicle restocking. Both assume that the number of customer visits between restocking 
opportunities is known and fixed. 

[1] and [2] generalized the multiple stop repair kit problem to allow for uncertainty 
in the number of stops between restocking. Often, there is a known time interval be-
tween restocking opportunities; the number of visits over the interval varies due to a 
number of factors. First, the travel time required to the locations of the visits varies. 
Second, job complexity and repair times vary. Third, the stocking level affects the 
number of visits per repair; if the part is on hand in the vehicle a single visit is required, 
but if it is not on hand two visits are required. Thus, the relative frequency of first and 
second visits which affects the uncertainty of part needs. 
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[4] and [9] minimize part carrying cost subject to a minimum service level con-
straint. The heuristic of [4] is based on the ratio of the holding cost of the part and the 
job or part fill rate, adding parts that have the highest service impact per dollar ratio. 
More recently, [9] develop a heuristic for meeting a minimum service level requirement 
at minimum cost for a stochastic number of trips in the tour. Neither approach consid-
ers part dimensions or kit capacity in the implemented heuristic. Both formulations 
and solution approaches naturally minimize vehicle inventory value; thus, a minimum 
service level constraint is imposed to ensure some inventory is held on the vehicle. 

[1] is unique in the literature because the size of the part is considered explicitly in 
the decision to stock it. (This extension was called for by [4] in the conclusion of that 
work.) The objective function is unique in [1]; they maximize the net benefit of service 
savings of parts in the kit less their holding cost. This research extends [1] by numeri-
cally evaluating the heuristic’s performance in a broader setting with various model pa-
rameterizations, testing its robustness in a variety of settings. 

[1] proposed a heuristic method based on a novel measure—Net Benefit per unit 
Volume (NBV) which balances the service value of inventory, its cost, and the space it 
consumes in the kit. They estimate the cost of failure and maximize the net benefit of 
part carrying (failure avoidance less part carrying cost) per cubic volume consumed by 
the part, which captures the larger opportunity cost of large parts. The heuristic esti-
mates the costs and benefits of carrying a part and is the basis for improved service ve-
hicle stocking recommendations. Because volume is explicitly included in the heuristic, 
the formulation requires the inclusion of a vehicle space constraint and individual part 
volumes to ensure the capacity of the service vehicle is not exceeded ([3] included a 
space constraint in their formulation, but ignore the restriction in their solution tech-
nique because their cost minimizing approach naturally minimizes inventories). 

The heuristic employed here is the same as in [1]. Where [1] describes the value of 
implementing the heuristic in a particular field setting, this research numerically eva-
luates the quality of the solutions attained relative to optimum with various settings for 
demand, different counts of parts (SKUs), different part dimensions and various costs 
for part holding, service and revisit. 

3. Model 

Notation and Model Assumptions: 
Repair kits are restocked on a periodic basis. We define the period between restock-

ing as the lead time, T. The lead time is equal to the order placement frequency plus the 
delivery lead time, where the reorder placement frequency is a function of the volume 
of part usage and the distance and cost of the delivery. The minimum leadtime for a 
part is the transit time; the expected order frequency delay is half the order frequency. 
For purposes of this modeling endeavor, we assume that the expected lead time is tran-
sit time plus one-half the order frequency, and it is treated as a constant. 

Replacement part needs are a function of the random arrival of part breakdowns. We 
model part needs as a Poisson arrival process with mean demand during lead time of di 
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because the Poisson naturally describes arrivals of part orders. The probability is a 
function of its mean demand and the Poisson distribution. Any demand process with 
non-increasing probability Pij of use of part i in demand volume of j would work as 
well. As is common in the literature, we assume that part failure rates probabilities are 
stochastically independent. Mean demand di results in some probability of any level of 
demand, j, for the part from j = 0 ∙∙∙ M, where M is the maximum level of demand, or 
the level for which there is a near-zero probability of M orders for part i over the res-
tocking horizon (P(Di ≥ M) ≤ ε, where ε = 1E−6). We assume over the horizon of the 
repair kit setting decision, demand for each part is stationary. Any seasonality or 
change in demand can easily be incorporated by resetting the planned repair kit on a 
seasonal or regular basis. 

We note that there are significant costs of secondary visits due to stock outs such as 
lost productivity of technicians resulting from multiple visits, setup costs for resche-
duling and planning each visit, the incremental costs of small-volume, expedited ship-
ments, and the customer inconvenience for the revisit, all of which increase the incen-
tives to carry additional vehicle stock. Additionally, we could include the very real addi-
tional cost of customer dissatisfaction from multiple technician visits. Customer dissa-
tisfaction may cause downstream loss of product and service revenue because the ser-
vice component of the product reflects negatively on the product and causes lost future 
sales. As [3] points out, this cost is difficult to quantify. Although this cost is not easily 
quantified, it is quite real. In any case, it applies equally to all parts (a failed visit is a 
failed visit), so the size of the cost does not affect which parts are stocked, but rather its 
inclusion increases the incentive to stock parts at all. [1] found that technician time 
savings alone was enough to justify increased inventories in their application; customer 
dissatisfaction costs only add to that incentive. Exclusion of revisit costs (or treatment 
of service requirements as a constraint) naturally leads to an inventory cost minimiza-
tion approach as described in [3] and [4]. 

Our fill rate is based on part fill rate rather than a job completion rate as in [4], who 
considers both job and part fill rates. The job completion rate specifies that all required 
parts for a job must be in stock on the vehicle in order for the revisit cost to be avoided. 
A part fill rate specification more than suffices for a number of reasons. Often, a single 
part is needed in a repair, and thus the complication of job completion rate calculation 
is unnecessary. When multiple parts are required for a repair, we note (as does [4]) that 
the parts are often codependent (i.e., they are often installed in tandem) and can thus 
be combined in the analysis as a single “part”. Also, supplemental parts for many re-
pairs are often more general-purpose parts (clamps, bolts, etc.) with relatively high de-
mand and low cost, making them more obvious candidates for stocking. As noted by 
[4] the part fill rate is a reasonable approximation of the job fill rate when the number 
of parts on each job is low. Finally, we find that given these stylized facts, that the job 
completion rate is only slightly lower than the part availability rate. Following the sug-
gestion of [4] that the part fill rate be used, we focus on part fill rates. By focusing on 
the part fill rate, we were able to take a simplified approach to describing part order ar-
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rivals instead of repair job arrivals. 
Each part i has some cost, Ci, which directly contributes to its annual holding cost via 

the company’s annual holding cost rate, HCi. We assume no holding cost is incurred 
for parts that are not held in stock; essentially all special ordered parts are installed im-
mediately. This is a reasonable assumption as special ordered parts are for a waiting 
incomplete job and are likely to be served immediately. 

We assume that the part volume, vi, includes the space consumed, including packag-
ing. Further, while we do not explicitly model how parts are fit into the kit, one could 
easily penalize odd shaped parts or keep a buffer space allowance of the total space V 
reserved for use for such parts. The cubic area for the kit V includes only the effective 
storage space of the storage area, adjusted for shelving, part access, and the like. Such 
considerations are an implementation issue and are not relevant to our efforts here to 
evaluate the heuristic performance in an experimental setting. 

Optimization Model Formulation: 
We define the optimization model formulation in Equations (1)-(4). 
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xijε{0, 1} for all xij.                           (4) 

Indices: 
N = number of candidate parts, 
Mi = maximum units in vehicle inventory for each part, 
i = index for parts, i = 1 ∙∙∙ N, 
j = index for unit j of a part, for i = 1 ∙∙∙ Mi. 
Decision Variables: 
xij = Binary decision variable, part i, unit j. 
Model Parameters: 
V = Total allowable vehicle stocking volume, 
RC = Revisit cost, 
HCi = holding cost for part i during lead time, L, 
vi = Unit volume of part I, 
Pij = probability of demand level j for part i during lead time, L, 
λ = minimum required part fill rate (0% to 100%). 
The binary decision variable x (constraint 4) is whether to carry the unit j (j = 0 ∙∙∙ M 

units) of part i (out of i = 1 ∙∙∙ N candidate parts); there are N * M total binary variables 
in the problem. A binary variable is used to allow different coefficients on each subse-
quent unit of each part corresponding to falling probability of use. Note that although 
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xij is a binary variable depicting the decision to carry unit j of part i, no additional con-
straints on the decision variables j in the same part i are necessary. With non-decreasing 
probability of use of each incremental unit of part i and a constant cost of each unit, 
there is a non-increasing benefit of each successive unit of inventory. Thus, no solution 
will opt for unit j + 1 before opting for unit j, which has a higher probability of use and 
the same holding cost. No additional constraints are necessary to ensure that if inven-
tory unit j + 1 is carried, then part j will also be carried. 

The model finds the level of inventory that optimizes the vehicle stock and service 
level trade-off from a maximization of the net benefit of inventory perspective, includ-
ing both inventory holding and (avoided) revisit costs. The objective function (1) 
maximizes the net benefit of kit inventory: the probability Pij of needing part I, unit j 
times the revisit cost RC, less the holding cost of each part stocked HCi. If a part is car-
ried (xij = 1), then the potential revisit cost (RC) is avoided based on the probability (Pij) 
of needing unit j of part i during the lead time interval between restocking events, and a 
holding cost (HCi) is incurred with certainty. 

Constraint (2) is the vehicle space constraint, in which both part size and vehicle ca-
pacity are specified in cubic volume. Constraint (3) reflects a minimum service level 
constraint, where λ is the part fill rate measured as a percentage. As is discussed in [4], 
we note that with a high frequency of single-part repairs, high part fill rates, and com-
bining parts that are demanded in common, that the part fill rate only slightly over-
states the job fill rate. 

It is highly unlikely that both constraints 2 and 3 will be binding constraints in an 
optimal solution. This would imply that a minimally acceptable service level can be 
achieved through a completely fully stocked service vehicle. Either inventory holding 
costs are relatively high, driving service levels down to a minimally acceptable thre-
shold, or revisit costs are high, driving inventory levels to vehicle capacity (or, a 
non-binding solution somewhere in between). In the model developed by [3] and [4], it 
is implicitly assumed (through omission of the revisit cost component of Equation (1)) 
that inventory holding costs dominate revisit costs resulting in an inventory minimiz-
ing objective. The approach of [4] is more appropriate in the case where inventory costs 
are large relative to revisit costs and the economic solution leads to an unacceptable 
service level. 

We develop a heuristic that focuses on the vehicle capacity constraint (3). 
In our numerical experiments, we focus on the case where space is scarce, or where 

the value of the parts pales in comparison to repairman revisit cost and customer satis-
faction. In this case, a minimally acceptable service level could leave parts with positive 
economic value out of the stock, or force parts with negative economic value into in-
ventory. To the extent that revisit (and service) costs dominate inventory costs, the 
tendency will be to fill the kit, not to achieve a minimally acceptable service level at a 
minimal cost. If sufficient kit capacity exists, the resulting service level would be based 
on the relative costs and benefits of holding inventory (i.e., the “economic service lev-
el”). 
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4. Heuristic Solution Methodology 

The above formulation is a classic knapsack problem which can grow quickly for realis-
tic sized problems. Similar to previous research, we explore the accuracy of heuristic 
methods as an alternative to exact solutions. In general, the heuristic considers the 
known inventory carrying cost (HCi) of each part, relative to its expected benefit, which 
is a function of the cost of a revisit (RC) and the probability of the jth unit of part i(Pij) 
being demanded over the lead time. This net expected benefit is divided by the total 
volume (vi) of the part to capture the opportunity cost of the space taken in the kit. 
Parts are selected in descending order of their net expected benefit per unit volume, 
NBVij = (RC * Pij − HCi)/vi. Parts enter the proposed inventory until the kit’s capacity is 
consumed (space constraint met) or NBVij becomes negative (economic return does 
not justify stocking). 

The greedy Net Benefit per unit Volume (NBV) heuristic implemented follows. 
1) Find maximum units, Mi, for each part, i 

For i = 1 ∙∙∙ N 
Mi = 0 
j = 1 

While j <> Mi 
EBij = RC * Pij 

If EBij < HCi 
Mi = j 
i = i + 1 
j = 1 

else j = j + 1 
Next 

Next i 
2) Calculate net benefit per unit volume (NBV) 

For i = 1 ∙∙∙ N 
For j = 1 to Mi 

NBVij = (EBij – HCi)/vi 

3) Establish stocking levels 
CPV = 0 
Sort NBVij in decreasing order 
While NBVij ≥ 0 and CPV ≤ V 

If CPV + vi < V then CPV = CPV + vi 

xij = 1 
Next. 

We define three possible outcome conditions for the kit problem: binding service 
level constraint, binding kit size constraint, or no binding constraints. In the first case, 
a relatively high inventory cost and low revisit costs leads to a low inventory, low ser-
vice solution for which a minimum service constraint is binding. In the second case, 
inventory is relatively less costly to hold than incurring low service and revisit costs 
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leading to the full kit situation, for which the service value of additional inventory is 
positive, but the kit size constraint is binding. In the third case, the economic service 
level is derived endogenously by including all parts that have a positive net profit im-
pact (avoided expected revisits less inventory holding costs) with no binding con-
straints necessary to arrive at this solution. In this case, the optimal stock naturally 
leads to a level of inventory greater than some deemed minimum, but the optimal total 
inventory is less than the total volume of the kit. 

As discussed, in the binding service constraint case, the heuristic method suggested 
by [4] is appropriate because it focuses on achieving the minimum service level at least 
cost, where the heuristic presented here would put too much emphasis on the volume 
of the parts in this case. In the second case, it is critical to assess the accuracy of the 
heuristic in selecting the best parts from both service level and economic return pers-
pectives; this assessment is carried out numerically below. In the no binding constraint 
case, this heuristic is guaranteed to arrive at the optimum solution because all parts 
with positive economic value are included in the final kit via heuristic or full search; 
conversely, the heuristic suggested by [4] would not arrive at the same solution as 
would be indicated by the objective function above. We note that [3] implemented the 
inventory cost objective subject to a minimum service constraint, but interestingly in 
their case study the client chose to improve customer service rather than reduce costs. 

5. Small-Scale Example Problem 

The illustration depicted in Table 1 shows an example of this heuristic with a compar-
ison to that proposed by [4] based on 5 parts. This example is based on the case with no 
binding service or space constraints, in which the NBV heuristic achieves the optimum 
economic service level. The results are sorted in the order that the part i and unit j are 
admitted into the kit. Note that because the space constraint is not exceeded (91 cubic 
feet used out of 100 cubic feet available), all parts with positive NBV are accepted. (One 
part with a negative NBV is shown for illustrative purposes.) 

Focusing on part 5 reveals the primary difference between [4] and the NBV heuristic. 
Although part 5 is expensive to hold, it is small and in demand; thus, the NBV heuristic 
admits it as the 4th and 5th parts. The heuristic of [4] admits part 5 much later (12th and 
13th) due to its cost. In this example, if a 50% service level was set as the minimum, the 
heuristic of [4] would not have included part 5 in the kit, having stopped after admit-
ting the 11th part. 

6. Numerical Analysis 

We test the heuristic in numerical experiments with randomly generated values of key 
model parameters that lead to exhausting kit capacity to see how well it performs rela-
tive to the optimum in allocating scarce storage capacity. We hold the V, the volume of 
the kit, L, the leadtime, and RC, the revisit cost constant, and let di, vi and HCi vary 
(these values are only relevant on a relative basis). In effect, di is scalable with L, ci rela-
tive to RC, and vi relative to V. 



M. Gorman 
 

465 

Table 1. Illustrative example of NBV heuristic results. 

Part Num (i) Mean Demand (di) Part Size (vi) Cost/ Period (HCi) Optimal Solution: 

1 2 3 $10.00 Objective Function $241.93 

2 2 4 $15.00 Space Used 91 Cubic ft 

3 3 8 $20.00 Service Level 75% 

4 4 10 $25.00 
   

5 5 2 $40.00 
   

 
Part number (i) Demand level (j) Prob (D >= j) NB/V Space Teunter (Δj/HCi) Rank (NB/V) Rank (Teunter) Svlv 

1 1 86% $11.08 3 0.09 1 1 5% 

2 1 86% $7.06 7 0.06 2 3 15% 

1 2 59% $6.57 10 0.06 3 2 9% 

5 1 99% $4.83 12 0.02 4 12 58% 

5 2 96% $3.99 14 0.02 5 13 64% 

2 2 59% $3.67 18 0.04 6 6 29% 

3 1 95% $3.44 26 0.05 7 4 20% 

3 2 80% $2.51 34 0.04 8 5 25% 

4 1 98% $2.41 44 0.04 9 7 35% 

1 3 32% $2.06 47 0.03 10 9 43% 

4 2 91% $2.04 57 0.04 11 8 41% 

5 3 88% $1.88 59 0.02 12 15 73% 

4 3 76% $1.31 69 0.03 13 10 48% 

3 3 58% $1.11 77 0.03 14 11 51% 

4 4 57% $0.33 87 0.02 15 14 67% 

2 3 32% $0.29 91 0.02 16 16 75% 

3 4 35% $(0.30) 96 0.02 17 17 81% 

 
RC and V are set arbitrarily at 100. Ci range is set to drive an optimal service level 

above 0.9 for each random generation of demand. Mean demand is uniformly distri-
buted between zero and 5. Demand is assumed to follow a Poisson process. vi and N are 
set so that the v * N coupled with demand distribution results in space demand for 
150% of V. When the kit utilization is 100%, the feasible service levels in this simulation 
range between 60% and 95% with a mean of 76% - 78%, depending on the randomly 
generated demand values. For demand with a maximum mean demand of 5, M is set to 
12 for all parts, leaving at most 0.3% chance of a 12th unit of demand in any period, 
which equates to a negative or very low NBV for any part; M = 12 is a reasonable 
maximum for this experiment. (In no cases was the 12th unit of any part in the optimal 
stock.) 

In the numerical exploration here, in all cases the kit will face a tight space constraint 
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and be essentially full in the optimum case. In the case with no binding space or service 
level constraints, the optimum is achieved in every case with this heuristic, and is not of 
interest to analyze. In the case where the optimal service level is less than the required 
service level, the heuristic proposed by Teunter [4] should be used (This case is not ex-
plored in this research). 

In summary, the parameters for the numerical experiment are as follows. 
RC = 100, 
V = 100, 
Di = Poisson(U(0,5)), 
N = (5, 10, 30, 30, 100, 1000), 
HCi = U(0, 0.1RC), 
vi = U(0, 1.5 * V/N). 
For each of six different part type counts, 1000 random replications of mean demand 

are generated, the model solved via the heuristic and optimally (For N = 1000, 250 rep-
lications are run for time reasons). Results of the global search and the heuristic are 
compared based on objective function value, service level, and space utilization. 

Results Discussion: 
The results of the numerical experiments are presented in Table 2. The variable of 

interest is in the number of parts under consideration for stocking, N, which drives the 
number of decision variables and problem complexity. Other random variables were to 
create problem variation. Note that the optimal service level ranges between 75% and 
78% and the space constraint is tight; smaller parts and 100% service level is uninte-
resting because it is guaranteed optimal. (All parts with some value greater than their 
cost are included.) Lower optimal service levels would require an approach more like 
that proposed by [4], which focuses on minimizing holding cost subject to a minimum 
service level constraint. 
 

Table 2. Numerical results from simulation as number of parts grows. 

Parts 5 Parts 10 Parts 20 Parts 30 Parts 100 Parts 1000 Parts 

 
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

Opt-Obj $435.76 $155.67 $891.77 $229.16 $2,762.36 $402.29 $2,761.49 $403.02 $9,252.44 $691.78 $89,266.11 $2,212.53 

Heur-Obj $425.65 $153.34 $878.40 $226.89 $2,745.96 $399.87 $2,745.10 $400.59 $9,233.70 $690.40 $89,194.60 $2,219.74 

Pct Difference 2.30% 3.30% 1.50% 1.70% 0.90% 0.90% 0.60% 0.50% 0.19% 0.16% 0.10% 0.20% 

Opt Svlv 75% 15% 77% 11% 78% 6% 78% 6% 78% 4% 78% 1% 

Slv-heur 74% 16% 76% 12% 77% 7% 77% 7% 78% 4% 78% 1% 

Pct Difference 1.6% 2.1% 1.1% 1.2% 0.5% 0.4% 0.5% 0.4% 0.2% 0.1% 0.0% 0.1% 

Space-Opt 96.38 5.12 99.19 1.31 99.91 0.08 99.91 0.08 100.00 0.0001 100.00 0.01 

Space-Heur 90.21 7.01 94.83 3.62 98.31 1.17 98.31 1.17 99.58 0.40 99.48 0.36 

n = 1000 for all part levels but 1000 parts, where n = 250 



M. Gorman 
 

467 

We observe that the NBV heuristic averages within 2.3% of optimum on average in 
all cases. Importantly, the deviation between the heuristic and optimum shrinks as the 
problem size grows; conveniently, when exact methods become too computationally 
burdensome to undertake, the heuristic is most accurate. For values of N ≥ 100 parts, 
the NBV heuristic and optimum solutions are essentially the same. The reason for this 
is intuitive; the more parts that fit in the kit, the less the impact of the parts on the mar-
gin that an exact optimization finds but a heuristic does not. The vast majority of the 
parts to stock are “easy” decisions; as the number of parts grows, marginal parts are a 
small percentage relative to the number of parts under consideration. The same obser-
vations can be made about space utilization and service levels; as the number of parts 
rises (and their size falls in this experiment to keep service levels constant across scena-
rios), the heuristic consistently finds better combination of parts that fills the kit and 
achieves the highest service level. 

Following a minimum cost heuristic like that of [4] or [9] with a tight capacity con-
straint leads to lower service levels and higher revisit costs (though lower holding costs) 
because no consideration is given to the tight space constraint and oversized parts con-
sume space that multiple smaller parts could have used. 

7. Conclusions 

This research considers the kit stocking problem for multi-period stocking and uncer-
tain number of jobs. A Net Benefit per unit Volume (NBV) heuristic is proposed as a 
fast and effective greedy heuristic for finding a near-optimal kit inventory based on the 
relative costs of inventory holding and repair visit failures, as well as the space that the 
part consumes in the kit of limited capacity. We suggest that when repairman time and 
customer service are valued heavily relative to inventory holding costs, the proposed 
objective function that maximizes net benefit is more appropriate than one that mini-
mizes cost subject to a minimum service constraint (This approach is not valid in the 
case of valuable inventory and low valued time). 

Numerical simulations demonstrate the effectiveness of the approach. We show in 
the case of a non-binding space constraint (inventory levels are determined strictly by 
the relative costs and benefits of each unit of inventory), the heuristic arrives at the op-
timal solution all the time. In the case of a binding space constraint, the heuristic regu-
larly achieves an objective function and service level within 2% of optimum. Impor-
tantly, the heuristic performance improves as the problem size grows as the integrality 
constraint on the part stocking decision plays a lesser roll. We suggest that the NBV 
heuristic is a highly appropriate substitute for exact methods on large-scale problems 
with high inventory storage demands on scarce space. 
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