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Abstract 
A nonlinear state observer design with sampled and delayed output measurements 
for variable speed and external load torque estimations of SPMSM drive system has 
been addressed, successfully. Sampled output state predictor is re-initialized at each 
sampling instant and remains continuous between two sampling instants. Through-
out this study, a positive constant to satisfy an upper limit of the sampling period 
between sampling instants and allowable timing delay in terms of observer parame-
ters has been prepared such that the exponential stable of the closed-loop system is 
guaranteed, based on Lyapunov stability tools. In order to validate the theoretical 
results introduced by main fundamental theorem to prove the observer convergence, 
the proposed sampled-data observer is demonstrated through a sample study appli-
cation to variable speed SPMSM drive system. 
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1. Introduction 

In recent decays, synchronous machines are used in variable speed motoring and the 
manufacturers had been made synchronous machines based on permanent magnets in 
wide power range with various categories and structures. On the other hand, an effi-
cient development has been considered in the field of power electronics technology; it 
has made the task of flexible rotor speed variation a realizable target. In effect, PMSMs 
are more efficient for applications demanding rotor speed reversion. Synchronous ma-
chine is convenient for drive applications, when these applications involve wide power 

How to cite this paper: Al-Tahir, A.A.R. 
(2016) Exponential Stabilization and Esti-
mation for Sampled Observer Design of 
Surface Mounted Permanent Magnet Syn-
chronous Motor. Journal of Sensor Tech-
nology, 6, 122-140. 
http://dx.doi.org/10.4236/jst.2016.64010  
 
Received: October 2, 2016 
Accepted: November 21, 2016 
Published: November 24, 2016 
 
Copyright © 2016 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jst
http://dx.doi.org/10.4236/jst.2016.64010
http://www.scirp.org
http://dx.doi.org/10.4236/jst.2016.64010
http://creativecommons.org/licenses/by/4.0/


A. A. R. Al-Tahir 
 

123 

variation. To this end, PMSMs have been made controllable through inverters since 
these inverters have the possibility of interconnection between electrical grid and 
three-phase machines and they are capable to ensure smooth output voltage. The latter 
allow the control of stator phases switching action, depending on the electrical rotor 
position, so that the PMS motors operate with time-varying speed. The inverters are 
acted on using controllers, but these need online measurements of the rotor speed and 
load torque [1]. The point is that mechanical sensors are costly and may not be suffi-
ciently reliable. Accordingly, state observers have been reported in recent years to get 
online estimates of mechanical variables based on on-line measurements of the elec-
trical variables. Various design approaches had been used to obtain mechanical sense-
less observers for PMSMs. One of the design approaches dealing with the identification 
and investigation of eddy current effects on motor rotor position observation had been 
claimed by [2]. The authors tried to improve high frequency injection approach based 
on self-sensing control of a PMSM drive system at stand still and low rotor speed. This 
approach is not recommended for high rotor speed applications and LFI. On the other 
hand, some of excitation strategies had been recommended by [3] that rely on the de-
tection of the rotor position from the stator voltages and currents without requiring 
additional test signals. In [4], the back EMF (waveform of the voltage induced in stator 
windings) had been used to estimate rotor position by means of state observers or Kal-
man filters [5]. This approach works well in medium and high speed applications, but it 
is not accurate at low operation when the back EMF is low. In [6], Kalman-like inter-
connected observers have been designed that estimate the machine position and speed. 
However, these observers are complex (computation time consuming), and their con-
vergence analysis relies on an excitation condition involving the observer signals (e.g. 
the state estimates). More specifically, an interconnected observer is in fact composed 
of two observers and the persistent excitation condition of one observer involves the 
state estimates provided by the other. As a matter of fact, suitable conditions are those 
involving the system signals (system input and output) not the observer signals.  

Recently, the problem of global exponential stabilization of nonlinear systems has 
received a great deal attention in the world. Consequently, this paper deals with de-
signing of nonlinear sampled-data observers in the presence of sensorless measure-
ments, all the mechanical state variables are considered inaccessible for measurements. 
As investigated in [7] [8], some extra growth conditions on the unmeasurable states of 
the system are usually necessary for the global stabilization of nonlinear time delay sys-
tems. A Lyapunov-Krasovskii Functional (LKF) was suggested in [9], such that the rela-
tion between the delayed state variable and the number of cascade observers with spe-
cific vector gain were introduced. In [10] [11] claimed that several authors extended the 
result in [9] to a time-varying delay system with observer and provided a maximum al-
lowable time delay in terms of observer design parameters.  

A sampled-data control of nonlinear systems using high-gain observers is intro-
duced by [12]. The state observer is performed in continuous-time mode and then 
it is discretized for digital implementation using three different discretization me-
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thods.  
Sufficient conditions for time-varying delays were derived via Razumikhin approach 

[13], which leads to more conservative results than Krasovskii method. For systems 
with constant delays, sufficient conditions were derived in terms of LKF in [14]. Pub-
lished studies concerning with the design of continuous-time high-gain observers [15] 
[16] dealing with dynamical high-gain observers for continuous-time systems are de-
signed. 

In present paper, one looks for accurate observation of the unmeasured mechanical 
state variables, which are angular rotated speed and external load torque for surface 
permanent magnet synchronous motor SPMSM, supposing the stator current and vol-
tage to be accessible for measurements. To this end, a sampled-data nonlinear state ob-
server will be designed with sampled and delayed output measurements coupled with 
inter-sampled output state prediction. The proposed observer will prove to be expo-
nentially convergent in presence of wide range variations. The proposed observer is ca-
pable to ensure efficient tracking response. The proposed observer is formally proved 
through a main result based on tools of Lyapunov stability approach.  

The remainder of this paper is organized as follows. In the next section, the problem 
formulation of SPMSM will be provided. The Third section is devoted to the observer 
design and stability analysis with sampled and delayed measurements is provided by 
using a Lyapunov stability approach. Then the equations of the state observer used for 
SPMSM are given. In this section, the problem statement which leads us to prove the 
exponential convergence of the global exponential stabilization and state estimation of 
nonlinear systems coupled with sampled–data observer design based on main theorem. 
The forth section is simulation results and verifications. Finally, conclusions are given 
in section five. 

2. Problem Formulation  
2.1. Reduced Model of SPMSM  

Dynamic modelling is needed for various types of analysis related to system dynamics: 
stability, control system, and optimization. The SPMSM model is constructed in 
(α β− ) stationary reference frame. Notice that, the time derivative of the external in-
put load torque is considered by an unknown bounded function ( )t . The control ob-
jective is to determine under what sufficient conditions that all the SPMSM states va-
riables, which are, r rψ ω  and TL can be determined from the motor input and output 
measurements, namely the stator current and the motor input command voltage signal, 

si  and su .  
A mathematical model of the synchronous motor is highly desirable to obtain an 

overview on the complex electromagnetic behavior of the motor, and perform the si-
mulation or controller synthesis. A model based on the electrical and mechanical equa-
tions are usually sufficient to synthesize the system model. SPMSM nonlinear system 
model is given by [17]:   
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with, ( )def
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s s su col u uα β=  are respectively,  

the stator vector of currents, the rotor fluxes and the motor input command signals. 

rω  and TL respectively, denote the rotor speed and the load torque, which is unknown 
but constant and that its upper bound is available. J and vf  are the moment of inertia 
and viscous friction; pn  is the number of magnetic pole pairs. The electrical parame-
ters, Rs and Ls are the armature resistor and inductance, respectively. The electromag-
netic torque, emT , is indirect measurable output state. This can be evaluated through 
the first term of third subsystem given in (1). One can write the system under study of 
SPMSM as:  

( ) ( )

( )

1 2

 

, , ,
1

em s s r s r r

em v
r r L

L

T i u i
T f T
J J J

T t

γ ψ γ ψ ω

ω ω

 = −

 = − −

 =





 

                  (2) 

where 
( )
( )

( ) ( )

( ) ( )
1

2 2 2 2

1.5
 , ,

.
, 11.5

 

p
r s r s s r s r s

ss s r

s r
p r s r s r r

s

n
u u R i i

Li u
i

n i i
L

α α β β α β β α

α α β β α β

ψ ψ ψ ψ
γ ψ
γ ψ

ψ ψ ψ ψ

  − − −     
       + + +    

  

This model can be re-written under the form taking into account that the electro-
magnetic torque ( )emT t  is not accessible to measurement all the time, only sampled– 
data measurements, ( ) ( ), 0,1, 2,em kT t k =   are available: 
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To clarify the general procedure related with this study, a flow block diagram of 
study method and its application to sensorless SPMSM drive system is shown in Figure 
1. 

2.2. System Construction in z Benchmark 

Let us provide the following state transformation to put the system model in observable 
normal form as follows:   
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is: 
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Figure 1. A flow block diagram of study method applied on variable speed SPMSM. 



A. A. R. Al-Tahir 
 

127 

( )
( )

( ) ( )

1 2 1

2 3 2

3 3

,

,

,

s

s

s

z z z u

z z z u

z z u b z

ϕ

ϕ

ϕ

 = +


= +
 = + Σ







                      (5) 

where, ( )
( )

1 1

2 2 2

2
3 3

,

,

em

s r

s r

z x T
z i x

i
z x

J

γ ψ

γ ψ


 = =
 = −

 =  

and,  

( ) ( ) ( ) ( )1 1

1.5
, , ,

 
p

s s s r r s r s s r s r s
s

n
z u i u u u R i i

L α α β β α β β αϕ γ ψ ψ ψ ψ ψ = = − − −   

( ) ( ) ( ) ( ){
( )

( )

2 2
2 1 2 2 2 2

  2

2 2
2 2

3

2

,
, , 1.5

1       
 

31   
   

s r v
s s r p r s

ps
r s r r s p r s

s s s

ps
r s r s r r

s s s

p

s

i fz u x i x x p n x i
J J

nR i u n x i
L L L

n nR i x u x x
L L L L

β α

α α β α α β

β β α β β α

γ ψ
ϕ γ ψ ψ

ψ ω ψ ψ

ψ ψ ψ ψ

− = + − − −

−
+ + − +

 − + − − + − +  

 


  








   (6) 

( ) ( )

( ) ( )

23
3 2 2

3
2 2

2 2 2

1, 1.5

31     
 

p
s p p r s r r s

s s

p p
p r s r r s r r

s s s

nxz u n n x i x u
J L L

n n
n x i x u x

L L L

β α α β α

α β β α β β α

ϕ ψ ψ ψ

ψ ψ ψ ψ ψ

   = − − + −   
  

 + − + + − +  
   

 

With  

( ) ( )2
1 ,s rb z i
J
γ ψ=                           (7) 

Before the observer synthesis for our physical system model given in (4) is designed, 
some technical assumptions have to be stated. Such hypothesis have vital role for the 
next results. 

H1: The functions, ( ), : n n n
i sz uϕ × →    are locally Lipschitz and globally 

bounded with respect to z in domain of interest, uniformly in gu  i.e., 0 0β∃ > , such 
that, ( )ˆ, , ,n n

sz z u U∀ ∈ × ∀ ∈   we can easily write the following:   

( ) ( ) 0ˆ, ,s s zf z u f z u eβ− ≤                    (8) 

Note that the functions ( ),i sz uϕ  may contain linear parts and the dynamics nz  
depends on all state variables 1, , nz z  through the Lipchitz function ( ), sz uϕ . 

H2: Throughout this paper the function ( )tΣ  is unknown periodic bounded and 
the real 0δ >  is the upper bound of ( )t δΣ <  such that, ( ) 1 1, 0Lb z T β δ β≤ ∃ > . 

Lemma [18]: Let us consider that the input su  is regularly persistent for system 
given in (4) and assuming the Lyapunov differential equation stated in (10), 0 0θ∃ >  
so that for any symmetric positive definite matrix S(0), 0µ µ∀ > , 00, 0, 0tα β∃ > > >

  
such that ( )0 , n nt t I S t Iα β∀ ≥ ≤ ≤  . Also, by choosing 0 2µ ς> , one has 2

1 exp .Tµα α −≤  
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3. Observer Structure 

In this subsection, the following sampled-data observer is proposed for k ∈ , 
[ )1,k kt t tτ τ+∀ ∈ + + . The main difference compared with third class of nonlinear sys-

tem given in [19] resides in the presentation of state observer with the effect of external 
disturbance. As a matter of fact, the authors in [20] focused in case of linear systems 
and without taken into consideration the state predictor.  

( ) ( ) ( )( )1 T
0ˆ ˆ, ˆˆ gz A u S Cz z tzC t wϕ τ−= + − − −                 (9) 

T TS S SA A S C Cθ= − − − +                      (10) 

( ) ( ) ( )( )0ˆ ˆ , gw CAz t C z t u tτ ϕ τ τ= − + − −                 (11) 

( ) ( )k kw t y tτ+ =                          (12) 

The output sampled data observer defined from (9)-(12) consists of a classical observer 
and output predictor for sampled and delayed measurements where 3ẑ∈  is the 
continuous estimates of the states. The predictor w is reset (re-initialized) at each sam-
pling instant. S is SPD matrix and continuous in ( ), 0 0S+ > . Now, one shall prove 
in the next theorem that the proposed observer is a global exponential observer for sys-
tem given in (4) with the sampled and delayed measurements in output state vector, 

[ )1, ,k kk t t tτ τ+∈ ∀ ∈ + + , where   is set of natural numbers. Figure 2 shows single 
line diagram of proposed study with sampled and time delayed state observer. 
 

 
Figure 2. Single line diagram of proposed study with sampled and time delayed state observer. 



A. A. R. Al-Tahir 
 

129 

Theorem (Main Result): Let us consider the system described by the set of differen-
tial equation given by (4), and hypothesis H1, H2 hold. This leads us for constant max-
imum allowable sampling period MASPT  and upper bound limit of admissible timing 
delay MATDτ  in output state measurements as follows: 

( )
0

2 1

m
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m m

T
Cb z

CA Cβ
α α

Θ
≥
 

+ + Θ + + Θ 
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              (13) 
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m m
 (14) 

The sampled output-data observer given in Equations (9)-(12) is global exponential 
observer for system (4) as t →∞  for sufficient large positive value of observer design 
parameter, satisfying, 1θ > . 

Proof of theorem: The searcher shall give formal analysis of the main theorem using 
Lyapunov stability approach. For writing convenience, the variable t can be cancelled. 
Set observation error: def ˆze zz= − , then one shall obtain from Equations (9)-(12) and (4) 
the following new dynamics error system as follows: 

( ) ( ) ( ) ( )( )1 T,ˆ ˆ,z z o g ge Ae u z uz zb z S C C t wϕ ϕ τ−= + − − Σ − − −        (15) 
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Thanks to Newton Leibniz integration formula that it will be used in next equations: 

( ) ( )d
t

z z zt
e t e e

τ
τ ξ ξ

−
− = − ∫                      (18) 

Then the error dynamics given by (15) can be re-formulated as: 

( ) ( ) ( ) ( )1 T 1 T, ,ˆ d
t

z z g z wt
e A S C C e z u b z e ez S C

τ
ϕ ξ ξ− −

−
= − + − Σ + +∫        (19) 

Let us define the following LKF, provided by [20]:  
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where 1ϑ >  is a positive design parameter and ( )tΘ  is a piecewise differentiable 
positive function designed for the purpose of correcting the error between the predictor 
and the output such that, ( )tΘ  satisfies the following conditions: 
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To show the exponential convergence of the observation error, it is necessary to pre-
pare conditions for MASPT  and MATDT  to guarantee that:  

[ )1, ,k kW hW t t tτ τ+≤ − ∀ ∈ + +                      (22) 

( ) ( ) ,k kW t W t kτ τ−+ ≤ + ∀ ∈                     (23) 

Using the fact that the observation error ze  is continuous and the error 
( ) 0,w ke t τ+ =  then it is clear that the inequality defined in (22) is performed.  
Now, let us decomposes the Lyapunov function into four functions, which are 1 2,V V  
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Now, the time derivative of the first Lyapunov function is: 
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( )( )T T T T T
1 2 d

t
z z z z z z wt

V e Se e C Ce e C C e e
τ

θ ξ ξ
−

= − − + +∫

           (26) 

Using the fact that, 

( )( ) ( ) 2T T T T2 d d
t t

z z w z z z wt t
e C C e e e C Ce C e e

τ τ
ξ ξ ξ ξ

− −
+ ≤ + +∫ ∫   

This will give, 

( )
2 22T

1 2 d 2
t

z z z wt
V e Se C e e

τ
θ ξ ξ

−
⋅≤ − + +∫

              (27) 

Thanks to Jensen’s inequality, one has: 
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This leads us to get the following result, 
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And, the time derivative of 2V  given in (30) is: 
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On the other hand from (9)-(12), one can easily conclude that: 

( ) 222 2
0d ,

t
z z w zt

e e e e
τ

ξ ξ +

−
 ≤ + + ∈  ∫  m m            (32) 
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That is, the system (31) becomes: 

( ) ( )22
2

22 d d
t t

z w z zt t
V e e e e

τ τ
τ ξ ξ ξ ξ

− −
 = + + −  ∫ ∫

 m             (33) 

Likewise, the time derivative of third Lyapunov function in (24) is: 

( ) ( )3
22 w w wV t e e t eϑ ϑ= Θ + Θ



                      (34) 

The time derivative of the prediction error given in (16) is: 

( ) ( )we w t y t τ= − −                            (35) 

Using (11) and (29) with the assistance of the Newton Leibniz integration formula 
stated in (18) and using H2, one gets: 

( ) ( ) ( ) ( )0ˆ, , d d
t t

w z g z zt t
e C Ae z z u b z C A e e

τ τ
ϕ ξ ξ β ξ ξ

− −
  = + − Σ − +    ∫ ∫       (36) 

Since, ( ) ( ) ( )0d d
t t

w z z zt t
e CA e e C e Cb z

τ τ
ξ ξ β ξ ξ

− −
 ≤ ⋅ + + + Σ  ∫ ∫    

Therefore, the first term of (34) becomes: 

( ) ( ) ( )

( )

( ) ( )

22

22
0

22 2

2 d

d

d

t
w w w z zt

t
w z zt

t
w w t

t e e t CA e e e

C e e e

e Cb z e

τ

τ

τ

ϑ ϑ ξ ξ

β ξ ξ

δ ξ ξ

−

−

−

   Θ ⋅ ≤ Θ + +      
  + + +    

   + + + + Σ      

∫

∫

∫

 





    (37) 

Using once again Jenson’s inequality given in (28), and using, H3, yields: 

( ) ( ) ( ){
( )

22

22
0

2 2 2 d

2 2 d

t
w w w z zt

t
w z zt

t e e t CA e e e

C e e e

τ

τ

ϑ ϑ τ ξ ξ

β τ ξ ξ

−

−

 Θ ≤ Θ + +  

 + + +  

∫

∫

 



     (38) 

So, combining Equation (38) in (34), one has: 

( ) ( ){
( ) ( )

2

2

3
2

22
0

2 2 d

2 2 d

t
w z zt

t
w z z wt

t CA e e e

C e e e

V

t e

τ

τ

ϑ τ ξ ξ

β τ ξ ξ ϑ

−

−

 ≤ Θ + +  

 + + + + Θ  

∫

∫









        (39) 

Thus, from equations (30), (31) and (39), one has the following 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
0

2
0

22 2
0

2 2 2

2

2 1 2 2 d

z

w

t
zt

W t C e

CA t Cb z C t t e

C CA t C t e Cb z
τ

θα τ ϑ β

τ ϑ β ϑ ϑ

τ τ τ ϑ τ β ϑ ξ ξ δ
−

 ≤ − − Θ − + 

 + + + Θ + + Θ + Θ 
 + + − + Θ + Θ +  ∫









m

m

m

 

(40) 
Thus, the exponential convergence of the observation error is guaranteed if the fol-

lowing conditions successfully achieved: 

( ) ( ) ( )02 2 2 2 0t t C CA t hθα τ ϑ ϑ β ϑ ϑ β− Θ − Θ + + Θ − ≥ m          (41) 
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( ) ( ) ( ) ( )02 0mCA t Cb z C t t hτ ϑ β ϑ ϑ ϑ+ + Θ + + Θ + Θ + Θ ≤m        (42) 

( ) ( )2
02 1 2 2 0C CA t C t hτ τ τ ϑ τ β ϑ τ+ − + Θ + Θ + ≤m           (43) 

To derive the, MASPT  and MATDT , let us consider 0h +→ , mτ α≤   and, ϑ α=  , 
this implies, (41) becomes: 

( ) ( ) ( )02 2 2 2t t C CA tθα τ ϑ ϑ β ϑ ϑ≥ Θ + Θ − − Θ m  

02 2 2 2m m mC CAθ α β≥ Θ + Θ − − Θ                 (44) 

Furthermore, one selects the function ( )tΘ  as a saw tooth function for, k ∈ , 

0
+∈  , ( )k mtΘ = Θ ∈ ,  ( )t +Θ < − ∈  , and 0T > . Consequently, the proposed 

condition in (42) is performed if, 

 ( ) 2

0 2 2
1

42 1
expm m T

Cb z C
CA C µ

τ
β

α α α −= + + Θ + + Θ +
 

         (45) 

This leads us that the sampling interval must be smaller than MASPT , 0t +∀ ∈ , 
( ) 0tΘ > . Using (45), the proposed maximum admissible sampling interval is: 

( ) 2

0 2 2
1

42 1
exp

m
MASP

m m T

T
Cb z C

CA C µ

τ
β

α α α −

Θ
≥
 

+ + Θ + + Θ + 
   

     (46) 

On other hand, from condition (43), the corresponding admissible timing delay,

MATDτ  is 

min 2
2

1 1 0 1 2
1

1min , ,
4

2 2 2 2
exp

MATD

m m m T

T
C

C C CA µ

ατ

α α β α
α −

 
 
 <  
 Θ + Θ + + Θ + + 
 



m
m

 
(47) 

It is obvious that if Equations (45), (46) and (47) are performed successfully, the 
proposed conditions given in Equations (41), (42), (43) and (44) are satisfied in the 
same way. Thus the observation error of the system under study tends exponentially 
towards the origin as the time increasing towards infinity. This ends proof of theorem. 

4. Simulation Results 

In this section, the dynamic performances of the proposed sampled data observer ac-
companied by sampled and delayed output measurements for online estimation of 
SPMSM state variables, which are motor rotor speed and external load torque. SPMSM 
has been implemented under MATLAB/Simulink environment. The tool selected for 
solving the dynamic equations is the MATLAB function called ODE45. 

The system dynamics have been described by third order nonlinear dynamic model 
given in Equation (2) for SPMSM. A proposed sampled-data observer of the nonlinear 
system is given by (9) accompanied by sampled and delayed output measurements as a 
practicable solution for sensorless variable speed control of SPMSM is proposed to get 
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on line estimates of all mechanical state variables in SPMSM. The sampled data observ-
er stated in system (9) is implemented using realistic benchmark MATLAB/Simulink 
resources. The observer design parameters are , sTθ  and τ . The dynamic perfor-
mance depends on the numerical value given to the observer design parameters, con-
stant sampling period, sT  between sampling instants and allowable timing delay. The 
selection of the tuning parameter θ  is performed using try and error procedure. This 
value has been bounded to 200 as listed in Table 1 when simulating sampled–data non-
linear observer given in Equation (9). From Table 1, the electrical time constant is 

12.6 mss sL R =  accordingly, a suitable value of the allowable timing delay would be 6 
ms. A time delay of 6 ms appears be sufficient to exceed transient stability. The sum-
marized results for sampled-data observer design parameters , sTθ  and τ  are listed 
in Table 2. The nonlinear observer dynamic performances for complete one cycle of 
(50 s). Figure 3 shows reference rotor speed in (rad/sec) to guarantee control strategy. 
Figure 4 clarifies the external load torque profile in (N∙m). Figure 5 illustrates real 
electromagnetic torque and its estimates. On the other hand, the rotor speed and load 
torque tracking performances are shown in Figure 6 and Figure 7, respectively. The 
output state prediction error is shown in Figure 8. It is apparent that the output elec-
tromagnetic torque and its prediction is decreased and increased simultaneously with 
variation of angular rotated speed. Thus, the observation errors resulting from technical 
hypothesis H1, H2 are practically acceptable as shown in Figure 9 and Figure 10. It 
should be mentioned that the dynamic tracking performance of the proposed sampled 
and delayed observer is quite satisfactory. From these figures, the error dynamics are 
exponentially convergence to origin and the closed-loop sample study is globally 
asymptotically stable GAS with time progressive. 
 
Table 1. Nominal SPMSM characteristics. 

Parameter Symbol Value 
DC/AC converter Vdc 600 V 

Modulation Frequency fm 10 Hz 

Nominal Torque nomT  30 N∙m 

Nominal flux nomψ  0. 979 Wb 

Stator resistance sR  2. 43 Ω 

Stator inductance sL  30.6 mH 

Rotor and load viscous damping coefficient vf  0.003819 N∙m/rad/s 

Moment of inertia J 0.02765 N∙m/rad/s2 

Number of pole pairs 𝑛𝑛𝑝𝑝  2 

 
Table 2. Values of the observer design parameters. 

 Index Value 

Observer design θ  200 

Sampling period sT  2 ms 

Timing delay τ  6 ms 
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Figure 3. Reference speed in (rad/sec). 
 

 
Figure 4. Load torque profile in (N∙m). 
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Figure 5. Real Tem and its estimate. 
 

 
Figure 6. Rotor speed and its estimate. 
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Figure 7. Load torque and its estimate. 
 

 
Figure 8. Prediction error of Tem. 
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Figure 9. Observation of rotor speed. 
 

 
Figure 10. Observation of load torque. 
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The initial conditions of the matrices ( )S t  is set as, ( ) 30S =  , where 3 3
3 R ×∈  is 

identity matrix and ( )S t  is symmetric positive definite matrix and solution of the 
Lyapunov equation. The initial conditions of the system states are chosen: 

( ) ( ) ( ) [ ]T T
1 2 30 , 0 , 0 0,0,17x x x =    and the corresponding observer states are chosen 

as, ( ) ( ) ( ) [ ]T T
1 2 3ˆ 0 ˆ, 0 , 0 10 15,0ˆ ,x x x =   . A solution of the Lyapunov equation given by  

Equation (10) is: ( ) [ ]1 T 1 2 3
3 3 3! ! ! , , 3,3,1S C n n p p col C C C col−  = − = =   is the binomial 

coefficient. The simulations have been achieved successfully with stator inputs in sta-
tionary reference frame are, ( )220sin π ,su tα =  ( )220cos π .su tβ =  

The simulation results for our case study claimed that the proposed sampled-data 
observer has acceptable transient response, with influence of sampled and delayed out-
put measurement, accurate tracking response and robustness of observer performance 
for unknown mechanical torque. 

5. Conclusion 

In this study, synthesis of nonlinear hybrid state observer for a class of MIMO systems 
accompanied by sampled and delayed output measurements has been achieved suc-
cessfully. The observer convergence is formally analyzed and clarified by numerical si-
mulation of surface mounted PMSM drive system. As already mentioned, mechanical 
sensors based solutions are most costly and unreliable. Then, state observers turn out to 
be a quite natural alternative to get estimates of mechanical variables using only mea-
surable electrical state variables. The proposed observer provides estimates of the me-
chanical state variables (rotor speed, load torque) using stator currents and voltages 
measurements. The numerical results presented in this paper are interesting and could 
be practically useful from the view point of engineers. The searcher provided an upper 
bound of constant sampling period and allowable timing delay with sufficient large 
value of observer synthesis parameter that will ensure the global exponential conver-
gence of the observation and prediction errors towards zero using Lyapunov stability 
theory. 
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