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ABSTRACT 

From the analysis of the frequently models of mobility used in the literature, we determine by an identification method 
the temperature coefficients α and β of a silicon resistance doped with donor atoms. Their variations show a non linear 
dependence according to the doping and the existence of a minimal value at particular concentration. Moreover, the 
comparison between the obtained results and those of a P-type resistance shows that there is a strong similarity in their 
thermal behaviours, except for a particular couple of α and β. 
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1. Introduction 

The increasingly miniaturization and integration require, 
for the modeling engineers and manufacturers of inte- 
grated circuits, to improve the behavioural models of the 
electronic components. Among the latter, semiconductor 
resistors are used in all components either as passive 
elements of an electronic circuit or as a sensor (pressure, 
temperature, chemical species, etc.). In all cases, and in 
order to preserve the integrity of the useful signal, their 
sensitivity to the influence parameters must be suffi- 
ciently well-known and controlled, either in an empirical 
way, or by analytical laws. Whatever the purpose of their 
use or their operating mode, the thermal resistance be- 
haviour must be apprehended in the most accurate way. 
In a previous study [1], we showed that the thermal drift 
of a silicon resistor doped with acceptors atoms could be 
described by an equation of the second order and that the 
two temperature coefficients (TCRs) have a strong de- 
pendence with the doping concentration. Following the 
same idea, we modelled the influence of the doping con-
centration on the temperature coefficients of a resistor 
doped with donor atoms. Knowing that there are differ-
ences between the laws controlling the mobility of the 
electrons and the holes, one can expect that the resistivity 
of this material shows different behaviour according to 
the doping type. 

2. Relation Resistivity-Mobility 

The expression of a silicon resistance according to the 
temperature T is given by 
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where 0  is a reference temperature; α and β are the 
first and second order TCRs. 
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where ρ and µ are respectively the silicon resistivity and 
the carriers’ mobility, it would be sufficient to model the 
carriers’ mobility behaviour according to temperature 
and doping to obtain the expressions of the two coeffi- 
cients (TCRs). So far, no analytical model allows us to 
describe this dependence. On the other hand, there are 
several empirical models describing the influence of dop- 
ing and the temperature on the carriers mobility, among 
which we used those of Arora [2], Klaassen [3] and 
Dorckel [4] as is shown in the Appendix. In order to eva- 
luate the total carrier mobility (µi for electron and µj for 
hole), we use the Mathiessen’s rule which approximates 
it at low longitudinal field as the sum of four term, which 
are the four contributions to the carrier mobility: Lattice 
mobility (µi, L); donor mobility (µi, D); acceptor mobility 
(µi, A) and electron-hole scattering mobility (µi, j), and 
includes temperature dependence [5,6]: 
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Thus, using a limited development of the mobility’s 
expressions µ = f(ND, T) taken from these references, we 
used a method of parameters identification. This method 
is a term by term comparison of the mobility expression 
as a function of temperature, with Equation (2), for each 
concentration. Thus, we obtain the expression of α = f(ND) 
and β = f(ND). 
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3. Results 

The obtained results allowed us to plot the curves in 
Figures 1 and 2. These figures show that for the three 
models, there is a strong similarity in the shape of the 
nonlinear curves α = f(ND) and β = f(ND). Moreover, the 
shapes of these curves are similar to those published in 
[1], as shown in Figures 3 and 4; moreover the minimum 
values appear for a given doping. 

The comparison between the results previously pub- 
lished for a P-type resistor (Figures 3 and 4) and those  

studied in this work (Figures 1 and 2) should allow to 
quantify their respective thermal drifts as a function of 
the doping concentration in one hand, and on the other 
hand, to validate or not the non linear approach of their 
thermal coefficients (TCRs) in a given temperature range. 
Thus, by using the minimal values of the coefficients α 
and β taken from the curves in Figures 1-4, and by their 
substitution in the Equation (2), we plotted the curves of 
the relative resistance variation R R  as a function of 
the temperature variation ΔT for the two types of doping 
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Figure 1. Variations of the first order thermal coefficient α as a function of doping concentration ND.  Klaassen; αmin = 
445 ppm/˚C;  Arora; αmin = 770 ppm/˚C;  Dorckel; αmin = 190 ppm/˚C. 
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Figure 2. Variations of the second order thermal coefficient β as a function of doping concentration ND.  Dorckel; βmin 
= –3.80 ppm/˚C;  Klaassen; βmin = –5.00 ppm/˚C;  Arora; βmin = –13.6 ppm/˚C. 
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Figure 3. Variations of the first order thermal coefficient α as a function of doping concentration NA
 [1]. 0: Bullis [6] αmin = 

200 ppm/˚C; 1: Dorckel [4] αmin = 400 ppm/˚C; 2: Arora [2] αmin = 980 ppm/˚C; 3: Klaassen [3] αmin = 1000 ppm/˚C 
 

 

Figure 4. Variations of the second order thermal coefficient β as a function of doping concentration NA[1]. 
 
(Figure 5 for the type P; Figure 6 for the type N). Since 
the minimum value for different models do not occur at 
the same doping concentration for the α parameter than 
for the β one, then we have choose, for a same doping 
concentration, particular coefficients couples (αmin, β). 

These values are used to evaluate the relative resis-
tance change R R  as a function of the temperature 
variation ΔT. The minimum values of the first and sec-
ond order thermal coefficients were determined in order 

to predict the variation of the P-type and the N-type 
thermal drift resistance, for a given doping concentration. 

Figure 5 shows clearly that for a couple αmin(NA) and 
βmin(NA) for the P-type resistor thermal variations can be 
considered as linear in a large interval of temperature. 
Figure 6 shows that the N-type resistor thermal behavior 
is highly nonlinear, whatever the values of αmin(ND) and 
βmin(ND). Therefore, these results may help the more 
complicated circuits to choose the resistors doping con 
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Figure 5. Variations of the relative resistance R R  as a function of the temperature gradient ΔT for a particular couple 

(αmin(NA), β min(NA)), for a given doping concentration. 
 

 

Figure 6. Variations of the relative resistance ( R R ) as a function of the temperature gradient ΔT for a particular couple 

(αmin(ND), βmin(ND)), for a given doping concentration. 
 
centration used to obtain a minimum thermal drift de-
pending on the desired application. 

4. Conclusion 

By using three models of carriers’ mobility in silicon re- 
sistance doped with donor’s atoms, we showed that the 
1st and the 2nd order thermal coefficient can present a 
minimal value for a given doping. In addition, the com-
parison of the variations in a range limited of the tem-
perature, between resistances of the two types N and P, 
shows that their behaviour is similar. Indeed, there is a 
particular couple (αmin and βmin) which allow the lineari 

zation of the curve R R f T     for a P-type resistor, 
but not for the type N. The obtained results can help the 
designer of more complex circuits, to choose the used 
resistors doping concentrations. Thereby, further enhance 
the performance of these devices in terms of thermal drift, 
according to the desired application. 
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Appendix 

In this appendix, we describe several models of mobil-
ity’s carrier used in the literature. 

1. N. D. ARORA et al. Mobility Model [2] 
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 (1.1) 

where T is the temperature in Kelvin and N is the doping 
concentration 

2. B. M. Klaassen Mobility Model [3] 

In this model, the four contributions to the carrier mobil-
ity are taken into account, and the expression of the total 
mobility is: 

With Pe, G (Pe) and F (Pe) are given by (2.2), (2.3) and 
(2.4): 

220

0

1.3610

300
e

e

m T
P

c m

        
  

       (2.2) 

 
4

6
7

1

0
2

5

0

1

300

300

e s

e

ss

e
e

s
G P

m T
s

m
s

m
P

m T

 
            


                

 
6

6

1
1 2 3

2

2
4 5

1

r
e

e
r

e

m
r P r r

m
F P

m
P r r

m

 


 
          (2.4) 

where m and m0 are the effective and the free carrier 
mass respectively, T is the temperature in Kelvin, with 
m1 and m2 the mass of the primary and secondary scatters 
respectively. The model parameters for the majority elec- 
tron and hole mobility given by Equation (2.1) are sum-
marized in Table 2.1. The numerical value of the con-
stants si and ri are given in Table 2.2. 

3. J. M. Dorckel et al. Mobility Model [4] 

Lattice mobility µL which is connected to scattering due 
to acoustic phonons 

0 300L L
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           (3.1) 

Impurity mobility µI which is connected to the interac-
tions between the carriers and the ionized impurities 
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   (3.2) 

Carrier-carrier scattering mobility µccs which becomes 
very influential when carriers of both types are at high 
concentrations 
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Table 2.1. Model parameters for the majority electron mobility (As and P) and majority hole mobility (B) given by Equation (2.1). 

Parameters As P B 

µmax(cm²·V–1·S–1) 1417 1414 470.5 

µmin(cm²·V–1·S–1) 52.2 68.5 44.9 

µ1(cm²·V–1·S–1) 43.4 56.1 29 

Nref, 1(cm–3) 9.68 × 1016 9.2 × 1016 2.23 × 1017 

Nref, 2(cm–3) 3.43 × 1020 3.41 × 1020 6.1 × 1020 

 0.68 0.71 0.719 

 2.0 1.98 2.0 

 
Table 2.2. Numerical values for the constants si and ri. 

i si ri 

1 0.89233 0.7643 

2 0.41372 2.2999 

3 0.19778 6.5502 

4 0.25227 2.367 

5 0.005978 –0.01552 

6 1.80618 0.6478 

7 0.72169  

 
Table 3.1. Model parameters values. 

Parameters As 

µL0 (cm²·V–1·S–1) 1430 

A (cm²·V–1·S-1·K–1.5) 4.611 × 1017 

B (cm–3·K–2) 1.52 × 1015 
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Mixed scattering mobility µIccs 
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where T is the temperature in Kelvin and N is the doping 
concentration, µL is the lattice mobility, µI is the impurity 
mobility, µcss is the carrier inter-action mobility and µIcss 
is the carrier-impurity inter-action mobility. The model 
parameters values are summarized in Table 3.1. 
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