
Journal of Service Science and Management, 2018, 11, 13-25
http://www.scirp.org/journal/jssm

ISSN Online: 1940-9907
ISSN Print: 1940-9893

DOI: 10.4236/jssm.2018.111002 Jan. 12, 2018 13 Journal of Service Science and Management

Ethics as a Quality Driver in Agile
Software Projects

Hisham Abdulhalim1, Yotam Lurie1, Shlomo Mark2

1Department of Management, Ben-Gurion University of the Negev, Be’er Sheva, Israel
2Department of Software Engineering, SCE-Shamoon College of Engineering, Ashdod, Israel

Abstract
Comparing two software development teams working on similar projects in a
large software company, this research study focuses on the question as to
whether the implementation of ethical tools in the software development
process serves as a quality driver. Is ethics a quality driver in Agile develop-
ment processes? The findings of the present study indicate that there is a sig-
nificant correlation between the inclusion of ethical tools in the process of
planning in Agile methodologies and the achievement of improved perfor-
mance in three quality parameters: schedule, product functionality and cost.
Theoretically, the connection between ethics and quality is important. Practi-
cally, this study’s findings show that the inclusion of ethical tools in Agile
software projects can improve the quality of a project.

Keywords
Ethics, Software Engineering, Quality, Agile Methodologies, Software Quality,
Innovation, Engineering Ethics, Ethical Framework

1. Introduction

This research study focuses on the question as to whether ethical tools act as a
quality driver in Agile software projects. By comparing two development teams
each having similar initial and ongoing development conditions, we show how
ethical tools serve to drive software quality (i.e., QVD or quality value drivers).
We present a detailed experimental model showing that an ethical framework
supports the production process in its early stages. We then show the positive
impact on three quality parameters: time to market, functional defects and total
cost of ownership. For educational theorists and researchers interested in portfo-
lios, it is hoped that the study will also contribute to a better understanding of

How to cite this paper: Abdulhalim, H.,
Lurie, Y. and Mark, S. (2018) Ethics as a
Quality Driver in Agile Software Projects.
Journal of Service Science and Manage-
ment, 11, 13-25.
https://doi.org/10.4236/jssm.2018.111002

Received: November 8, 2017
Accepted: January 9, 2018
Published: January 12, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jssm
https://doi.org/10.4236/jssm.2018.111002
http://www.scirp.org
https://doi.org/10.4236/jssm.2018.111002
http://creativecommons.org/licenses/by/4.0/

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 14 Journal of Service Science and Management

the importance of software engineering as a regulated profession.
Modern civilization runs on software. Given this reality, the quality of soft-

ware is a significant matter, since it is so widely used and is very important [1].
Over the years, developers and researchers of many developmental methodolo-
gies have allocated a large amount of time and effort to the refinement of those
methodologies for better usage and for continuous improvement. Most of the
methodologies have reached a mature and stable level and are referred to as tra-
ditional software development methods, e.g., the waterfall model [2] [3] [4].
Agile [5] [6] [7] [8], a modern software development methodology, became a
controversial software engineering topic, when studies were made as to whether
some of the supposed and promised strengths of Agile do actually improve soft-
ware quality [8]. Some studies have reported that Agile methodologies do im-
prove product quality, some studies have been inconclusive, and some studies
have argued that Agile methodologies do not improve product quality. Dyba and
Dingsoyr [9] [10] show that the evidence for the benefits or limitations of Agile
methods is not very strong with regard to design, quality, consistency and di-
rectness.

A number of definitions have been proposed for a definition of software qual-
ity based on various parameters. In this paper, the quality of software is defined
as comprising three parameters: schedule, product functionality and cost. The
term “value driver” refers to a factor that leverages and achieves a higher level of
value by means of a practiced technique [11]. Quality value drivers (QVD) are a
managerial practice, reflecting a process approach rather than a product ap-
proach and promising quality value.

The professional literature shows that software development practices do not
formally leverage ethical tools prior to, during or following developmental phas-
es; thus, the study of professional ethics in software engineering is still largely
unexplored territory. In 2015, Y. Lurie and S. Mark introduced an ethical
framework called EDSD, derived from the concept of a framework in software
engineering and textured with the principles of professional ethics.

This study aims to investigate if and how ethical tools drive to better quality in
Agile software projects without conflicting with or contradicting the Agile stan-
dards defined in the Agile manifesto.

2. Literature Review
2.1. Quality Management

There are two basic approaches to quality: the product-based approach and the
process-based approach. The general assumption in the product-based approach
is that software quality requires that the testing of a product in terms of its re-
quirements and expresses the basic desire that we want things to work as ex-
pected. Thus, quality engineers usually review a product’s requirements, develop
tests and examine the test records to check whether the testing has been properly
carried out and whether the actual results are congruent with the expected results.

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 15 Journal of Service Science and Management

The subjective quality of a software product is largely based on its non-functional
attributes [12]. Juran, who is widely considered to be a quality guru, defines
quality as fitness for a given purpose, accompanied by customer satisfaction [13].
Pressman defines software quality in terms of specific measures, claiming that
software quality is measured by the product’s level of compliance with functional
and performance requirements and development standards; in his definition, the
focus is more on the engineering process [14].

Quality testing sets up measurement benchmarks to evaluate quality processes
and identifies weaknesses in those processes so that quality issues will not repeat
themselves. It requires the analysis of the tools, metrics, and processes used by
management (including specification processes); analysis of the product’s de-
velopment; and testing activities. The classic functional testing and QA approach
of verifying the functionality, load and performance of developed features in the
post-delivery phase conflicts with the fast-shipment orientation that Agile relies
on and can cause delays and uncertainty prior to a product’s release. Hence, a
common practice is to plan testing activities during development and to allocate
the capacity of developers for the correction of future defects [15] [16]. It is clear
that software quality is a vague concept-and one that is difficult to define. That is
why there are multiple approaches for the measurement of the quality of soft-
ware products [17].

2.2. Quality Value Drivers (QVD)

In the business world, managers seek various kinds of business value drivers,
such as financial value drivers. The term “value driver” refers to a factor that le-
verages and achieves a higher level of value for a practiced methodology [16].

Quality value drivers target the improvement of the quality parameter. This
parameter is controlled by a software development team, a project leader, or an
organization. Petersen, Andersen, Heilesen, Klim, and Schmidt conclude that
quality indicators are parameters that may be monitored and tracked during the
development cycle in order to keep a project on the right track, namely the one
leading toward a planned goal [18]. These indicators focus only on product and
process attributes. The present research study focuses on three quality indica-
tors: time to market, functional defects and total cost of ownership. Ethical tools
are the drivers being investigated here as instruments for the attainment of
higher scores for these three defined quality parameters.

2.3. Ethical-Driven Software Development (EDSD)

Over the years, software ethics evolved in different ways and formats [19] [20]
[21] [22]. Ethical-Driven Software Development (EDSD) promotes an ethical
framework that serves software engineers as a guideline for the entire develop-
ment process [23]. The incentive behind Lurie and Mark’s EDSD framework is
the promotion of a proactive approach aimed at ensuring the quality of the final
product by raising the awareness of ethical tools prior to, and during, the prod-

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 16 Journal of Service Science and Management

uct’s development cycle. The EDSD framework formats YES/NO questions ad-
dressing each of the phases in the development process and demands that all the
relevant stakeholders, including team members, users and sponsors be aware of
the ethical issues involved in the product’s manufacture, and that they have
aligned expectations, prior to each phase. Thus, the EDSD framework can in-
crease the commitment of developers to produce quality products and can re-
duce the potential for tension developing between the various stakeholders [23].
In practice, to create the necessary ethical framework, EDSD has index cards as a
tool to help to facilitate the development process while sticking to the frame-
work’s questions. Each phase in this process has its own unique set of cards and
each card contains only one ethical question that is specific and focused for that
particular phase and which all the relevant stakeholders are supposed to answer.
EDSD’s testing and verification section asks five fundamental ethics-related
questions:

1) Has the level of allowed errors been determined before there is a transfer of
the product to acceptance testing been set?  

2) Is a mechanism in place that distinguishes between a quality product versus
a correct product?  

3) Is a mechanism in place that determines whether the required tests were
performed?  

4) Is there a set of mandatory tests?  
5) Are the metrics for determining the level of required tester training de-

fined?  

2.4. Agile Software Development

Appearing on the market in 2001, Agile offers a very contemporary approach in
its principles and guidelines for software development [6]. Agile leverages more
than one format: for example, it is applied to Scrum, one of the well-known me-
thodologies being used today in the software industry. One of the main funda-
mentals in Scrum is that the product is developed in a series of fixed length ite-
rations called sprints, ranging between one and four weeks and thus allowing the
team or scrum a platform for delivering software in a closely orchestrated
rhythm. A Scrum team comprises three to nine members. For software projects,
a typical team will include at least one software engineer, at least one software
architect and at least one quality assurance engineer [6]. Short iterations boost
the importance of accurate effort estimation and a fast feedback cycle, which are
well-known factors in waterfall projects. Scrum relies on self-organized teams.
Thus, there is no manager who allocates tasks to team members or assists in de-
signing solutions; those are issues that are decided by the team as a unit. The
team is supported by two key players, the Product Owner (PO), the person who
sets the product’s vision and who has the authority to determine the sprint’s
backlog, and the Scrum Master (SM), who is responsible for managing the
scrum’s processes, including meetings and artifacts, and the terminology of the

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 17 Journal of Service Science and Management

Agile scrum. In addition, Scrum has four ceremonies that format each sprint,
focusing on planning, progress, summarizing and feedback [6].

This section has reviewed the relevant professional literature on quality man-
agement, QVD, EDSD and Agile methodologies, highlighting current findings
and trends. From the perspective of quality enhancement of Agile methodolo-
gies, it is apparent that conflicting views still exist, with no apparent consensus
having yet emerged. Our central proposition is that a software organization’s
development model is an important pivot and a crucial source of value creation.
Since EDSD is an adaptable ethical platform for Agile projects, it seems logical to
have it act as a value driver. The present study seeks to provide information on
the development of quality processes using ethical tools. For educational theor-
ists and researchers interested in portfolios, it is hoped that our study will pro-
mote a better understanding of the importance of software engineering as a re-
gulated profession.

3. The Present Study’s Design
3.1. Sample and Procedure

This study sought to compare the impact of ethical considerations on selected
software quality parameters in Agile projects. Using an experimental design, we
chose a large global software organization that had hundreds of Agile scrum
teams and was involved in projects on a worldwide scale. We decided to focus
on one project that comprised multiple teams with the same scope of work in
terms of size, complexity and location. The differences in terms of time zones or
other technical and cultural aspects were controlled and were not considered re-
levant to the experiment.

To minimize external distracting factors that might have impacted our expe-
riment’s results (e.g., location, size, seniority), we concentrated on 14 engineers
who were located in the same region and who were targeted to work on the same
project, prior to the formation of the scrum teams. Next, we categorized them
into two groups: senior and junior engineers. Whereas the senior engineers
group comprised engineers with more than five years of experience, the junior
engineers group included engineers with less than five years of experience. This
step was taken to ensure that the seniority level would be distributed equally
among the teams. Eventually, we ended up having eight senior engineers and six
junior engineers, who gave their consent to participate in the experiment. Using
a random selection process, we split the members into two teams. Each team had
the same number of junior and senior engineers, and we named them Group A
and Group B. Each group had seven members: four senior engineers and threes
junior ones. The team members were not given any choice as to which group to
belong to, and each engineer had the same chance of being chosen for either of
the two teams. Group A was designated as our test group, in which intervention
would occur, as opposed to the control group, Group B, where no intervention
was to occur.

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 18 Journal of Service Science and Management

3.2. The Experiment’s Design and the Nature of the Intervention

The variable we were trying to investigate was the effect of the implementation
of ethical considerations or tools, namely, the impact of EDSD, especially its
testing and verification section. Thus, in accordance with the experiment’s de-
sign, Group A would have to answer five additional questions during the plan-
ning session of each sprint, and for each user story. In order to collect enough
data, the entire experiment lasted for six sprints, or 12 weeks. Group B did not
benefit from EDSD’s testing and verification sections and executed tasks via the
known Agile scrum development methodology without any additional require-
ments or enhancements. This arrangement assured that any quality measure-
ment impact on Group A’s deliveries would have a strong connection with
EDSD’s implementation. In every sprint planning, the scrum PO in Group A
went over the backlog with the team. For every user story, the members of the
group answered the five questions from EDSD’s testing and validation section.
The idea was to make sure that all questions would receive a “YES” answer and
team members were asked to fill in gaps in order to get a “YES” for every ques-
tion. For instance, question 3 (“Is there a set of mandatory tests?”). In case one
of the user stories did not have a set of mandatory tests, the team would have to
define the set prior to the sprint’s kickoff. Only when all the user stories met the
requirements of EDSD’s questions was the team allowed to start working on the
actual content delivery.

The PO in Group B went over the backlog before each of the six sprints, during
the sprint’s planning session, making sure that every user story was allocated the
required resources and that the stories were clear to everyone. The team was al-
lowed to start working on content delivery once the planning meeting was over.

3.3. Measurements

When it comes to defining the key performance indicators for quality measure-
ment, there is no single answer that can cover what all organizations believe and
practice in their day-to-day work because of the industry’s particular specialty
and because of the organization’s size, resource allocation strategy, etc.; these
technical aspects impact on the organization’s success factors and milestones. To
avoid confusion and to provide a focused approach, this study based itself on
three main quality parameters.

Story points are an arbitrary measure used by Agile teams, especially in
Scrum. They are used to measure the effort required to fully implement a user
story. These numbers tell the team how difficult the story is, the particular diffi-
culty being related to complexity, dependency, prerequisites, etc. Story points
usually range in T-Shirt sizes: small, medium, large and extra-large. The baseline
size is determined by the team [16] [24].

3.4. Product Functionality

Product functionality refers to the congruence between software requirements
and actual delivery on the one hand and the percentage of customer require-

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 19 Journal of Service Science and Management

ments met on the other, with the attention being focused on significant cases.
We measured the number of functional defects or the total number of
non-working software pieces in each iteration, during and after delivery phases.

3.5. Cost of Ownership

Cost of ownership refers to many aspects of the development cycle. We meas-
ured the cost of ownership, the percentage of resource capacity in human re-
source (HR) days for every user story, the actual allocation to maintain story
content delivery after release, the addressing of changes in code without the in-
troduction of new innovative content, etc.

3.6. Schedule

This parameter means the delivery of the product in accordance with the com-
mitted timeline. We measured the time to market using HR day units for every
user story, indicating the overall time from user story readiness to prod-
uct/feature final delivery.

Time to market and cost of ownership are measurements that are relative to
user stories, whereas the number of functional defects is measured per sprint or
per iteration since defects are not always correlated to one user story and can
potentially occur because of more than one user story.

For each quality indicator, measurements were categorized, based on the size
or type of the user story or defect. The following provides more details of each
indicator’s measurement scale:
 Time to Market (TTM) + Cost of Ownership (COO) in story points: Small,

Medium, Large and Extra-Large.
 Functional defects-Minor (A defect that will not cause a failure in the execu-

tion of the product), Major (A defect that will cause an observable product
failure or a departure from requirements), Fatal (A defect that will cause the
system to crash or close abruptly or which might impact other applications).

4. Results and Data Analysis
4.1. Time to Market (TTM)

While the definition of time to market (TTM) can vary depending on the organ-
ization, industry and product, for this study and in collaboration with the or-
ganization we were examining, TTM was defined as the period of time between
the point where a user story is ready-in other words, all involved team members
understand and are aware of all the requirements and of the definition of what
must be done-to the final delivery time. TTM and the search for ways of opti-
mizing it are critical factors that directly impact revenue and cost when we holis-
tically view the end-to-end status of a product. Rationally, TTM is very depen-
dent on a controlled process, on tracking abilities and on the early reduction of
the risk of sudden unknowns. Hence, an ethical framework, especially EDSD,
delimits and raises prerequisites and potential risks by leveraging questions at

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 20 Journal of Service Science and Management

the planning phase.
User stories vary in size. There are four different category sizes: From small to

extra-large. Therefore, it makes sense that, the bigger the size of a user story, the
longer its TTM. According to the organization’s records, user stories belonging
to the small size bucket usually take between 5.5 to 6 HR days, depending on the
project and the team. Table 1 describes the TTM for the four size categories af-
ter one iteration, the measurement being made in HR days.

Looking at the different user story sizes, we can see that there is a delta be-
tween both groups after the first iteration. This fact does not necessarily prove
that EDSD’s testing and validation had a direct impact, but it should be noted
that differences were obtained for all the sizes.

The trend of lower TTM for all story sizes was continuous after three itera-
tions (Table 2) in the test group. Moreover, the deltas were becoming bigger
over time. For example, in iteration 1, the delta in large sized stories was 0.3 HR
days, while in iteration 3 it was 1.4 HR days. Looking at the results in the control
group, we can see that the measurements after iteration 3 were similar to pre-
vious ones.

After six iterations, we could see significant TTM measurement differences
between the test and control groups, in addition to a constant reduction in our
test group from the 1st to the 6th iteration, leading to ~20% - ~40% less TTM
across different story sizes. On the other side of the experiment, measurements
were almost the same in our control group. Table 3 describes the full results af-
ter six iterations. The findings show that EDSD’s testing and validation section
was impacting TTM for all user story sizes, especially in small and extra-large
stories, with a reduction of 38.46% and 33.81% respectively, compared to the
traditional Agile scrum methodology used in our control group.

Table 1. TTM after 1 iteration.

Story size TTM test group (O1) TTM control group (O2)

Small 5.2 5.8

Medium 7.5 7.1

Large 10.1 9.8

Extra-Large 13.9 14.3

Table 2. TTM after 3 iterations.

Story size TTM test group (O1) TTM control group (O2)

Small 4 6

Medium 6.9 7.1

Large 8.8 10.2

Extra-Large 11.4 14.1

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 21 Journal of Service Science and Management

Table 3. TTM after 6 iterations.

Story size TTM test group (O1) TTM control group (O2)

Small 3.2 6.1

Medium 6.1 6.9

Large 7.2 10.15

Extra-Large 9.2 14.4

4.2. Cost of Ownership (COO)

The Cost of Ownership (COO) for a software project is the sum of all direct and
indirect costs incurred for that software. COO is a critical part of the return of
investment calculation [25]. In our case, COO related to the user stories, mean-
ing how many HR days the team needed to spend on “maintaining” user stories
developed in previous sprints. Thus, COO has a direct link to the nature of good
design and development.

COO applies to both the organization and the customer since the allocation of
resources to maintain a piece of software instead of work on new content even-
tually leads to longer time to market and higher costs. Obviously, high quality
achieved prior to the release of the product prevents the risk of the allocation of
resources to maintain quality or correct problematic issues.

Like TTM, COO relates to user stories. Thus, the four categories of small, me-
dium, large and extra-large were relevant in our measurement. Table 4 describes
the COO for each user story size after the second iteration.

The numbers reflect the percentage of HR days out of the entire team capacity
that was required to be allocated in order to support user stories that were deli-
vered from earlier sprints. Support could have included correction of discovered
problematic issues, or a change in the delivery date due to a variety of reasons,
such as change in customer requests, the incongruence of the design and the
scale, etc.

For example, there were seven members in each team and the assumption was
that the second iteration had full resource capacity in both teams, the result be-
ing 70 HR days for each team (7 engineers × 10 working days for a period of two
weeks). Our test group allocated 6.3 HR days on extra-large user stories deli-
vered from previous sprints, while our control group spent 7.08 HR days.

Looking at the entire COO allocation in the second iteration, we found that
the numbers added up to 25% of resource allocation in our test group and al-
most 28% in our control group. Clearly, high COO is expensive and impacts
overall quality. Table 5 paints a fuller picture of the impact of ethical considera-
tions on the COO of user stories in scrum teams.

In our test group, we managed to reduce the total COO for all the user story
categories in sprint 6% to 17.4% when it originally was ~30%, the delta totaling
almost nine HR days in each sprint and thus becoming available for the devel-
opment of new content instead of support for old content. Our control group

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 22 Journal of Service Science and Management

Table 4. COO after 2 iterations.

Story size COO test group (o1) COO control group (o2)

Small 1.80% 2.00%

Medium 4.61% 5.00%

Large 9.60% 10.66%

Extra-Large 9.00% 10.12%

Table 5. COO after 6 iterations.

Story size COO test group (O1) COO control group (O2)

Small 0.06% 2.07%

Medium 3.36% 4.78%

Large 6.97% 10.91%

Extra-Large 7.03% 10.20%

started with 27.99% HR days for COO and ended up with 27.96%. Clearly we
can see that EDSD’s testing and validation section is correlated with the reduc-
tion of COO overtime.

4.3. Functional Defects

The number of functional defects is the total number of non-working software
pieces in the pre and post-delivery phases that were reported in the project
tracking system by team members. Team members test features by feeding them
input, examining the output and comparing it to the original requirements from
the PO or business owner. Functional testing ensures that the requirements are
properly met by the product [25].

As described in a previous section, functional defects in this study had three
different severity levels: minor, major and fatal. Hence, we had three different
measurements for each iteration. Table 6 presents the results after the first itera-
tion. From our earlier COO measurement, the findings showed that the use of
EDSD during the planning process lowered the percentage of COO for the vari-
ous user stories. As already noted, COO also includes defect correction. Thus, it
makes sense that one of the root causes of a reduction of the COO is the reduc-
tion of the number of functional defects. Table 7 lists the number of found de-
fects in both groups after five iterations.

All in all, there was a reduction of almost 60% in minor defects and 100% in
major and fatal defects in our test group. The opposite happened in our control
group. The figures were higher for minor defects and remained almost the same
for the other two categories. Clearly, we saw a reduction in the number of func-
tional defects in our test group from one iteration to the next, the result being a
lower COO and a lower TTM.

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 23 Journal of Service Science and Management

Table 6. No. of functional defects after 1 iteration.

Defect
severity

No. of functional
defects in test group (O1)

No. of functional
defects in control group (O2)

Minor 12 17

Major 5 8

Fatal 1 2

Table 7. No. of functional defects after 5 iterations.

Defect
severity

No. of functional
defects in test group (O1)

No. of functional
defects in control group (O2)

Minor 4 15

Major 0 10

Fatal 0 0

5. Significance and Contributions of the Research

The main contribution of this research study is the major findings regarding the
positive effect ethical tools have on quality, as we have discussed in detail in the
section on the results and on the data analysis. In addition, this research study
has investigated the application of new practical approaches and methodologies
to quality and ethics. The investigation of new approaches will hopefully stimu-
late debate and provide opportunities for further research as discussed in the
previous section.

6. Limitations and Recommendations for Future Research

This study has focused on two Agile scrum teams in a large global software or-
ganization. The teams started working on the same project, measured specific
quality parameters and were escorted by an ethical framework. The assumption
that the same results will be obtained for every Agile team can be mistaken;
therefore, we have provided additional research suggestions.

Several Agile methodologies exist, all postulating different practices regarding
the manner for building software systems. They all have their strengths and
weaknesses. There has also been considerable competition among them in terms
of popularity and suitability in different environments. Building on a common
ethical tool for Agile methodologies, the best features of each methodology
should be leveraged and should be combined into a consolidated, integrated and
unifying meta-framework. Several definitions exist to help improve the software
quality process. Like the methodologies, each definition has its strengths and
weaknesses. Similarly, as in the case of the methodologies, the best attributes of
each definition should be leveraged and combined into a consolidated, inte-
grated and unifying software quality definition.

7. Conclusion

Our research study clearly indicated that ethical tools lead to higher quality in

https://doi.org/10.4236/jssm.2018.111002

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 24 Journal of Service Science and Management

Agile software projects. The findings of our study showed that the use of EDSD’s
validation and testing section as a part of scrum methodology and during sprint
planning reduces time to market, cost of ownership and the number of func-
tional defects. Thus, it can be concluded that ethical tools are a quality driver in
Agile software projects. This point was brought home in the experiment that was
carried out and the findings of our study clearly indicate that software develop-
ment escorted by ethical tools results in better quality as compared with software
that has been developed without ethical tools.

References
[1] Wong, W.E., Debroy, V. and Restrepo, A. (2009) The Role of Software in Recent

Catastrophic Accidents. Department of Computer Science, University of Texas,
Dallas.

[2] Avison, D. and Fitzgerald, G. (2006) Information Systems Development: Metho-
dologies, Techniques and Tools. 4th Edition, McGraw Hill, London, 395-418.

[3] Schach, S. (2010) Object-Oriented and Classical Software Engineering. 8th Edition,
McGraw-Hill, New York, 154-294.

[4] Abrahamsson, P., Oza, N. and Siponen, M.T. (2010) Agile Software Development
Methods: A Comparative Review. In: Agile Software Development, Springer, Berlin
Heidelberg, 31-59. https://doi.org/10.1007/978-3-642-12575-1_3

[5] Beck, K. (2000) Extreme Programming Explained: Embrace Change. Addi-
son-Wesley, Reading, MA, 17-34.

[6] Cunningham, W. (2001) Manifesto for Agile Software Development.
http://Agilemanifesto.org

[7] Highsmith, J. (2004) Agile Project Management. Addison-Wesley, Boston, MA.

[8] Santos, M.A., Bermejo, P.H.S., Oliveira, M.S. Tonelli, A.O. (2011) Agile Practices:
An Assessment of Perception of Value of Professionals on the Quality Criteria in
Performance of Projects. Journal of Software Engineering and Applications, 4,
700-709. https://doi.org/10.4236/jsea.2011.412082

[9] Dyba, T. and Dingsoyr, T. (2008) Strength of Evidence in Systematic Reviews in
software Engineering. Proceedings of the Second ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, ACM, Kaiserslautern,
9-10 October 2008, 178-187. https://doi.org/10.1145/1414004.1414034

[10] Donald, M. (2016) Agile and Conventional Methodologies: An Empirical Investiga-
tion of Their Impact on Software Quality Parameters, University of South Africa.

[11] Brandenburger, A.M. and Stuart, H. (1996) Value-Based Business Strategy. Journal
of Economics & Management Strategy, 5, 5-25.
https://doi.org/10.1111/j.1430-9134.1996.00005.x

[12] Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., Macleod, G. and Merrit, M.
(1978) Characteristics of Software Quality. North-Holland, Amsterdam.

[13] Juran, J.M. (1992) Juran on Quality by Design: The New Steps for Planning Quality
into Goods and Services. Free Press, New York.

[14] Pressman, R. (2010) Software Engineering: A Practitioner’s Approach. 7th Edition,
McGraw Hill, New York.

[15] Huo, M., Verner, J., Zhu, L. and Babar, M.A. (2004) Software Quality and Agile
Methods. Proceedings of the 28th Annual International on Computer Software and
Applications Conference, Hong Kong, 28-30 September 2004, 520-525.

https://doi.org/10.4236/jssm.2018.111002
https://doi.org/10.1007/978-3-642-12575-1_3
http://agilemanifesto.org/
https://doi.org/10.4236/jsea.2011.412082
https://doi.org/10.1145/1414004.1414034
https://doi.org/10.1111/j.1430-9134.1996.00005.x

H. Abdulhalim et al.

DOI: 10.4236/jssm.2018.111002 25 Journal of Service Science and Management

[16] Schwaber, K. (2004) Agile Project Management with Scrum. Microsoft Press,
102-336.

[17] Mnkandla, E. and Dwolatzky, B. (2006) Defining Agile Software Quality Assurance.
International Conference on Software Engineering Advances, Tahiti, 29 October-3
November, 36.

[18] Petersen, P., Andersen, O., Heilesen, J.H., Klim, S. and Schmidt, J. (1989) Software
Quality Drivers and Indicators. Proceedings of the 22nd Annual Hawaii Interna-
tional Conference on System Sciences, Washington DC, 3-6 January 1989, Vol. 2.

[19] Peslak, A.R. (2007) Improving Software Quality: An Ethics Based Approach. Ph.D.
Thesis, Penn State University, State College, PA.

[20] ACM (2015) Software Engineering Code of Ethics and Professional Practice.

[21] National Society for Professional Engineers (2007) Code of Ethics.

[22] Gotterbarn, D., Miller, K. and Rogerson, S. (1997) Software Engineering Code of
Ethics. Communications of the ACM, 40, 110-118.
https://doi.org/10.1145/265684.265699 

[23] Lurie, Y. and Mark, S. (2015) Professional Ethics of Software Engineers: An Ethical
Framework. Science and Engineering Ethics, 22, 417-434.

[24] Sommerville, I. (2011) Software Engineering. 9th Edition, 618-668.

[25] Sommerville, I. (2007) Software Engineering. 8th Edition, Addison-Wesley, Boston,
MA.

https://doi.org/10.4236/jssm.2018.111002
https://doi.org/10.1145/265684.265699

	Ethics as a Quality Driver in Agile Software Projects
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	2.1. Quality Management
	2.2. Quality Value Drivers (QVD)
	2.3. Ethical-Driven Software Development (EDSD)
	2.4. Agile Software Development

	3. The Present Study’s Design
	3.1. Sample and Procedure
	3.2. The Experiment’s Design and the Nature of the Intervention
	3.3. Measurements
	3.4. Product Functionality
	3.5. Cost of Ownership
	3.6. Schedule

	4. Results and Data Analysis
	4.1. Time to Market (TTM)
	4.2. Cost of Ownership (COO)
	4.3. Functional Defects

	5. Significance and Contributions of the Research
	6. Limitations and Recommendations for Future Research
	7. Conclusion
	References

