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Abstract 
The vehicle routing problem (VRP) is classified as an NP-hard problem. Hence exact optimization 
methods may be difficult to solve these problems in acceptable CPU times, when the problem in-
volves real-world data sets that are very large. To get solutions in determining routes which are 
realistic and very close to the optimal solution, one has to use heuristics and meta-heuristics. In 
this paper, an attempt has been made to develop a GA based meta-heuristic to solve the time de-
pendent vehicle route problem with time windows (TDVRPTW). This algorithm is compared with 
five other existing algorithms in terms of minimizing the number of vehicles used as well as the 
total distance travelled. The algorithms are implemented using Matlab and HeuristicLab optimiza-
tion software. A plugin was developed using Visual C# and NET Framework 4.5. Results were 
tested using Solomon’s 56 benchmark instances (of which 24 instances are used with 4 in each of 
the 6 problem classes) classified into groups such as C1, C2, R1, R2, RC1, and RC2. For each of the 
performance measures, through a complete factorial experiment with two factors, it is proved that 
the proposed algorithm is the best among all the six algorithms compared in this paper. 
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1. Introduction 
Vehicle Routing Problem (VRP) is one of the most important topics in operations research. It deals with deter-
mining least cost routes from a depot to a set of scattered customers. The routes have to satisfy the following set 
of constraints:  
• Each customer is visited exactly once.  
• All routes start and end at the depot.  
• Sum of all demands on a route must not exceed the capacity of a vehicle.  

The vehicle routing problem is depicted in Figure 1. From this figure, one can note that the vehicles originate 
at the depot, visit all the nodes once, fulfill their demands at the nodes and then return to the depot once again. 
The nodes can be either supplier sites in the case of ecommerce company supplier site pickups or customer sites 
where the ecommerce company delivers to the customer sites. It can also be different manufacturers to whom 
the suppliers deliver raw materials, components, parts and other supplies of items. The various colours depicted 
in the figure represent the various routes of the vehicles to fulfill the customer demand.  

VRP is closely related to TSP, and according to Bullnheimer et al. [1], as soon as the customers of the VRP 
are assigned to vehicles, the problem is reduced to several or multiple TSPs. The Vehicle Routing Problem 
(VRP) is used to design an optimal route for a fleet of vehicles to service a set of customers subject to a set of 
givn constraints. The VRP is used in supply chain management in the physical delivery of goods and services. 
There are several variants to the VRP. These are formulated based on the nature of the transported goods, the 
quality of service required and the characteristics of the customers and the vehicles. The VRP is of the NP-hard 
type. 

The vehicle routing problem (VRP) has been very extensively studied in the optimization literature. It started 
with the seminal papers of Dantzig and Ramser [2] and Clarke and Wright [3]. Now, VRP offers a wealth of 
heuristic and meta-heuristicses, which are surveyed in the papers of Laporte [4], Gendreau et al. [5] and Cor-
deau et al. [6]. The VRP is so widely studied because of its wide applicability and its importance in determining 
efficient strategies for reducing operational costs in distribution networks. Today, exact VRP methods have a 
size limit of 50 - 100 orders depending on the VRP variant and the time-response requirements. To overcome 
this limitation, the research on VRP currently concentrates on approximate algorithms and meta-heuristics that 
are capable of finding high quality solutions in limited time, in order to be applicable to real-life problem in-
stances that are characterized by large vehicle fleets. 

The VRP was first stated by Dantzig and Remser [2] which was about the routing of a fleet of gasoline deli-
very trucks between a bulk terminal and a number of service stations supplied by the terminal. The total distance 
between any two locations is given and a demand for a given product is specified for the service stations. The 
Time-Dependent Vehicle Routing Problem (TDVRP) is a class of vehicle routing problems, where the time to 
serve the customers varies along with the consideration of the traffic conditions in the route. In order to collect 

 

 
Figure 1. An example solution to a vehicle routing problem. 
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the items from various suppliers, the 3PL logistics transportation service provider must visit all scheduled sup-
pliers during different opening hours. Some suppliers may further request visits within certain time windows. It 
is not always easy to meet the time window delivery requirement because the delivery processes are usually af-
fected by traffic flow conditions. The traffic congestion during the rush hours might cause severe delays. Hence 
in order to pick-up items from the suppliers more efficiently, this study seeks to solve several challenging mis-
sions simultaneously among customers and suppliers, in a 3PL kind of arrangement, whereby the buyer’s ve-
hicle visits the suppliers’ sites to pickup the items ordered, in an e-commerce setup, including: 1) to satisfy sup-
pliers’ specific time windows; 2) to approximate travel time affected by urban traffic. 

In this paper, the basic vehicle routing problem with time windows (VRPTW) is further extended and the time 
dependent vehicle routing problem with time windows is studied. The TDVRPTW is gaining more importance 
in research, since the traffic conditions are different during different times of the day and manufacturers, suppli-
ers and ecommerce retailers need to schedule their pickups and deliveries at the appropriate times of the day, 
considering the time windows of the customers and suppliers to make their order fulfillment needs efficient and 
faster. The methodology adopted in this study is based on genetic algorithm. It is important to make this study, 
since a gap exists in the literature in the area of TDVRPTW used by ecommerce companies in supplier site 
pickups. This study may help ecommerce companies to optimize their supplier pickup activity. 

In this paper, the review of literature of VRPTW is followed by genetic algorithm used and the crossover 
technique developed in this study. The implementations of the GA-based algorithm for solving the TDVRPTW 
and its steps are also discussed. Finally the proposed algorithm is compared with a set of existing algorithms in 
terms of number of vehicles utilized as well as total distance travelled. 

2. Literature Review 
The VRPTW is classified as a NP-hard problem (e.g. Fu, [7]; Meng et al., [8]). Solomon [9] first presented a 
mixed-integer programming (MIP) for the VRPTW and introduced a set of well-known benchmark problems 
now known as “Solomon Instances.” He subsequently designed and analyzed algorithms for the VRPTW (So-
lomon, [9]). To consider traffic congestion, the time-dependent traveling time is added into the VRPTW as the 
time-dependent vehicle routing problem with time windows (TDVRPTW). Malandraki & Daskin [10] discussed 
diversified traffic conditions at different times of the day; the time horizon is divided into M slices and then a 
constant travel time is assigned to each arc in every interval. The idea is sound; however, the discontinuous tra-
vel time settings may violate the first in, first out (FIFO) property. Hill & Benton [11] also considered TDVRP 
without time windows but based on time-dependent travel speed. Ichoua et al. [12] assigned a speed distribution 
to each arc during the time horizon and then obtained the travel time distribution by integration. 

Many of the most successful meta-heuristics for the large VRPTW instances are based on some form of pa-
rallel computation. During the past few years, numerous papers have been written on generating good solutions 
for VRPTW with GAs. Genetic Algorithms (GA for short) are a class of adaptive heuristics based on the Darwi-
nian concept of evolution survival of the fittest. A brief review of the relevant literature is given below. 

2.1. Meta-Heuristics 
Le Bouthillier and Crainic [13] have proposed a cooperative parallel meta-heuristic for the VRPTW, based on 
the solution warehouse strategy. In this work, several search threads cooperate asynchronously, exchanging in-
formation on the best solutions identified. The exchanges are performed through a mechanism called solution 
warehouse, which holds and manages a pool of solutions. Blanton and Wainwright [14] were the first to apply a 
genetic algorithm to VRPTW. They hybridized a genetic algorithm with a greedy heuristic. Under this scheme, 
the genetic algorithm searches for a good ordering of customers while constructing a feasible solution using a 
greedy heuristic. Several papers present hybridizations of a GA with different construction heuristics (Berger et 
al., [15]), local searches (Thangiah et al., [16]; Potvin and Bengio, [17]; Zhu [18]) and other meta-heuristics 
such as tabu search (Wee Kit [19]) and ant colony system (Berger et al., [15]).  

Homberger and Gehring [20] proposed a two-phase hybrid meta-heuristic for the VRPTW. The objective 
function of the VRPTW considered here combines the minimization of the number of vehicles (primary criterion) 
and the total travel distance (secondary criterion). The aim of the first phase is the minimization of the number 
of vehicles by means of a (l; k)-evolution strategy, whereas in the second phase the total distance is minimized 
using a tabu search algorithm. Mester and Bräysy [21] present a new and effective meta-heuristic algorithm, ac-
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tive guided evolution strategies, for the VRPTW problem. The algorithm combines the strengths of the guided 
local search and evolution strategies belonging to meta-heuristics into an iterative two-stage procedure. Guided 
local search is used to regulate a composite local search in the first stage and the neighbourhood of the evolution 
strategies algorithm in the second stage. Russell and Chiang [22] used a scatter search meta-heuristic to solve 
the VRPTW. Both a common arc method and an optimization-based set covering model are used to combine 
vehicle routing solutions. A reactive tabu search meta-heuristic and a tabu search with an advanced recovery 
feature, together with a set covering procedure are used for solution improvement. Alba and Dorronsoro [23] 
proposed a cellular Genetic Algorithm (cGA) which is a kind of decentralized population based heuristic, which 
is used for solving capacitated vehicle routing problem (CVRP). Tabu search (TS) is a memory based search 
strategy to guide the local search descent method to continue its search beyond local optimality Glover [24]; 
Glover [25]. When a local optimum is encountered, a move to the best neighbor is made to explore the solution 
space, even though this may cause a deterioration in the objective function value. The TS seeks the best availa-
ble move that can be determined in a reasonable amount of time. More developments and applications have been 
discussed by Glover, Taillard and De Werra [26]. The tabu search algorithm utilizes three different neighbor-
hoods that have been proposed by Li and Lim [27]. The shift neighborhood considers moves where pickup and 
delivery customer pairs are shifted from one route to another. In the exchange neighborhood pairs are swapped 
between two routes. Within one route pairs can be moved to another position in the rearrange neighborhood. As 
a tabu criterion, a customer cannot be moved back to a route once it has been removed or rearranged in it. 
Whenever a new request arrives, there are two approaches in integrating it in the current route plan (Ichoua et al., 
[28]). Lau et al. [29] introduced a variant of the vehicle routing problem with time windows where a limited 
number of vehicles is given (m-VRPTW). Under this scenario, a feasible solution is one that may contain either 
unserved customers and/or relaxed time windows. Kramer et al. proposed a Pollution-Routing Problem (PRP) 
which is a “green” oriented variant of the Vehicle Routing Problem (VRP). In order to solve it, they proposed a 
meta-heuristic called ILS-SOA-SP, that effectively integrates Iterated Local Search (ILS) with a Set Partitioning 
(SP) procedure and a Speed Optimization Algorithm (SOA). This approach was also used to solve two other en-
vironmental-based VRPs, namely the Fuel Consumption Vehicle Routing Problem (FCVRP) and the Energy 
Minimizing Vehicle Routing Problem (EMVRP), as well as the well-known Vehicle Routing Problem with 
Time Windows (VRPTW) with distance minimization. Chu et al. [54] developed a mathematical model for 
solving the TDVRPTWSD problem. They studied TDVRPTWSD and used Genetic Algorithm to solve it. Their 
study has not considered the objective of minimizing the number of vehicles used and also minimizing the total 
distance travelled. 

2.2. Time-Dependent Vehicle Routing Problem with Time Windows 
Time dependent vehicle routing problems received little attention among researchers. The time dependent VRP 
was first formulated by Malandraki [30] and Malandraki and Daskin [10] using a mixed integer linear program-
ming formulation. They proposed a greedy nearest-neighbor heuristic based on travel time between customers, 
as well as a branch and cut algorithm to solve TDVRP without time windows. Hill and Benton [11] considered a 
node-based time dependent vehicle routing problem (without time windows). Computational results for one ve-
hicle and five customers were reported. Ahn and Shin [31] introduced certain modifications to the savings, in-
sertion, and local improvement algorithms to better deal with TDVRP. In randomly generated instances, they 
reported reductions in computational time as a percentage of the “unmodified” savings, insertion, and local im-
provement algorithms. Malandraki and Dial [32] proposed a dynamic programming algorithm for the time-  
dependent traveling salesman problem, i.e. for a fleet of just one vehicle. A nearest-neighbor type heuristic was 
used to solve randomly generated problems. 

An important property for time dependent problems is the First In-First Out (FIFO) property proposed by Ahn 
and Shin [25] and Ichoua et al. [12]. A model which has a FIFO property guarantees that if a vehicle leaves 
customer i to go to customer j at any time t, any identical vehicle with the same destination leaving customer i at 
a time t + e, where e > 0, will always arrive later. This is an intuitive and desirable property though it is not 
present in all models. Earlier formulations and solutions methods (Malandraki [30], Malandraki and Daskin [10], 
Hill and Benton [11], and Malandraki and Dial [32]), do not guarantee the FIFO property as reported by Ichoua 
et al. [12]. Later researchers modeled travel time variability using “constant speed” time periods, which guaran-
tees the FIFO property as shown by Ichoua et al. [12]. Ichoua et al. [12] proposed a tabu search solution method 
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based on the work of Taillard et al. [33] in order to solve time dependent vehicle routing problems with soft time 
windows. Fleischmann et al. [34] utilized a route construction method of savings and insertion, to solve uncapa-
citated time dependent VRP with and without time windows. They tested their algorithms in instances created 
from Berlin travel time data. Jung and Haghani [35] proposed a genetic algorithm to solve time dependent prob-
lems. Using randomly generated test problems, the performance of the genetic algorithm was evaluated by 
comparing its results with exact solutions (up to 9 customers and 15 time periods) and a lower bound (up to 25 
customers and 10 time periods). Haghani and Jung [50] further propose a formulation for a dynamic vehicle 
routing problem with time-dependent travel times and real-time vehicle control that is an NP-hard problem. For 
solving this problem, they proposed a genetic algorithm. This algorithm includes a vehicle merging operator in 
addition to the generic genetic operators, namely the crossover and the mutation operators. 

Donati et al. [36] proposed a solution that adapted the ant colony optimization meta-heuristic and a local 
search improvement method, which stores and updates the slack times or feasible delays. They used Solomon’s 
benchmark instances as the test data. More recently, Soler et al. [37] proposed a method to solve TDVRP in-
stances optimally that are too small for practical purposes and it experiences exponential growth of computa-
tional time as a function of problem size. Dabia et al. [38] dealt with a one-vehicle vehicle routing problem (TSP) 
using a dynamic programming approach. Kok [39] dealt with the TDVRP with a focus on departure time opti-
mization and driver break scheduling. The study by Kok uses a modification of the set of benchmark instances 
for the VRP with time dependent travel speeds proposed by an early working paper by Figliozzi [40]. Ichoua et 
al. [12] used the well-known Solomon’s 56 benchmark problems for the VRP with time windows.  

An important real-life property found in transportation problems in the retail industry are time-dependent tra-
vel times, also known as dynamic travel times, where travel time depends on the time of departure, modeling 
traffic conditions such as rush hours. The VRP with dynamic travel times is described by van Woensel et al. [41] 
using queueing theory to obtain travel times. Kok et al. [42] proposed a post-processor to determine optimal de-
parture times for the vehicle routes. Kuo et al. [43] introduces a separate calculation model to calculate the total 
operation time of all vehicles and used a modified tabu search to optimize the sequence of customers visited in 
the routes. Bettinelli et al. [44] described a version, where multiple warehouses are considered using a branch- 
and-cut-and-price algorithm. 

Jung and Haghani [50] proposed a genetic algorithm to solve time dependent problems. Using randomly gen-
erated test problems, the performance of the genetic algorithm was evaluated by comparing its results with exact 
solutions (up to 9 customers and 15 time periods) and a lower bound (up to 25 customers and 10 time periods). 
As the time dependent vehicle routing problem with time windows (TDVRTW) considered in this paper is 
NP-hard, the computation time to solve an instance optimality increases exponentially with the size of the in-
stance. Because of this reason, in this paper, an attempt has been made to develop a meta-heuristic and compare 
it with existing meta-heuristics. 

3. Components of Genetic Algorithm 
Genetic Algorithm was first developed by J. Holland at the University of Michigan in 1975. Solutions to a com-
binatorial problem are encoded as chromosomes. The chromosomes are evaluated for their fitness by an evalua-
tion function, and good properties of a generation of solutions are propagated to the following generations.  

The genetic algorithms typically have the following structure. A typical genetic algorithm (GA) will start with 
a set of chromosomes called the initial population. Each chromosome represents a solution to the problem. The 
initial population is either randomly generated (in which case it would take longer time for the algorithm to 
converge to the solution) or generated using some form of heuristics (in which case the population is already 
closer to the solution, and would hence take less time to converge). The next step in the GA method is the selec-
tion mechanism where the selection of the prospective parents based on their fitness is carried out and which is 
computed by the evaluation function. The selected parent chromosomes will then be recombined via the cros-
sover operation to create their offspring. After the crossover process, the next step will be to mutate a small 
number of the newly obtained offspring, in order to introduce a level of randomness that will preserve the GA 
from converging to a local optimum. A mutation is typically a random swap in a gene sequence, or a random 
negation of a bit if the offspring is bit-encoded. Finally, new population will then be formed by substituting the 
offspring in place of their corresponding chromosomes.  

The genetic algorithm will continue through this process until a stopping criterion is met, which can be one of 
the following:  
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• predefined number of generations has been produced;  
• there was no improvement in the population, which would mean that the GA has found an optimal solution;  
• a predefined level of fitness has been reached.  

Tournament Selection 
In this study, tournament selection method is used as the method of selecting the parent chromosomes for cros-
sover operation. In tournament selection, two identical (though differently ordered) copies of the population are 
kept. In every generation, adjacent chromosomes in one copy of the population pair by pair are compared, and 
the chromosome with greater fitness value (lower fitness value in this case because we are minimizing the total 
distance travelled) is selected. Then the second copy of the population in treated the same way to select the other 
half of the selected population.  

4. Genetic Algorithm for Solving Time-Dependent Vehicle Routing Problem with  
Time Windows  

In this section, the methodology used to develop the genetic algorithm-based solution for the time-dependent 
vehicle routing problem with time windows (TDVRPTW) is given. A new crossover technique called the ran-
dom sequence insertion-based crossover (RSIX) is described in detail. 

4.1. Chromosome Representation 
The representation of the chromosome as a set of genes representing the nodes in a route is shown in Figure 2. 

In Figure 2, n is the total number of customers. Each chromosome consists of a set of genes. In the chromo-
some shown in the Figure 2, the genes c1, c2, …, cn are defined as Customer IDs/Nodes. A road chromosome 
contains a list of elements or genes. Every chromosome is initialized as the route which contains the source lo-
cation and the destination location at the start and end of the array, respectively. Each chromosome is a solution 
path.  

A crossover operator is a major process of producing offspring from the current population. There are many 
methods for crossover operation according to different problems. In this paper, “Random Sequence Insertion- 
Based Crossover” Kumar and Panneerselvam [53] method is used, which is explained in the next section. 

4.2. Random Sequence Insertion-Based Crossover (RSIX) 
Consider two parent chromosomes with seven genes in each of them as shown in Figure 3(a). The gene ele-
ments in each of the par nt chromosomes are from 1 to 7. 

The steps of the Random Sequence Insertion-based Crossover (RIX) method are presented below. 
Step 1: Two chromosomes are randomly chosen as parents. 
Step 2: Generate two crossover points, which will lead to three segments in each chromosome as shown in 

Figure 3(a). 
Step 3: Next, swap the middle crossover genes segment, as in Figure 3(b). 
Step 4: Next validity checking is carried out, taking into consideration the constraints of VRPTW, with each 

demand point (customer node) allowed to be visited once, and if we assume triangular inequality, i.e. ( ),i j∀ , 
d0i < d0j + dji, then the time window constraint is satisfied, too, except waiting time is likely to be incurred. Re-
tain the crossover gene section, and then removing the same number of the gene in their parent, such as Figure 
3(c). 

Step 5: This results in getting two new offspring with crossover gene segment and they are saved to the next 
generation as shown in Figure 3(d).  
• The new offspring are tested for fitness values. 
• The smaller the “fitness-value”, the stronger road chromosome is obtained. 

4.3. Evaluation of Fitness Function 
According to Sivasankaran and Shahabudeen [45], the fitness function of the chromosome is obtained by assigning 
the nodes serially from left to right from its ordered vector into customer IDs or nodes for a given travel route.  
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Figure 2. Chromosome sample. 

 

 
Figure 3. Crossover operation. 

 
While assigning a customer ID into a node, that road pertaining to all the models should be assigned to the same 
node. If a road is available in only one model then that can be independently assigned to the current node. 

Every road or route chromosome has its own fitness value, defined as fitness value, where 
1) Fitness value = The sum of route distance cost for every road in a route chromosome. 
2) The smaller the “fitness value” value, the stronger road chromosome is obtained. 
3) Every chromosome is initialized as nodes which contain the source location and the destination location, 

which are fixed at the start and end of the array. 

4.4. Genetic Algorithm (SNRPGA) 
The steps of the proposed genetic algorithm (SNRPGA) for the time dependent vehicle routing problem with 
time windows are presented below. 

Step 1: Input the following: 
• Number of customer nodes (n). 
• Number of vehicles (k). 
• Capacity of the vehicles (a). 
• Set Generation Count (GC) = 1. 
• Maximum number of generations to be carried out (MNG) = 1000. 

Step 2: Generate a random initial population (L) of 100 (N) chromosomes (suitable solutions routes for the 
problem).  

Step 3: Evaluate the fitness function f(x) of each chromosome in the population L. 
Step 4: Selection.  
Sort the population L by the objective function (fitness function) value in the ascending order, since the ob-

jective of the study is minimization of the total distance travelled. Copy a top 30% of the population to form a 
subpopulation S rounded to the whole number. Smaller fitness value is preferred here. 

Step 5: Randomly select any two unselected parent chromosomes from the subpopulation S. Let them be c1 
and c2 using tournament selection. 

Step 5.1: Perform two-point random Cross-Over using the random sequence insertion-based crossover (RSIX) 
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described in the earlier section among the chromosomes c1 and c2 to obtain their offspring d1 and d2 by assum-
ing a crossover probability of 0.7.  

Step 5.2: Perform mutation on each of the offspring using a mutation probability of 0.3. 
Step 5.3: Evaluate the fitness function with respect to the total distance travelled and number of vehicles uti-

lized value for each of the offspring d1 and d2.  
Step 5.4: Replace the parent chromosomes c1 and c2 in the population with the offspring d1 and d2, respec-

tively, if the fitness function of the offspring is less than that of the parent chromosomes. 
Step 6: Increment the generation count (GC) by 1.  
i.e., GC = GC + 1. 
Step 7: If GC ≤ MNG, then go to step 4, else go to step 8. 
Step 8: The topmost chromosome in the last population serves as the solution for implementation. 
Print the tour along with the total distance travelled and number of vehicles used. 
Step 9: Stop. 

5. Comparison of Proposed Algorithm with Existing Algorithms 
The time dependent vehicle routing problem with time windows plugin for HeuristicLab using genetic algorithm 
was implemented using Visual C#. The standard test data used as input for the solving the TDVRPTW using 
genetic algorithm (GA) is the Solomon’s 56 benchmark instances. 

The input parameters of the vehicle routing problem with time windows are listed below. 
1) Number of nodes (customer locations) = 100. 
2) Vehicle capacity = C1 = 200, C2 = 700, R1 = 200, R2 = 1000, RC1 = 200, RC2 = 1000. 
3) Number of Vehicles = 25. 
4) The demand at each customer location is given. 
5) Distance of the customer location from the depot and from each other is given in the distance matrix. 
The comparison of proposed algorithm is done in two stages as listed below. 

• Comparison of the proposed algorithm with five existing algorithms in terms of number of vehicles utilized. 
• Comparison of the proposed algorithm with five existing algorithms in terms of total distance travelled. 

The experiments were run on a computer with Windows 8.1 OS and an Intel Core i3, 1.70 GHz Processor 
(CPU). The 56 benchmark instances are divided into 6 groups or classes C1, C2, R1, R2, RC1, RC2. 

5.1. Comparisons of Algorithms in Terms of Number of Vehicles Utilized 
In this section, the proposed genetic algorithm is compared with five existing algorithms to solve the vehicle 
routing problem with time windows using a complete factorial experiment with two factors, viz. “problem Size” 
and “Algorithm”. The primary objective is to minimise the number of vehicles and the secondary objective is to 
minimise the total distance travelled, which is the same objective of the study of Figliozzi [46] which uses con-
stant speed problems. The cumulative values show the total average number of vehicles utilized for all the prob-
lem classes and the total average distance travelled for all the problem classes. The number of levels for the 
problem size is 6, viz. C1, C2, R1, R2, RC1, RC2 from Solomon’s benchmark instances. The number levels for 
the algorithm is 6, viz. Solomon [9], CTA by Thompson [47], GIDEON by Thangiah [48], GenSAT by Than-
giah [16]), SNRPGA [Proposed], TABU by Potvin et al. [49] in terms of the total distance travelled. The num-
ber of replications under each experimental combination of the factorial experiment is 4. The results obtained as 
per the factorial experiment are shown in Table 1.  

The model of ANOVA is given as below: 

ijk i j ij ijkY A B AB eµ= + + + +  

where, 
Yijk is the number of vehicles utilized w.r.t the kth replication under the ith treatment of factor A (Problem 

Size) and the jth treatment of factor B (Algorithm), i.e. jth Algorithm. 
μ is the overall mean of the response variable. 
Ai is the effect of the ith treatment of factor A (Problem Size) on the response variable. 
Bj is the effect of the jth treatment of factor B (Algorithm) on the response variable. 
ABij is the interaction effect of the ith Problem Size and jth Algorithm on the response variable.  
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eijk is the random error associated with the kth replication under the ith Problem Size and the jth Algorithm. 
In this model, Factor A (Problem Size/Problem Class) is a random factor and the Factor B (algorithm) is a 

fixed factor. Since the factor A is a random factor, the interaction factor ABij is also a random factor. The repli-
cations are always random and the number of replications under each experimental combination is k. The deri-
vation of the expected mean square (EMS) is given in Panneerselvam [51]. To test the effect of Ai as well as ABij, 
the respective F ratio is formed by dividing the mean sum of squares of the respective component (Ai or ABij), by 
the mean sum of squares of error. The F ratio of the component Bj is formed by dividing its mean sum of squares 
by the mean sum of squares of ABij. 

The alternative hypotheses of the model are as given below. 
H1: There are significant differences between the different pairs of treatments of Factor A (Problem Size) in 

terms of the number of vehicles utilized. 
H1: There are significant differences between the different pairs of treatments of Factor B (Algorithm) in 

terms of the number of vehicles utilized. 
H1: There are significant differences between the different pairs of interaction between Factor A and Factor B 

in terms of number of vehicles utilized. 
The ANOVA results of the data given in Table 1 are shown in Table 2. From the ANOVA results shown in 

Table 2, one can infer that the factors “Problem Size” and “Algorithm” and “Interaction of “Problem size” and 
“Algorithm” have significant effects on the response variable “Number of Vehicles Utilized”. Since there are 
significant differences among the algorithms, the best algorithm is obtained using Duncan’s multiple range 
test. 

 
Table 1. Results of number of vehicles utilized. 

 
Algorithm (B) 

Replication Solomon CTA Gideon GenSAT SNRPGA Tabu 

Problem size/problem class (A) 

R1 1 21 19 20 18 10 18 

R1 2 19 17 17 17 10 20 

R1 3 14 15 13 13 10 16 

R1 4 15 15 15 14 10 16 

C1 1 10 10 10 10 9 10 

C1 2 10 10 10 10 9 10 

C1 3 10 10 10 10 9 11 

C1 4 10 10 10 10 10 10 

RC1 1 16 16 15 14 11 17 

RC1 2 15 14 14 13 10 15 

RC1 3 16 12 14 14 11 13 

RC1 4 13 15 12 13 10 16 

R2 1 4 4 4 4 3 6 

R2 2 4 4 4 4 3 5 

R2 3 3 3 3 3 2 4 

R2 4 4 3 3 3 2 4 

C2 1 3 3 3 3 3 3 

C2 2 3 3 3 3 3 4 

C2 3 3 3 3 3 3 4 

C2 4 4 3 3 3 3 4 

RC2 1 4 4 4 4 3 7 

RC2 2 4 4 4 4 3 7 

RC2 3 4 4 4 4 3 4 

RC2 4 5 4 4 3 3 6 
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The standard error used in this test is computed as shown below using the mean sum of squares of the interac-
tion terms (Problem Size × Algorithm) and the number of replications under each of the algorithms (24). 

( ) ( )0.5 0.54.37 24 0.4267ABSE MSS n= = =  

The least significant ranges (LSR) are calculated from the significant ranges of Duncan’s multiple range tests 
table for α = 0.05 and 25 degrees of freedom as shown in Table 3.  

The results of Duncan’s multiple range test are shown in Figure 4. In this figure, the algorithms are arranged 
as per the descending order of their mean number of vehicles utilized from left to right. From this figure, it is 
clear that the proposed algorithm “SNRPGA” is significantly different from all other algorithms and the mean 
number of vehicles utilized given by this algorithm is the least. Hence, the proposed algorithm “SNRPGA” is 
the best algorithm among all the algorithms used in the comparison presented in this section in terms of the 
number of vehicles used. 

5.2. Comparison of Algorithms in Terms of Total Distance Travelled 
The proposed GA-based meta-heuristic (SNRPGA) is compared with five other existing meta-heuristics, viz. 
Solomon [9], GIDEON by Thangiah [48], GenSAT (Thangiah [16]), PTABU (Potvin et al. [49], CTA (Thomp-
son and Psaraftis, [47]) in terms of total distance travelled using a complete factorial experiment with two factors, 
viz. “Problem Size” and “Algorithm”. The number of levels for the problem size is 6, viz. C1, C2, R1, R2, RC1, 
RC2 from Solomon’s benchmark instances. The number of levels for “Algorithm” is 6 as already stated above. 
The number of replication under each experimental combination is 4. The results of the factorial experiment in 
terms of the total distance travelled are shown in Table 4. The application of ANOVA to the data given in Table 
4 gives the results as shown in Table 5. 

The model of ANOVA is given as below: 

ijk i j ij ijkY A B AB eµ= + + + +  

where,  
Yijk is the total distance travelled w.r.t the kth replication under the ith treatment of factor A (Problem Size) 

and the jth treatment of factor B (Algorithm). 
μ is the overall mean of the response variable total distance travelled. 
Ai is the effect of the ith treatment of factor A (Problem Size) on the response variable. 
Bj is the effect of the jth treatment of factor B (Algorithm) on the response variable. 
ABij is the interaction effect of the ith Problem Size and jth Algorithm on the response variable. 
eijk is the random error associated with the kth replication under the ith Problem Size and the jth Algorithm. 

 
Table 2. Analysis of variance for number of vehicles utilized. 

Source of variation Sum of  
squares 

Degrees of  
freedom Mean square Calculated F ratio F ratio 

(α = 0.05) Remark 

Problem size (A) 3585.035 5 717.007 527.59897 2.32 Significant 

Algorithm (B) 139.29 5 27.857 6.3746 2.32 Significant 

Problem size × algorithm (AB) 109.25 25 4.37 3.216 1.64 Significant 

Error 146.750 108 1.359    

Total 3980.326 143     

 
Table 3. Least significant ranges for various treatments. 

Range j Significant range Standard error LSR = significant range × standard error 

2 2.900 0.4267 1.2383 

3 3.070 0.4267 1.3100 

4 3.150 0.4267 1.3441 
5 3.225 0.4267 1.3761 
6 3.275 0.4267 1.3974 
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Figure 4. Duncan’s multiple range test w.r.t algorithm in terms of number of vehicles utilized. 

 
In this model, the factor A is a random factor and the factor B is a fixed factor. Since the factor A is a random 

factor, the interaction factor is also a random factor. The replications are always random and the number of rep-
lications under each experimental combination is k. The derivation of the expected mean square (EMS) is given 
in Panneerselvam [51]. To test the effect of Ai as well as ABij the respective F ratio is formed by dividing the 
mean sum of squares of the respective component (Ai or ABij), by the mean sum of squares of error. The F ratio 
of the component Bj is formed by dividing its mean sum of squares by the mean sum of squares of ABij. 

The alternative hypothesis of the model is stated as below: 
H1: There are significant differences between the different pairs of treatments of Factor A (Problem Size) in 

terms of the total distance travelled. 
H1: There are significant differences between the different pairs of treatments of Factor B (Algorithm) in 

terms of the total distance travelled. 
H1: There are significant differences between the different pairs of interaction between Factor A and Factor B 

in terms of total distance travelled. 
From the ANOVA results shown in Table 5, one can infer that the factors “Algorithm” and “Problem Size” 

have significant effects on the total distance travelled. Since, there is a significant difference among the 6  
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Table 4. Results of Algorithms in terms of total distance travelled. 

 
Algorithm (Factor B) 

Replication Solomon CTA GIDEON GenSAT SNRPGA TABU 

Problem size/problem class 
(Factor A) 

1 R1 1873 1734 1700 1644 1016 1749 

2 R1 1843 1881 1549 1493 963 1527 

3 R1 1484 1530 1448 1442 1096 1340 

4 R1 1673 1535 1363 1350 1000 1542 

1 C1 968 934 904 829 829 914 

2 C1 1059 956 926 829 829 1005 

3 C1 1282 1130 928 835 828 907 

4 C1 904 926 957 835 825 946 

1 RC1 1867 1851 1767 1669 1292 1766 

2 RC1 1760 1644 1569 1557 1161 1649 

3 RC1 1673 1465 1612 1602 1230 1632 

4 RC1 1922 1809 1608 1420 1128 1537 

1 R2 1741 1786 1478 1354 748 1344 

2 R2 1730 1736 1279 1176 820 1248 

3 R2 1578 1309 1274 8338 720 1187 

4 R2 1542 1392 1269 1052 773 1160 

1 C2 731 664 753 591 589 737 

2 C2 811 653 756 707 588 759 

3 C2 758 684 855 791 588 742 

4 C2 730 670 803 685 588 691 

1 RC2 2103 1959 1823 1294 970 1577 
2 RC2 1799 1858 1594 1291 794 1404 
3 RC2 2134 1521 1530 1389 810 1494 
4 RC2 1632 1988 1501 1213 805 1392 

 
Table 5. Analysis of variance for total distance travelled. 

Source of variation Sum of  
squares 

Degrees of  
freedom 

Mean sum of  
squares Calculated F ratio F ratio 

(α = 0.05) Remark 

Problem size (A) 17,565,288.891 5 3,513,057.778 9.536 2.30 Significant 

Algorithm (B) 6,160,662.029 5 1,232,132.406 2.93 2.30 Significant 

Algorithm × problem size (AB) 10,515,346.157 25 420,613.846 1.141 1.61 Insignificant 

Error 39,787,307.795 108 368,400.998    

Total 74,028,604.872 143     

 
algorithms compared in terms of the total distance travelled, Duncan’s multiple range test is next conducted to 
identify the best algorithm by arranging the algorithms in the descending order of their mean total distance tra-
velled from left to right as shown in Figure 4. 

The treatment means for the Factor B (Algorithm) in terms of the total distance travelled are arranged in the 
descending order from left to right. The standard error for the performance measure is calculated using the for-
mula and found to be 132.3842. One can notice the fact that the mean sum of squares of the interaction term AB 
is used in estimating the standard error (SE), because the F ratio for the factor “Algorithm” is obtained by divid-
ing its mean sum of squares by the mean sum of squares of the interaction term ABij (Panneerselvam [51]). 

The least significant ranges (LSR values) are calculated from the significant ranges of Duncan’s multiple 
range test table for α = 0.05 and 25 degrees of freedom. These are shown in Table 6.  
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Next by comparing the actual differences between the various treatment means of Factor B (Algorithm) with the 
corresponding calculated LSR values as shown in Figure 5, it is found that the proposed algorithm (SNRPGA) is 
significantly different from all other existing algorithms considered in this research. Further, the mean of the  

 
Table 6. Least significant ranges for various treatments. 

No. of treatments − 1 (j) significant range Standard error LSR = significant range × standard error 

2 2.900 132.3842 383.9142 

3 3.070 132.3842 406.4195 

4 3.150 132.3842 417.0102 

5 3.225 132.3842 426.9391 

6 3.275 132.3842 433.5583 

 

 
Figure 5. Duncan’s multiple range test w.r.t algorithm in terms of total distance travelled. 
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total distance travelled for the proposed algorithm is the least among all the algorithms. Hence, it is concluded 
that the proposed algorithm (SNRPGA) is the best among all the algorithms with respect to the total distance 
travelled.  

6. Conclusion and Suggestions for Future Research 
In this research, a GA based meta-heuristic is developed using Random Sequence-based Insertion Crossover 
(RSIX) method (SNRPGA) for solving the time dependent vehicle routing problem (TDVRP) with time win-
dows. It is compared with five other existing mete-heuristics in terms of two performance measures, viz. number 
of vehicles utilized and total distance travelled. Through a complete factorial experiment with two factors, viz. 
“Problem Size” and “Algorithm”, it is proved that there are significant differences among the algorithms in 
terms of the number of vehicles utilized. So, in the next stage using Duncan’s multiple range test, it is found that 
the proposed algorithm “SNRPGA” is the best among all the algorithms in terms of minimizing the number of 
vehicles utilized. 

Next, through another factorial experiment with two factors, viz. “Problem Size” and “Algorithm”, it is 
proved that there are significant differences among the algorithms in terms of the total distance travelled. So, in 
the next stage using Duncan’s multiple range test, it is found that the proposed algorithm “SNRPGA” is the best 
among all the algorithms in terms of minimizing the total distance travelled. 

This study can be useful for planning the supplier site pickups by e-commerce companies, taking into consid-
eration of traffic conditions during different periods of the day with time window requirements of the suppliers. 
Future researchers can implement the TDVRP using other meta-heuristics and compare the efficiencies of the 
various meta-heuristics. The Solomon’s benchmark instance is got from SINTEF [52]. 
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