
Journal of Signal and Information Processing, 2016, 7, 227-251 
http://www.scirp.org/journal/jsip 

ISSN Online: 2159-4481 
ISSN Print: 2159-4465 

DOI: 10.4236/jsip.2016.74020  November 22, 2016 

 
 
 

Inspection of the Output of a Convolution and 
Deconvolution Process from the Leading Digit 
Point of View—Benford’s Law 

Monika Pinchas 

Department of Electrical and Electronic Engineering Ariel University, Ariel, Israel 

  
 
 

Abstract 

In the communication field, during transmission, a source signal undergoes a con-
volutive distortion between its symbols and the channel impulse response. This dis-
tortion is referred to as Intersymbol Interference (ISI) and can be reduced signifi-
cantly by applying a blind adaptive deconvolution process (blind adaptive equalizer) 
on the distorted received symbols. But, since the entire blind deconvolution process 
is carried out with no training symbols and the channel’s coefficients are obviously 
unknown to the receiver, no actual indication can be given (via the mean square er-
ror (MSE) or ISI expression) during the deconvolution process whether the blind 
adaptive equalizer succeeded to remove the heavy ISI from the transmitted symbols 
or not. Up to now, the output of a convolution and deconvolution process was mainly 
investigated from the ISI point of view. In this paper, the output of a convolution and 
deconvolution process is inspected from the leading digit point of view. Simulation 
results indicate that for the 4PAM (Pulse Amplitude Modulation) and 16QAM (Qu-
adrature Amplitude Modulation) input case, the number “1” is the leading digit at 
the output of a convolution and deconvolution process respectively as long as heavy 
ISI exists. However, this leading digit does not follow exactly Benford’s Law but fol-
lows approximately the leading digit (digit 1) of a Gaussian process for independent 
identically distributed input symbols and a channel with many coefficients. 
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1. Introduction 

We consider a blind deconvolution problem in which we observe the output of an un-
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known, possibly nonminimum phase, linear system (single-input-single-output (SISO) 
finite impulse response (FIR) system) from which we want to recover its input (source) 
using an adjustable linear filter (equalizer). During transmission, a source signal un-
dergoes a convolutive distortion between its symbols and the channel impulse response. 
This distortion is referred to as ISI [1] [2] [3]. It is well known that ISI is a limiting fac-
tor in many communication environments where it causes an irreducible degradation 
of the bit error rate thus imposing an upper limit on the data symbol rate [1] [4]. In 
order to overcome the ISI problem, a blind adaptive equalizer can be implemented in 
those systems [2]-[26]. But, since no training symbols are used in the deconvolution 
process and the channel coefficients are unknown to the receiver, no indication can be 
made (via the ISI or MSE expressions) during the deconvolution process whether the 
blind adaptive equalizer succeeded to remove the heavy ISI from the transmitted sym-
bols or not. Such an information can be very useful to those systems involving the va-
riable step-size parameter technique to get on one hand a fast removal of the heavy ISI 
by applying initially a relative high valued step-size parameter and then continuing 
with another step-size parameter which is lower compared to the first one in order to 
achieve on the other hand a very low residual ISI at the latter stages of the deconvolu-
tion process [27]-[30]. 

According to [31], Benfords law (also known as the first-digit law) defines a peculiar 
distribution of the leading digits of a set of numbers. The behavior is logarithmic, with 
the leading digit 1 reflecting largest probability of occurrence and the remaining ones 
showing decreasing probabilities of appearance following a logarithmic trend. Accord-
ing to [31], Benfords law has been widely proposed as a discriminating tool for natural-
ly-shaped datasets [32] and even employed [33] or criticized [34] as a somewhat reliable 
diagnostic tool to detect a large variety of frauds. In [31], Benfords law was evaluated as 
a discriminator for audio signals. In particular it was employed to detect differences 
between natural and artificially created chords and real music. 

In the communication field, the transmitted symbols may belong to a squared con-
stellation input such as the 16QAM or to a PAM constellation where the transmitted 
symbols are statistically independent and have the same probability to appear for 
transmission. Thus, the recovered symbols should also appear approximately with 
equal probability. Up to now, the output of a convolution process such as the output of 
a channel was mainly investigated from the ISI point of view. In this paper, the output 
of a convolution and deconvolution process is inspected from the leading digit point of 
view. Simulation results will indicate that for the 4PAM and 16QAM constellation in-
put, the number 1 is the leading digit at the output of a convolution and deconvolution 
process respectively as long as heavy ISI exists. However, this leading digit does not 
follow exactly Benford’s Law but follows approximately the leading digit (digit 1) of a 
Gaussian process for independent identically distributed input symbols and a channel 
with many coefficients. 

The paper is organized as follows: After having described the system under consider-
ation in Section 2, the inspection of the output of a convolution and deconvolution 
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process from the leading digit point of view is given via simulation results in Section 3. 
Section 4 is our conclusion. 

2. System Description 

The system under consideration is illustrated in Figure 1, where we make the following 
assumptions: 

1) The input sequence [ ]x n  belongs to a 16QAM input constellation (a modulation 
using ± {1, 3} levels for in-phase and quadrature components) or a 4PAM case (a 
modulation using ± {1, 3} levels for the symbols) with variance 2

xσ  where [ ]rx n  and 
[ ]ix n  are the real and imaginary parts of [ ]x n  respectively. The input symbols are 

independent and identically distributed. 
2) The unknown channel [ ]h n  is a possibly nonminimum phase linear time-in- 

variant filter in which the transfer function has no “deep zeros”, namely, the zeros lie 
sufficiently far from the unit circle. 

3) The equalizer [ ]c n  is a tap-delay line. 
4) The noise [ ]w n  is an additive Gaussian white noise with zero mean and variance 

[ ] [ ]2
w E w n w nσ ∗ =    where [ ]E ⋅  is the expectation operator and ( )∗⋅  is the conju- 

gate operation on ( )⋅ . 
The transmitted sequence [ ]x n  is sent via the channel [ ]h n  where it is also cor- 

rupted with noise [ ]w n . Thus, the equalizer’s input sequence [ ]y n  may be written as:  

[ ] [ ] [ ] [ ]y n x n h n w n= ∗ +                         (1) 

where “ ∗ ” denotes the convolution operation. The equalized output sequence is 
defined by:  

[ ] [ ] [ ] [ ] [ ] [ ]z n y n c n x n p n w n= ∗ = + +                    (2) 

where [ ]p n  is the convolutional noise (convolutional error) due to non-ideal equalizer’s 
coefficients ( [ ] [ ] [ ]h n c n nδ∗ ≠ ) and [ ] [ ] [ ]w n w n c n= ∗ . Next, we turn to the mathe- 
matical definition of the ISI expression:  

2 2

max

2

max

m
m

s s
ISI

s

−
=
∑  



                         (3) 

where maxs  is the component of s , given by [ ] [ ]s c n h n= ∗ , having the maximal 
absolute value. Now, we turn to the adaptation mechanism of the equalizer’s coefficients 
which is based in this paper on Godard’s method [5] (a cost function approach): 
 

 
Figure 1. Block diagram of a baseband communication system. 
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   + = − − −      

          (4) 

where µ  is the step-size parameter, ⋅  is the absolute value of ( )⋅ ,  
( )0,1,2, , 1m N= −  and N is the equalizer’s tap length. Please note that we could use 

here for the blind adaptive deconvolution method any other cost function approach like 
the one given in [6] [9] [10] [12] [13] [20] or [24] for instance as well as just using the 
Bayesian technique as was done in [4] [17] [21] [22] and [26]. Next, we introduce 
Benford’s Law. According to [31], the probability value of the d-th digit is computed as 
follows:  

( ) 10
1log 1P d
d

 = + 
 

                        (5) 

where d is the digit number. 

3. The Output of a Convolution and Deconvolution Process from  
the Leading Digit Point of View 

In this section we first start to inspect the output of the convolution process from the 
leading digit point of view for the noiseless case. After that, we turn to inspect the 
output of the deconvolution process considering also the noisy situation. 

In the following we use the 4PAM constellation input with three different channel 
cases having real valued coefficients: 

Case I: Rayleigh fading channel with variance equal to 0.2. 
Case II: Gaussian channel with zero mean and variance equal to 1. 
Case III: A channel where the coefficients are uniformly distributed within [ ]1, 1− + . 
Figures 2-8 show the averaged value for the leading-digit distribution for 9000 symbols  

 

 
Figure 2. The leading-digit distribution for 9000 symbols (4PAM constellation) sent via a 
Rayleigh channel compared to Benford’s law. The channel length was set to 13. The averaged 
results were obtained in 100 Monte Carlo trials for the noiseless case. 
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Figure 3. The leading-digit distribution for 9000 symbols (4PAM constellation) sent via a 
Rayleigh channel compared to Benford’s law. The channel length was set to 23. The averaged 
results were obtained in 100 Monte Carlo trials for the noiseless case. 
 

 
Figure 4. The leading-digit distribution for 9000 symbols (4PAM constellation) sent via a 
Rayleigh channel compared to Benford’s law. The channel length was set to 33. The averaged 
results were obtained in 100 Monte Carlo trials for the noiseless case. 
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Figure 5. The leading-digit distribution for 9000 symbols (4PAM constellation) sent via a 
Rayleigh channel compared to Benford’s law. The channel length was set to 53. The averaged 
results were obtained in 100 Monte Carlo trials for the noiseless case. 
 

 
Figure 6. The leading-digit distribution for 9000 symbols (4PAM constellation) sent via a 
gaussian channel compared to Benford’s law. The channel length was set to 13. The averaged 
results were obtained in 100 Monte Carlo trials for the noiseless case. 
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Figure 7. The leading-digit distribution for 9000 symbols (4PAM constellation) sent via the 
channel compared to Benford’s law. The channel’s coefficients were uniformly distributed within 
[ ]1, 1− + . The channel length was set to 13. The averaged results were obtained in 100 Monte 

Carlo trials for the noiseless case. 
 

 
Figure 8. The leading-digit distribution for 9000 symbols (4PAM constellation) sent via the 
channel compared to Benford’s law. The channel’s coefficients were uniformly distributed within 
[ ]1, 1− + . The channel length was set to 53. The averaged results were obtained in 100 Monte 

Carlo trials for the noiseless case. 
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(belonging to a 4PAM constellation) sent via the above mentioned channel cases with 
different values for the channel length, compared with Benford’s law. 100 Monte Carlo 
trials were used to get the averaged results for the leading-digit distribution for each 
channel case and channel length, where for each trial, the channel coefficients were 
randomly selected from the predefined channel case. According to Figures 2-8, the 
leading digit at the output channel is the number 1. This phenomenon becomes even 
more evident for higher values for the channel length (Figure 5, Figure 8). Although 
the number 1 is the leading digit at the output channel (Figures 2-8), this leading digit 
(number 1) does not follow Benford’s law as it can be seen according to Figures 2-8. 
Figure 9 shows the averaged value for the leading-digit distribution for 9000 numbers 
belonging to a Gaussian distribution with zero mean and variance 1 compared to 
Benford’s law. According to Figure 9, the number 1 is the leading digit but it does not 
follow Benford’s law. Based on the central limit theorem [35], the output channel can 
be approximately considered as Gaussian for a high valued channel length. Therefore, 
the leading digit (number 1) behavior in Figure 5 and Figure 8 is similar to that 
obtained in Figure 9. Figures 2-8 show averaged results of the leading digit 
distribution. Therefore, in order to show that the leading number is 1 for each simulation 
trial out of the 100 Monte Carlo trials, further simulation was set up. Figures 10-16 
show the probability of occurrence of the number 1 minus the probability of 
occurrence of the number “i” (where 2,3, 4, ,9i = 

) for each trial out of the 100 
Monte Carlo trials valid for the above mentioned channel cases and different values for 
the channel length. According to Figures 10-16, the probability of occurrence of the  
 

 
Figure 9. The leading-digit distribution for 9000 numbers belonging to a gaussian distribution 
with zero mean and variance 1 compared to Benford’s law. The averaged results were obtained in 
100 Monte Carlo trials. 
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Figure 10. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials. The results 
were obtained by sending 9000 symbols (4PAM constellation) via channel case I where the 
channel length was set to 13. 
 

 
Figure 11. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials. The results 
were obtained by sending 9000 symbols (4PAM constellation) via channel case I where the 
channel length was set to 23. 
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Figure 12. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials. The results 
were obtained by sending 9000 symbols (4PAM constellation) via channel case I where the 
channel length was set to 33. 
 

 
Figure 13. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials. The results 
were obtained by sending 9000 symbols (4PAM constellation) via channel case I where the 
channel length was set to 53. 
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Figure 14. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials. The results 
were obtained by sending 9000 symbols (4PAM constellation) via channel II where the channel 
length was set to 13. 
 

 
Figure 15. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials. The results 
were obtained by sending 9000 symbols (4PAM constellation) via channel case III where the 
channel length was set to 13. 
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Figure 16. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials. The results 
were obtained by sending 9000 symbols (4PAM constellation) via channel case III where the 
channel length was set to 53. 
 
number 1 minus the probability of occurrence of the number “i” (where  

2,3, 4, ,9i = 
) is higher than zero for each trial out of the 100 Monte Carlo trials. 

Thus, according to Figures 10-16, the leading digit is the number 1. 
Now, we turn to the deconvolution case where the equalized output is of our interest. 

9000 symbols belonging to a 16QAM input constellation were sent via the channel used 
in [20]: 

( )10 for 0; 0.4 for 0; 0.84 0.4 for 0n
nh n n n−= < − = ⋅ > . 

Usually, the equalizer’s coefficients are updated constantly. However, in order to see 
the behaviour of the leading digit at the equalized output during the deconvolution 
process, the updating mechanism of the equalizer’s coefficients was stopped at several 
places during the deconvolution process. Namely, the equalizer’s coefficients were 
updated as long as we have not reached the desired iteration number. For example, if 
the desired iteration number was set to 10, then the equalizer’s coefficients were not 
updated anymore after 10 iterations. Thus, the residual ISI level at the equalizer’s 
output remained fixed. Figures 17-20 show the averaged value for the leading-digit 
distribution at the equalized output for SNR of 30 dB compared with Benford’s law. 
Based on the obtained results for the convolution case described earlier in this section, 
it was quite expected to get the number 1 as the leading digit at the equalized output at 
the early stages of the deconvolution process (Figure 17, Figure 18). In addition, as it 
was for the convolution case, the leading digit (number 1) at the equalized output does  
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Figure 17. The leading-digit distribution at the equalized output compared to Benford’s law. The 
channel length as well as the equalizer’s tap length were set to 13. The step-size parameter was set 
to 0.00008. The averaged results were obtained in 100 Monte Carlo trials for 30 dBSNR = . After 
10 iterations the averaged residual ISI reached −3.75 dB and at that level of the residual ISI the 
equalizer’s coefficients were not updated anymore. 
 

 
Figure 18. The leading-digit distribution at the equalized output compared to Benford’s law. The 
channel length as well as the equalizer’s tap length were set to 13. The step-size parameter was set 
to 0.00008. The averaged results were obtained in 100 Monte Carlo trials for 30 dBSNR = . The 
averaged residual ISI was −7.5 dB after 200 iterations. 
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Figure 19. The leading-digit distribution at the equalized output compared to Benford’s law. The 
channel length as well as the equalizer’s tap length were set to 13. The step-size parameter was set 
to 0.00008. The averaged results were obtained in 100 Monte Carlo trials for 30 dBSNR = . The 
averaged residual ISI was −14 dB after 500 iterations. 
 

 
Figure 20. The leading-digit distribution at the equalized output compared to Benford’s law. The 
channel length as well as the equalizer’s tap length were set to 13. The step-size parameter was set 
to 0.00008. The averaged results were obtained in 100 Monte Carlo trials for 30 dBSNR = . The 
averaged residual ISI was −17 dB after 800 iterations. 
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not follow Benford’s law. According to Figure 19 and Figure 20 the number 1 is no 
more the leading digit at the equalized output. Thus, this may indicate that most of the 
ISI is already removed by the equalizer which is confirmed in our case with Figure 21 
and Figure 22. Figures 23-26 show the probability of occurrence of the number 1  
 

 
Figure 21. The real part of the equalized output for 30 dBSNR = . The channel length as well as 
the equalizer’s tap length were set to 13. The step-size parameter was set to 0.00008. The averaged 
residual ISI was −14 dB after 500 iterations. 
 

 
Figure 22. The real part of the equalized output for 30 dBSNR = . The channel length as well as 
the equalizer’s tap length were set to 13. The step-size parameter was set to 0.00008. The averaged 
residual ISI was −17 dB after 800 iterations. 
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Figure 23. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials obtained at the 
equalized output for 30 dBSNR = . The channel length as well as the equalizer’s tap length were 
set to 13. The step-size parameter was set to 0.00008. The averaged residual ISI was −3.75 dB after 
10 iterations. 
 

 
Figure 24. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials obtained at the 
equalized output for 30 dBSNR = . The channel length as well as the equalizer’s tap length were 
set to 13. The step-size parameter was set to 0.00008. The averaged residual ISI was −7.5 dB after 
200 iterations. 
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Figure 25. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials obtained at the 
equalized output for 30 dBSNR = . The channel length as well as the equalizer’s tap length were 
set to 13. The step-size parameter was set to 0.00008. The averaged residual ISI was −14 dB after 
500 iterations. 
 

 
Figure 26. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i = 

) for each trial out of the 100 Monte Carlo trials obtained at the 
equalized output for 30 dBSNR = . The channel length as well as the equalizer’s tap length were 
set to 13. The step-size parameter was set to 0.00008. The averaged residual ISI was −17 dB after 
800 iterations. 
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minus the probability of occurrence of the number “i” (where 2,3, 4, ,9i = 
) for each 

trial out of the 100 Monte Carlo trials valid at the equalized output for SNR of 30 dB. 
Since the transmitted symbols were sent statistically independent with the same 
probability to appear, the recovered symbols should also appear approximately with 
equal probability. Indeed, according to Figures 23-26, the probability of occurrence of 
the number 1 minus the probability of occurrence of the number 3 is approximately 
zero only at the latter stages of the deconvolution process (Figure 25, Figure 26) while 
this is not the case at the earlier stages of the deconvolution process (Figure 23, Figure 
24). Please note that according to Figure 24, the number 1 was not the leading number 
for the entire 100 Monte Carlo trials. This outcome can be explained by the fact that the 
residual ISI was probably much lower than the averaged residual ISI of −7.5 dB. Thus, 
the system was closer to the symbol recovery state. Next, we turn to the 20 dBSNR =  
case. Figures 27-29 show the averaged value for the leading-digit distribution at the 
equalized output for SNR of 20 dB compared with Benford’s law. As it was for the case 
of 30 dBSNR = , the number 1 is the leading digit at the equalized output at the early 
stages of the deconvolution process (Figure 27). According to Figure 28 and Figure 29 
the number 1 is no more the leading digit at the equalized output. Thus, this may 
indicate that most of the ISI is already removed by the equalizer which is confirmed in 
our case with Figure 30 and Figure 31. In addition, the leading digit (number 1) does 
not follow Benford’s law (Figure 27). Figures 32-34 show the probability of occurrence 
of the number 1 minus the probability of occurrence of the number “i” (where  

2,3, 4, ,9i = 
) for each trial out of the 100 Monte Carlo trials valid at the equalized  

 

 
Figure 27. The leading-digit distribution at the equalized output compared to Benford’s law. The 
channel length as well as the equalizer’s tap length were set to 13. The step-size parameter was set 
to 0.00008. The averaged results were obtained in 100 Monte Carlo trials for 20 dBSNR = . The 
averaged residual ISI was −3.75 dB after 10 iterations. 



M. Pinchas 
 

245 

 
Figure 28. The leading-digit distribution at the equalized output compared to Benford’s law. The 
channel length as well as the equalizer’s tap length were set to 13. The step-size parameter was set 
to 0.00008. The averaged results were obtained in 100 Monte Carlo trials for 20 dBSNR = . The 
averaged residual ISI was −11.5 dB after 400 iterations. 
 

 
Figure 29. The leading-digit distribution at the equalized output compared to Benford’s law. The 
channel length as well as the equalizer’s tap length were set to 13. The step-size parameter was set 
to 0.00008. The averaged results were obtained in 100 Monte Carlo trials for 20 dBSNR = . The 
averaged residual ISI was −16.5 dB after 800 iterations. 
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Figure 30. The real part of the equalized output for 20 dBSNR = . The channel length as well as 
the equalizer’s tap length were set to 13. The step-size parameter was set to 0.00008. The averaged 
residual ISI was −11.5 dB after 400 iterations. 
 

 
Figure 31. The real part of the equalized output for 20 dBSNR = . The channel length as well as 
the equalizer’s tap length were set to 13. The step-size parameter was set to 0.00008. The averaged 
residual ISI was −16.5 dB after 800 iterations. 
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Figure 32. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i =  ) for each trial out of the 100 Monte Carlo trials obtained at the 
equalized output for 20 dBSNR = . The channel length as well as the equalizer’s tap length were 
set to 13. The step-size parameter was set to 0.00008. The averaged residual ISI was −3.75 dB after 
10 iterations. 
 

 
Figure 33. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i =  ) for each trial out of the 100 Monte Carlo trials obtained at the 
equalized output for 20 dBSNR = . The channel length as well as the equalizer’s tap length were 
set to 13. The step-size parameter was set to 0.00008. The averaged residual ISI was −11.5 dB after 
400 iterations. 
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Figure 34. Probability of occurrence of the number 1 minus the probability of occurrence of the 
number “i” (where 2,3,4, ,9i =  ) for each trial out of the 100 Monte Carlo trials obtained at the 
equalized output for 20 dBSNR = . The channel length as well as the equalizer’s tap length were 
set to 13. The step-size parameter was set to 0.00008. The averaged residual ISI was −16.5 dB after 
800 iterations. 
 
output for SNR of 20 dB. According to Figures 32-34, the probability of occurrence of 
the number 1 minus the probability of occurrence of the number 3 is approximately 
zero only at the latter stages of the deconvolution process (Figure 34) while this is not 
the case at the earlier stages of the deconvolution process (Figure 32). 

4. Conclusion 

In this paper, we have shown via simulation results that the number 1 is the leading 
digit at the output of a convolution and deconvolution process for a 4PAM and 
16QAM input constellation respectively, as long as heavy ISI exists. In addition, 
simulation results have shown that the behaviour of this leading digit does not follow 
exactly Benford’s Law but follows approximately the leading digit (digit 1) of a 
Gaussian process for independent identically distributed input symbols and a channel 
with many coefficients. 
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