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ABSTRACT 

In this paper, we present a novel and efficient method for the design of a sharp, two dimensional (2D) wideband, circu-
larly symmetric, FIR filter. First of all, a sharp one dimensional (1D) infinite precision FIR filter is designed using the 
Frequency Response Masking (FRM) technique. This filter is converted into a multiplier-less filter by representing it in 
the Canonic Signed Digit (CSD) space. The design of the FRM filter in the CSD space calls for the use of a discrete 
optimization technique. To this end, a new optimization approach is proposed using a modified Harmony Search Algo-
rithm (HSA). HSA is modified in such a way that, in every exploitation and exploration phase, the candidate solutions 
turns out to be integers. The 1D FRM multiplier-less filter, is in turn transformed to the 2D equivalent using the recently 
proposed multiplier-less transformations namely, T1 and T2. These transformations are successful in generating circular 
contours even for wideband filters. Since multipliers are the most power consuming elements in a 2D filter, the multi-
plier-less realization calls for reduced power consumption as well as computation time. Significant reduction in the 
computational complexity and computation time are the highlights of our proposed design technique. Besides, the pro-
posed discrete optimization using modified HSA can be used to solve optimization problems in other engineering disci-
plines, where the search space consists of integers. 
 
Keywords: Two Dimensional Filter; Frequency Response Masking; Harmony Search Algorithm; T1 and T2  

Transformations; Canonic Signed Digit Representation 

1. Introduction 

Frequency Response Masking (FRM) is a much ac-
claimed technique to synthesize sharp linear phase 1D 
FIR filters with sparse coefficients [1]. The prominent 
feature of this approach is that the sparse filter coefficients 
results in fewer number of multipliers and better saving of 
power. This enormous computational saving by this ap-
proach compared to the traditional mini-max approach has 
resulted in the deployment of the FRM technique in a 
wide variety of applications like software defined radio, 
array beam-forming, filter-banks, FPGA implementations 
etc [2]. The computational complexity can be brought 
down further, if the coefficients of the FRM filter are 
represented in the SPT space [3]. Regarding the imple-
mentation of a digital filter, since multipliers are the most 
computationally intensive blocks, replacing them by 
shifters and adders will result in the saving of the com-
putation time as well as chip area. It is also known that if 
subtractions are also used to carry out multiplication, the 
number of SPT terms can further be minimized as in the 

case of the Canonic Signed Digit Representation [4].  
Direct rounding of the filter coefficients to the CSD 

space, causes degradation in the filter performance. This 
necessitates the use of a suitable optimization technique 
filter in the discrete space with the required specifications. 
Since the search space is discrete, the conventional gra-
dient based approaches cannot be employed. In this con-
text, the meta-heuristic optimization algorithm is a good 
alternative, since it is capable of generating optimal solu-
tions in a multimodal, multidimensional search space. A 
multiplier-less FRM FIR filter was designed in the CSD 
space using the Genetic Algorithm (GA) in [3]. Besides, 
GA was used to design a 2D filter in [5]. The problem 
associated with GA is the slow convergence speed [6]. 
Genetic algorithm was modified in [7] and used for the 
design of 1D FRM FIR filter. But enormous computa-
tional time was required for this approach. Therefore, we 
propose an efficient technique for the design of FRM filter 
in the CSD space using the modified Harmony Search 
Algorithm with reduced computation time as well as good 
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performance [8]. Harmony Search algorithm has been 
modified in such a way that in the course of optimization, 
the candidate solutions turn out to be integers and efficient 
exploration and exploitation of the search space are done. 
This discrete optimization can be used in other engineer-
ing fields also for integer programming 

Yet another contribution of our work is a novel design 
approach to obtain the 2D sharp circularly symmetric, 
zero-phase FIR filter which is totally multiplier-less. This 
is accomplished by extending the FRM based 1D multi-
plier-less filter to the 2D scenario using the very recently 
proposed T1 and T2 transformations [9]. T1 and T2 
transformations are capable of generating circular con-
tours even for wideband 2D filters which is not possible in 
traditional McClellan transformation. Since T1 and T2 
transformations are fully multiplier-less, the resulting 2D 
filter synthezised using the proposed approach is also 
multiplier-less. The computation time of the 2D filter is 
significantly reduced since the contour mapping problem 
is avoided. Besides, the efficient implementation of 
McClellan transformation permits the design of the 2D 
filter with significant reduction in the computational 
complexity compared to other 2D filter design methods. 
The use of FRM for the design of the 1D filter as well as 
its implementation in the CSD space also adds to the 
reduction in computational complexity. In short, reduced 
computation time and reduced complexity are the high-
lights of our proposed design technique. Since the pro-
posed design approach results in a sharp 2D filter, it can 
be deployed in applications where a response, which is 
very close to that of the ideal filter is required. 

The paper is organized as follows. Section 2 describes 
the Frequency Response Masking approach for the design 
of sharp FIR filter. A brief introduction of the Harmony 
Search Algorithm is given in Section 3. T1 and T2 trans-
formations are briefed in Section 4. The proposed design 
of the 1D FRM filter in the CSD space using the modified 
HSA algorithm is discussed in Section 5. Section 6 de-
scribes the proposed design of the 2D circularly symmet-
ric sharp filter. In Section 7, the results are discussed and 
the conclusions are presented in Section 8. 

2. Frequency Response Masking Approach  

Frequency Response Masking is a very good technique 
for the design of an arbitrary bandwidth sharp FIR filter 
with reduced computational complexity [1]. Efficient 
hardware implementation of the filter designed using 
FRM is possible due to the large number of zero-valued 
coefficients. It consists of a prototype filter Ha(z), com-
plimentary filter Hc(z), masking filter Hma(z) and a com-
plimentary masking filter Hmc(z). The complimentary 
filter Hc(z) can be realized by subtracting the outputof the 

low pass filter Ha(z) from the delay block  0.5 1Naz  , 
provided, the model filters are FIR in nature. The block 
diagram of the FRM filter is shown in Figure 1.  

The overall transfer function of the FRM filter can be 
written as follows. 

     
      0.5 1

M
a ma

Na M M
a mc

H z H z H z

z H z H 



  z
   (1) 

The prototype filter, also called the band edge shaping 
filter, is interpolated by a factor M and therefore its tran-
sition width is reduced by a factor of M. The masking 
filters are used to retain the necessary spectrum repetitions 
for the formation of any arbitrary bandwidth filter under 
consideration. 

3. Harmony Search Algorithm 

Inspired by the music improvisation scheme, the Harmony 
Search Algorithm (HSA) [8] was introduced for the op-
timization of mathematical problems and was used in 
various scientific applications [10,11]. A promising as-
pect of HSA is that it does not demand the objective 
function to be differentiable, continuous or linear. Here 
the musicians are identified with the decision variables 
and the harmonies correspond to the solutions. Analogous 
to the population initialization in GA, a Harmony 

Memory (HM) is initialized, where the variables in a 
solution resemble different musical notes. Similar to the 
way in which, the musicians improve the harmonies for 
getting better aesthetics, the HS algorithm explores the 
search space for finding the candidate solutions with good 
fitness values. Aesthetics is analogous to the fitness 
function and the pitch range denotes the range of values of 
the optimization variable. A new solution is generated in 
the improvisation process in the HS using any of the three 
alternatives. 

1) Choosing any one value from the Harmony Memory 
(Memory Consideration); 

2) Choosing an adjacent value from the Harmony 
Memory (Pitch Adjustment); 

3) Choosing a totally random value from the possible 
value range (Random Selection). 

The three rules in HS algorithm are effectively directed 
using two parameters, namely, the harmony memory  
 

 maH z M

aH z

 mcH z 0.5 1Na Mz 
Output

Input

 

Figure 1. Frequency response masking filter. 
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considering rate (HMCR) and the pitch adjusting rate 
(PAR). If after the improvisation process, the new har-
mony is better than the existing worst harmony in the HM, 
the new harmony is included in the HM and the worst 
harmony is excluded from the HM. This process is called 
the updation of harmony memory. The harmony im-
provisation and updation of the harmony memory are 
repeated until the termination criteria is satisfied.  

4. T1 and T2 Transformations  

The frequency response of the 2D filter designed using 
McClellan transformation [12] is given below. 

    1 2 1 20
, ,

N

nn
H a n T F   


         (2) 

In the above equation, Tn(x) refers to the nth order Che-
byshev polynomial in x. a(n) is defined as given below 

   
 
0 , if 0

2 , otherwise.

h n
a n

h n

 
 


          (3) 

Here, h(n) represents the impulse response coefficients 
of the 1D prototype filter. The first order McClellan 
transformation for obtaining circular contours is given 
below. 

      2

1 2 1 2, 2 cos 2 cos 2F        1     (4) 

T1 and T2 transformations [9] were proposed by Liu 
and Tai (2011) to design circularly symmetric, 2D wide-
band filters with an objective to avoid the drawback of the 
traditional McClellan transformation generating squarish 
contours at wide cutoff radius of the 2D filter. These 
multiplier-less transformations were based on the kth order 
McClellan transformation. The kth order McClellan 
transformation [12] is given below. 

      2

1 2 1 2, 2 cos 2 cos 2
k

F      1



    (5) 

4.1. T1 Transformation 

A cascading term was introduced in the kth order 
McClellan transformation term to improve the circularity 
of contours at wider cutoff radius. The cascading term 
1 1 2,    for the T1 transformation [9] is briefed be-

low. 

      2 2
1 1 2 1 2, 1 sin 2 sin 2           (6) 

With this modification, the T1 transformation is de-
scribed below. 

       2

1 2 1 1 2cos Ω 2 cos 2 cos 2 , 1
k

          (7) 

Taylor’s Series expansion and binomial series were 
used to find out the frequency mapping of the T1 trans-
formation. The mapping, i.e., the relationship between the 

1D frequency Ω and the 2D radius ω at low frequency is 
obtained as 

Ω k                  (8) 

Using the above expression it is also shown that the 
relationship of the transition width of the 1D filter to that 
of the 2D filter is the same as in Equation (8). The reduced 
transition width of the 1D filter brings forth lesser order 
for the 1D prototype filter and hence lesser computational 
complexity at low frequencies. 

4.2. T2 Transformation 

Regarding the T2 transformation [9], the cascading term 
 2 1 2,    is briefed below. 

     2 2
2 1 2 1 2, 0.5 cos 2 cos 2           (9) 

With this modification, the T2 transformation is de-
scribed as 

       2

1 2 2 1 2cos Ω 2 cos 2 cos 2 , 1
k

         (10) 

The frequency mapping of the T2 transformation, i.e. 
the relationship between the 1D frequency and the 2D 
frequency is obtained as 

 Ω 1 2k               (11) 

A prominent feature of the T1 and T2 transformations is 
that they are multiplier-less. Hence the complexity in 
terms of the number of multipliers of the 2D filter will be 
only due to that of the 1D prototype filter. However the 
contour approximation error of these transformations is 
more at lower radius of the 2D filter compared to the 
McClellan transformation. In those applications were, the 
power dissipation and chip area are to be minimum, the 
complexity of the 1D filter has to be minimized further. 
Towards this, we propose a multiplier-less design of the 
1D filter, which will lead to a 2D filter which is totally 
multiplier-less. 

5. Proposed Design of the 1D Multiplier-Less 
FRM FIR Filter 

The initial part of this work consists of the design of an 
infinite precision FRM FIR low pass filter. To obtain the 
2D filter by using frequency transformation, the 1D pro-
totype filter should have linear phase. The conditions as 
outlined in [13] have been used in our design to obtain the 
1D filter using the FRM approach with linear phase. The 
various sub-filters have been designed using the Remez 
Exchange Algorithm. The optimal interpolation factor M 
was chosen such that the total number of multipliers of the 
sub-filters and therefore the computational complexity 
become minimum. 
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Direct rounding of this continuous filter to the CSD 
space with restricted SPT terms calls for the degradation 
in the frequency response. Hence a suitable optimization 
technique is required to obtain the multiplier-less filter. 

5.1. Statement of the Problem 

The design of the FRM filter in the CSD space is modelled 
as a discrete optimization problem as done in [14]. Since 
the design of the multiplier-less FRM filter is a sort of 
approximation problem, the objective function is defined 
as the L2-norm of the error of approximation. The objec-
tive function for this optimization problem is given below.  

     1 2
,dF H H  x x           (12) 

where  dH   is the zero phase frequency response of 
the infinite precision FRM filter and  is the 
zero phase frequency response, of the multiplier-less FRM 
filter. x is the design vector constituted by concatenating 
the filter coefficients of the sub-filters of the FRM filter. 
To reduce the number of SPT terms in the CSD equiva-
lents, a constraint has also been added to the optimization 
problem as , where  denotes the average 
number of non-zero SPT coefficients after optimization 
and nb is the upper bound of 

 ,dH  x 

n  bn x  n x

 n x



. Here the constraint is 
included in the optimization problem using the penalty 
method. The constraint is included in the objective func-
tion as b    max 0,g n nxx 

x

. In this case, variable 
number of SPT terms have been used for the synthesis of 
the optimum FRM filter. This allocation has a definite 
advantage over the CSD approximation using fixed 
number of SPT terms for each filter coefficient as pointed 
out in [15]. The implementation cost can be brought down 
if minimum number of SPT terms is used. Hence for de-
signing the FRM filter, computational complexity has also 
been included other than the approximation accuracy. In 
short, the final objective function for the coefficient syn-
thesis of the discrete FRM filter is given below. 

     1 1 2Minimize F F g  x x  

α1 and α2 can be defined according to the relative impor-
tance to be attached with each term of the objective func-
tion. 

5.2. Encoding of the Optimization Variables 

An appropriate encoding of the filter coefficients is 
needed to design the FRM FIR filter in the CSD space. 
Canonic Signed Digit representation is a typical SPT form 
where a binary number contains the fewest number of 
non-zero bits [4]. The features are as follows. 

1) It is a minimal representation. 
2) It has a unique SPT representation for a given deci-

mal input. 

3) It is a ternary system. 
4) No two consecutive bits are nonzero. 
5) An N bit CSD number cannot have more than 

 1 2N   non-zero bits, often fewer. 
We make use of the CSD encoding used in [14]. To this 

end, first of all, a look up table with four fields are created. 
The four fields are index, CSD numbers, decimal equiva- 
lents and the number of nonzero SPT terms. A 14 bit CSD 
representation is used for a given decimal number with 12 
bits for the fractional part and 2 bits for the integer part. 
Here also, we adopt the joint optimization of the various 
sub-filters, i.e., the coefficients of the sub-filters Ha(z), 
Hma(z) and Hmc(z) are concatenated together to form the 
candidate vector for the optimization problem. Since the 
sub-filters are assumed to be linear phase filters, the 
number of optimization variables can be further reduced 
by extracting only half of the symmetrical filter coeffi-
cients of each sub-filter. In order to represent the filter 
coefficients in the CSD space, they are encoded as the 
signed indices of the look up table locations of the nearest 
decimal number. If the decimal filter coefficient is nega-
tive, then it is encoded as the negative of the index of the 
location of its positive counterpart. Such an encoding is 
quite useful such that the dimension of the candidate so-
lution has been brought down significantly as compared to 
that in [7]. Through this procedure, the running time of the 
optimization is minimized. Classical gradient based op-
timization techniques cannot be deployed in our problem 
since the search space consists of integers. So, we adopt an 
optimization based on meta-heuristic approaches which 
can be properly tuned to obtain the optimal solutions. 

5.3. Proposed Modified HS Algorithm for CSD 
Based Coefficient Synthesis of FRM Filter 

Harmony Search Algorithm uses a random search instead 
of a gradient search in the exploration phase of the opti-
mization [16]. We have modified the HS algorithm so that 
it is suitable for the discrete optimization problem. A 
typical harmony vector is formed by concatenating the 
CSD encoded coefficients of the sub-filters of FRM filter. 
Exploiting the symmetry property of the sub-filters which 
are linear phase, only half the number of the filter coeffi-
cients are needed. The various control parameters namely, 
Harmony Memory Size (HMS), Harmony Memory Con-
sidering Rate (HMCR) and Pitch Adjusting Rate (PAR) 
are initialized. The various steps are briefed below. 

5.3.1. Initialization of Harmony Memory 
The various solutions are generated by perturbing the 
initial harmony vector. In order to begin with a wider 
search space, where the probability of obtaining good 
quality solutions are more, the initial number of Harmony 
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memory locations are taken to be an integer multiple of 
the number of memory locations (HMS) being used in the 
subsequent exploration and exploitation phase of the op-
timization. A typical harmony vector at the kth location of 
the harmonic memory can be represented as follows. 

, 1 , 2 , 3 , k k i k i k i k iDx x x x x     

“D” is the dimension of the harmony vector which is equal 
to the number of optimization variables. In our problem, it 
corresponds to the total number of filter coefficients of the 
sub-filters of the FRM filter. xk,i represents a typical CSD 
encoded filter coefficient. 

5.3.2. Prioritized Enlisting of Harmony Memory  
Locations 

Prioritized Enlisting can bring forth promising solutions 
in the search process. The fitness function of the harmony 
vectors in the initialization process, are evaluated and the 
best solutions are passed over to the subsequent stages of 
optimization. In our problem, since the approximation 
error is taken as the objective function and the optimiza-
tion problem is modeled as a minimization one, the can-
didate solution with less error are selected. The number of 
these prioritized solutions is taken to be “HMS”. 

5.3.3. Harmony Improvisation 
A new harmony vector, i.e., a new encoded filter coeffi-
cient vector is generated from the HM, based on memory 
considerations, pitch adjustments, and random selection. 
These three rules in HS algorithm are effectively directed 
using two parameters, namely, the harmony memory 
considering rate (HMCR) and the pitch adjusting rate 
(PAR) and the procedure works as follows. 
for all decision variables  do   1, 2,i D 
 Memory Consideration 

Select the value of the ith parameter of the vector in the 
harmony memory with probability HMCR 

 1, 2, ,, , ,new
i i i i HMSx x x x x   i  

with a probability HMCR. 
 Pitch Adjustment 

Adjust this value slightly with probability PAR. The 
change is made as follows 

   1, 1new
i ix x rand FW i      

with a probabilityPAR  denotes rounding to the lower 
value. This modification ensures that the new candidate 
solutions also turn out to be integers. Thus the encoding of 
the filter coefficients are not affected. FW(i) is an arbitrary 
distance bandwidth for the ith design variable, and rand(1, 
−1) is a uniformly distributed random number between −1 
and 1. 

  

 Random Selection 

Generate a random value for this filter coefficient with 
a probability (1-HMCR) 

,new L U
i i i ix x x x     

where L
ix  and U

ix  denote the lower bound and upper 
bound of the variable xi respectively 
 Verification 

It has to be ensured that any encoded filter coefficient 
undergoing the modification in the Harmony improvisa-
tion phase, confirms to the boundaries of the CSD lookup 
table(vlb and vub). Hence the following step is performed. 

if ,new
i lbx v  then new

i lbx v  

if ,new
i ubx v  then new

i ubx v  

end for 
Even after harmony improvisation, the candidate solu-

tion confirms to legitimate CSD codes, which avoids the 
use of restoration algorithms. 

5.3.4. Memory Update 
The fitness function is evaluated for the new harmony 
vector . If it is better, than the worst harmony in 
Harmony Memory, in terms of fitness function, then the 
new harmony is included in HM and the worst harmony is 
excluded from HM.  

new
kx

5.3.5. Termination 
Termination is achieved either when the approximation 
error becomes less than the tolerance specified or a pre- 
specified number of iterations are reached. Otherwise, 
steps 5.3.3 and 5.3.4 are repeated. Once convergence is 
reached, the best harmony vector is taken from the HM 
and decoded to get the optimal FRM filter in the CSD 
space. If the CSD encoding and decoding are avoided and 
the initial harmony vector is taken to be integers, this 
modified optimization technique can be used for integer 
programming in other engineering disciplines also. 

6. Proposed Design of the Sharp, Circularly 
Symmetric, 2D Multiplier-Less Filter 

From the design specifications of the 2D filter, the band 
edges of the 1D filter are obtained. Using these band edges, 
the infinite precision FRM filter is designed. Then, the 1D 
multiplier-less FRM filter is designed using the proposed 
modified HS algorithm briefed in Section 5. Once the 1D 
multiplier-less filter is obtained, T1 or T2 transformation 
is applied to obtain the required 2D multiplier-less circu-
larly symmetric filter. The advantage of the above 2D 
filter design is that without any additional computations, 
the 2D filter can be directly obtained by applying the 
transformations to the 1D prototype filter. The efficient 
realization of the 2D filter using T1 or T2 transformations 
[12] is shown in Figure 2. In our proposed design, the   
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Figure 2. Efficient realization of the 2D filter. 
 
coefficients  a n  of the 1D filter shown in the realiza-
tion are represented in the CSD space. 

The resulting 2D filter is computationally efficient. The 
reasons for the reduction in the computational complexity 
are many fold. One of the factors that contributes to the 
reduction in the complexity is the use of the sparse coef-
ficients obtained using FRM technique. Yet another rea-
son is the multiplier-less realization of the 1D filter. A 2D 
filter obtained by T1 or T2 transformation require multi-
pliers whose total number is proportional to N while that 
using direct convolution requires N2 multipliers per output 
value for an N × N 2D filter. Here, each multiplier is re-
placed by add and shift operations. The computation time 
of the resulting 2D filter is also low. This is because, an 
analytical expression is available for the T1 and T2 
transformations and therefore the contour mapping prob-
lem is avoided. Yet another reason for reduction in com-
putation time is that the signed integer encoding of the 
filter coefficients permits the reduction in the running 
time of optimization of the 1D filter. 

7. Results and Discussions 

Simulation was performed on a Dual Core AMD Opteron 
processor operating at 3 GHz using MATLAB 7.10.0. The 
proposed design technique has been applied to the design 
of a sharp 2D, circularly symmetric, FIR filter whose 
specifications are given below. 

 
2 2
1 2

1 2
2 2
1 2

1 , 0 0.8π
,

, 0.81π π

P

s

H
  

 
 

     
    

  (13) 

Here P  = 0.01 and s  = 0.01. The band edges of the 
1D prototype filter were found out from the 2D filter 
specifications, using T1 transformation. The band edges 
were found to be [0.7944π 0.8013π]. First of all, the con-
tinuous coefficient 1D prototype filter was designed. The 
length of the various subfilters Ha(z), Hma(z) and Hmc(z) 
are 89, 37 and 33 respectively. 

The 1D multiplier-less filter was designed using the 

proposed HS algorithm. The parameters of the HS algo-
rithm used are shown in Table 1. The parameter values 
have been selected based on the performance of the op-
timization algorithm. nb was selected to be 3.  

The magnitude response of continuous coefficient 1D 
FRM filter is shown in Figure 3, and that of the discrete 
1D filter FRM filter using the proposed optimization 
using modified HSA is shown in Figure 4. 

The performance results of the FRM filter designed 
using the proposed method has been compared with the 
infinite precision filter and the CSD rounded filter and is 
shown in Table 2. This result is the best out of 10 runs of 
the HS algorithm. The running time of the proposed op-
timization is very low compared to the novel GA in [7]. 
The magnitude response and the contour plot of the 2D 
filter designed with the proposed approach using T1 
transformation are shown in Figure 5 and Figure 6 and  
 

Table 1. Parameters of HS algorithm. 

HMS Size HMCR PAR Number of Iterations

50 0.4 0.02 500 
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Figure 3. Magnitude response of the continuous co-efficient 
1D FRM FIR filter. 
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Figure 4. Magnitude response of the 1D FRM Filter before 
and after the proposed optimization using modified HAS. 
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Figure 5. Magnitude response of the 2D filter designed us- 
ing the proposed method with T1 transformation. 
 

1

 
2

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ω1 

ω
2 

 

Figure 6. Contour of the 2D filter designed using the pro- 
posed method with T1 transformation. 

Table 2. Performance results of the 1D FRM filter. 

Parameters of FRM 
filter 

Continuous 
CSD  

Rounded 
Modified 

HSA 

Max. Passband Ripple 0.0904 dB 0.1237 dB 0.10 dB 

Min. Stopband Loss 42.64 dB 33.71dB 40.11dB 

 
respectively. 

8. Conclusions 

A novel approach for the design of a sharp, 2D wideband, 
circularly symmetric, multiplier-less FIR filter is pre-
sented. To this end, a new discrete optimization technique 
is proposed by modifying the Harmony Search algorithm, 
which has a simple computational model. The proposed 
optimization technique was extended to the design of an 
FRM FIR filter in the CSD space. The 1D multiplier-less 
filter thus obtained is transformed into the 2D domain 
using T1 or T2 transformations. This results in a sharp 2D, 
wideband circularly symmetric filter. The following mer-
its can be claimed by the proposed approach for the design 
of 2D circularly symmetric multiplier-less filter. 

1) Reduced computational complexity due to the use of 
FRM, CSD representation and the efficient realization of 
T1 and T2 transformations. 

2) Reduced computation time since the contour map-
ping problem is avoided and the appropriate encoding of 
candidate solutions in the 1D optimization problem. 

Besides, the proposed discrete optimization using HSA 
can be extended to the solution of integer programming in 
other engineering disciplines also. 
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