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Abstract 
Laser surface hardening is a very promising hardening process for ferrous alloys 
where transformations occur during cooling after laser heating in the solid state. The 
characteristics of the hardened surface depend on the physicochemical properties of 
the material as well as the heating system parameters. To exploit the benefits pre-
sented by the laser hardening process, it is necessary to develop an integrated strate-
gy to control the process parameters in order to produce desired hardened surface 
attributes without being forced to use the traditional and fastidious trial and error 
procedures. This study presents a comprehensive modelling approach for predicting 
the hardened surface physical and geometrical attributes. The laser surface transfor-
mation hardening of cylindrical AISI 4340 steel workpieces is modeled using the 
conventional regression equation method as well as artificial neural network method. 
The process parameters included in the study are laser power, beam scanning speed, 
and the workpiece rotational speed. The upper and the lower limits for each parame-
ter are chosen considering the start of the transformation hardening and the maxi-
mum hardened zone without surface melting. The resulting models are able to pre-
dict the depths representing the maximum hardness zone, the hardness drop zone, 
and the overheated zone without martensite transformation. Because of its ability to 
model highly nonlinear problems, the ANN based model presents the best modelling 
results and can predict the hardness profile with good accuracy. 
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1. Introduction 

AISI 4340 is a nickel-chromium-molybdenum alloy steel known for its toughness and 
its ability to attain high strengths when heat-treated, while retaining good fatigue 
strength. Typical applications are for structural use, such as aircraft landing gear, power 
transmission gears and shafts and other structural parts. This alloy may be heat treated 
to high strength levels while maintaining good toughness, wear resistance and fatigue 
strength levels, as well as good atmospheric corrosion resistance [1]. 

When compared with conventional hardening methods such as oven, flame, or in-
duction hardening, laser hardening is marked by a range of advantages such as spatially 
and temporally limited energy deposition, which eliminates the need for quenching 
with water, oil, or salt baths. Laser hardening allows for a highly defined zone of influ-
ence without affecting neighboring surfaces, and high cooling rates make fine struc-
tures and high levels of hardness possible. Intricate contours are easily hardened using 
lasers due to the flexible beam guidance possibilities, also making it possible to harden 
parts directly where it is required [2]. 

In surface hardening using laser radiation, carbonic steel is heated above the aus-
tenization temperature for a short time. Through rapid cooling the steel reaches the 
martensitic material structure. Heat deposition is realized through the absorption of la-
ser radiation at the surface of the material, whereas cooling occurs conductively within 
the remaining material [3]. 

There are many methods for modeling the laser hardening process, such as the finite 
element method (FE), the regression method, and the artificial neural network method 
(ANN). The principle of the FE method is solving the heat transfer differential equation 
to determine the evolution of the studied workpiece temperature versus time; the 
maximum temperature and cooling rate on the surface of the workpiece are calculated 
to determine the hardened zone. Many researchers used this method for plate [4]-[6] 
and cylindrical shaped [7]-[10] workpieces forms. Regression modeling is an empirical 
modeling technique derived for the evaluation of the relationship of a set of controlled 
experimental factors and observed results. This method is used in several cases 
[11]-[13] to model and understand the effect of laser hardening parameters on several 
hardened zone properties. 

The laser heat treatment of cylindrical pieces is done with a combination of two 
movements: a rectilinear movement of the articulated robot carrying the laser fiber, and 
a rotation of the cylindrical part generated by a DC motor. This combination of two 
speeds during treatment makes the finite element model simulation slower and difficult 
to calibrate, which leads us to choose ANN modeling methods. This is a powerful mod-
eling tool that has the ability to identify complex relationships from data for nonlinear 
problems compared to regression modeling, despite the significant number of experi-
mental tests required for the modeling.  

Research based on ANN modeling for laser hardening on cylindrical workpieces is 
not numerous. In the literature there is one conference paper [14] presenting a model 
for the prediction of the laser surface hardening index on a cylinder liner based on a 
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radial basis function neural network prediction model. The processes parameters are 
laser power (250 W - 350 W), scanning speed (20 mm/s - 30 mm/s), and spot diameter 
size (1 mm - 2 mm). Despite its ability of surface hardness and hardened depth predic-
tion, the ANN model includes a limited scale of process parameter variation and is not 
able to predict the heat affected zone, which has a drop in initial hardness. 

2. Experimental Setup 

The experimentations are performed by using a commercial 3 kW Nd:Yag laser source 
(IPG YLS-3000-ST2) combined with a 6 degrees of freedom articulated robot. This type 
of laser generates a beam with a wavelength λ = 1064 µm. The AISI 4340 steel cylindri-
cal parts, with 18 mm diameter 50 mm length, are mounted on a lathe as illustrated in 
Figure 1. All of the parts used were oven heated and oil quenched and then oven tem-
pered before laser hardening at the same time and under the same conditions; this pre-
processing produces the same hardness in all parts and blackens their surface areas to 
increase laser surface absorption. The hardness of the workpieces after the oven heat 
treatment operations is about 44-46HRC. 

A rotating testing rig is used during this experiment to rotate the workpieces 
throughout the laser heat treatment, and the laser beam is set to point the median plane 
of the cylinder, and remain in it during the translation motion of the articulated robot. 
The cooling of the workpieces is done by radiation and conduction without any exter-
nal cooling source. After the laser transformation hardening, the specimens were cut 
perpendicularly to the cylinder’s axis of revolution, and the required surface of each 
specimen was ground and polished with various grades of emery sheets. The hardened 
zone characteristics are determined by the surface hardness profile. Hardness meas-
urements were done from the surface to the center of the workpiece, using Vickers’s 
tests with a load of 300 g applied for 15 s. For each trial, different hardness profiles with 
50 μm steps were measured. 

The process parameters in this article are the laser power (LP), the scanning speed 
(SS) of the laser beam, and the revolution speed (RS) of the part. Preliminary tests allow  
 

 
Figure 1. Experimental setup. 
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the determination of process parameter limits so the non-hardening or melting of the 
workpieces can be avoided. Ranges of 1800 W to 2400 W laser power (LP), and 3 mm/s 
to 6 mm/s scanning speed (SS) allow the heat treatment of parts without producing 
melting or hardening discontinuity. The revolution speed is limited on the upper end 
by the limits of the DC motor rotating the workpieces, and on the lower end by the 
regularity of the hardened zone, so a range of 3000 rpm to 6000 rpm is used in the test 
matrix. 

Due to its simplicity and transparency, a systematic design based on the factorial de-
sign is the most commonly used model in experimentation. However, this requires a 
substantial number of tests depending on the number of factors and their levels. In this 
way, the use of a testing strategy such as the orthogonal arrays developed by Taguchi 
leads to an efficient and robust fractional factorial design of experiments that can col-
lect all the statistically significant data with a minimum number of repetitions [15]. 
Accordingly, in this paper an L16 Taguchi test matrix is used for the modeling the proc-
ess. The L16 illustration the mixture parameters used for regression and artificial neural 
networks modeling and analysis is presented in detail in Table 1. 

An L9 Taguchi test matrix composed of central tests of L16 Taguchi matrix is used to 
validate the model is presented in Table 2. The central test (2100 W for LP, 4.5 mm/s 
for SS, and 4500 rpm for RS) is repeated 10 times (called R1 to R10 in the rest of the pa-
per) in order to evaluate the process repeatability and the errors of measurement. 
 
Table 1. L16 Taguchi test matrix. 

Test LP (W) SS (mm/s) RS (rpm) Test LP (W) SS (mm/s) RS (rpm) 

M1 2400 3 3000 M9 2000 3 5000 

M2 2400 4 4000 M10 2000 4 6000 

M3 2400 5 5000 M11 2000 5 3000 

M4 2400 6 6000 M12 2000 6 4000 

M5 2200 3 4000 M13 1800 3 6000 

M6 2200 4 3000 M14 1800 4 5000 

M7 2200 5 6000 M15 1800 5 4000 

M8 2200 6 5000 M16 1800 6 3000 

 
Table 2. L9 Taguchi test matrix. 

Test LP (W) SS(mm/s) RS (rpm) Test LP (W) SS (mm/s) RS (rpm) 

V1 1900 3.5 4500 V6 2100 5.5 3500 

V2 1900 4.5 3500 V7 2300 3.5 3500 

V3 1900 5.5 5500 V8 2300 4.5 5500 

V4 2100 3.5 5500 V9 2300 5.5 4500 

V5 2100 4.5 4500     
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The hardness curve obtained by laser heat treatment is illustrated in Figure 2. The 
first region (zone1) is characterized by the maximum hardness of the curve; it is com-
pletely transformed to austenitic phase during the heating process and then to marten-
sitic structure upon quick cooling. The second region (zone2) represents the hardness 
loss caused by sharp drop in hardness to reach a minimum value, representing a rise in 
hardness until it reaches the initial hardness value. This zone is heated by using a tem-
perature between the start temperature of austenitisation, giving overtempered marten-
site after cooling (H2 hardness), and the temperature of complete autenitisation, giving 
hard martensite after cooling (H1 hardness). The third region (zone3) is heated enough, 
but without reaching the austenite formation start temperature; therefore it is com-
pletely tempered by the heat flow effect, which is stronger in the area closest to the sur-
face of the workpiece. Finally, the fourth region (zone4) corresponds to the zone unaf-
fected by the thermal flow [16]. 

The effects of different laser hardening parameters are determined using the hard-
ness curve, which is characterized by identifying boundary points for the four different 
areas: D1 and H1 for the zone1/zone2 limit, D2 and H2 for the zone2/zone3 limit, and D3 
and H3 for the zone3/zone4 limit. Throughout the article D1, D2 and D3 are expressed in 
µm, and H1 and H2 are expressed in HRC. H3 represents the initial hardness of the 
workpieces, and is fixed at 44HRC to determine D3. 

The repeatability test is made to assess the robustness and reproducibility of the 
process, as well as errors resulting from measurement steps (50 µm between every two 
measurements of the microhardness) and shift of the measurement position. The cen-
tral test of the validation table (2100 W for LP, 4.5 mm/s for SS, and 4500 rpm for RS) 
is repeated 10 times. Table 3 shows the results of the repeatability of the 10 tests and 
statistical calculations (the average value, the standard deviation, and the gap between 
the maximum and the minimum). 
 
Table 3. The results of the repeatability tests. 

Test D1 D2 D3 H1 H2 

R1 163 242 867 54.9 35.9 

R2 158 237 817 55.8 36.2 

R3 159 238 826 55.5 36.5 

R4 153 230 845 56.0 36.7 

R5 151 231 791 55.1 36.1 

R6 159 240 841 56.4 36.3 

R7 163 242 841 54.9 35.9 

R8 159 240 836 55.5 35.5 

Average 157.8 238.3 835.8 55.56 36.04 

S.D. 3.8 4.4 21.3 0.48 0.40 

Gap 11.3 12.6 75.5 1.47 1.25 
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Figure 2. Typical curve of surface hardness profile obtained by laser hardening of AISI 434 steel. 
 

The gap between the maximum and the minimum hardness value of all the modeling 
and the validation data is 4.15HRC for H1 and 2.28HRC for H2, while the gap repre-
senting the repeatability and the measurement errors determined by the repeatability 
study is 1.47HRC for H1 and 1.25HRC for H2, which represents an error of 35% for H1 
and 55% for H2. This is caused by the fact that the cooling rate, which is not controlled 
in the present work, is highly affecting the hardening process. On the other hand the 
gap between the maximum and the minimum depths values of the modeling and the 
validation data is 382.7 µm for D1, 490.3 µm for D2, and 1441.3 µm for D3, while the gap 
representing the repeatability and the measurement errors determined by the repeat-
ability study is 11.3 µm for D1, 12.6 µm for D2, and 75.5 µm for D3, which represents an 
error of 2.9% for D1, 2.6% for D2, and 5.2% for D3. The error is low because these 
depths depend on the maximum temperature reached by heating and not the cooling 
rate [17], thus only D1, D2, and D3 are considered in the following. Table 4 regroups all 
of the results of the modeling tests (M1 to M16) and the validation tests (V1 to V9). 

3. Regression Model 

The analysis of variance aims to study the effects of different parameters on the hard-
ness profile. It gives the contribution of each parameter in the variation of process pa-
rameters. Table 5 shows the detailed ANOVA of the depths (D1, D2, and D3). The most 
significant parameter is the scanning speed (SS), its contribution is about 69% for D1 
and D2, and more than 81% for D3. Laser power (LP) is also an important parameter 
with a contribution of more than 22% for D1 and D2, and about 15% for D3. The revolu-
tion speed has a contribution of less than 5% for D1 and D3, and less than 1% for D3, so 
its effect is neglected for D3. The error for all the depths is less than 4%, which means 
that all the significant parameters of the process are considered. 

Figure 3 shows the effect of all parameters on the depths (D1, D2, and D3). These 
depths increase with increasing the laser power and decrease with decreasing scanning 
speed and revolution speed. The graphs also confirm the ANOVA results. The objective 
is to predict the depths (D1, D2, and D3) with the given process parameters provided by 
modeling data (M1 − M16), and validate the regression model with the validation data 
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Figure 3. Effects of laser power, scanning speed, and revolution speed on D1, D2 and D3. 
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Table 4. The results of the modeling and validation tests. 

Test D1 D2 D3 H1 H2 Test D1 D2 D3 H1 H2 

M1 710 890 2561 56.2 35.3 M14 105 148 800 52.4 35.6 

M2 355 442 1325 56.3 36.5 M15 56 120 521 53.7 36.4 

M3 233 309 946 56.2 36.2 M16 55 91 321 54.2 38.1 

M4 116 194 736 55.3 35.7 V1 200 278 1138 56.0 35.2 

M5 532 698 2185 55.0 35.3 V2 104 164 657 56.1 37.1 

M6 278 364 1085 55.7 36.0 V3 57 100 490 55.5 36.3 

M7 163 242 854 56.5 36.6 V4 347 442 1398 55.8 35.7 

M8 105 145 639 53.4 36.6 V5 159 240 836 55.5 35.5 

M9 452 545 1819 55.9 35.8 V6 105 155 574 56.0 37.2 

M10 200 270 996 56.4 35.9 V7 425 539 1532 56.5 35.4 

M11 106 166 574 55.7 37.7 V8 246 336 1105 56.1 35.4 

M12 58 135 507 54.1 37.4 V9 137 194 778 54.5 35.6 

M13 238 345 1378 54.7 35.2       

 
Table 5. ANOVA table for D1, D2 and D3. 

 Source DF Contribution Adj SS Adj MS F-Value P-Value 

D1 

LP (W) 3 22.73% 123717 41239 11.74 0.006 

SS (mm/s) 3 68.84% 374607 124869 35.56 0.000 

RS (rpm) 3 4.56% 24811 8270 2.36 0.171 

Error 6 3.87% 21068 3511 - - 

Total 15 100.00% - - - - 

D2 

LP (W) 3 22.55% 173929 57976 13.04 0.005 

SS (mm/s) 3 69.58% 536792 178931 40.25 0.000 

RS (rpm) 3 4.42% 34066 11355 2.55 0.151 

Error 6 3.46% 26675 4446 - - 

Total 15 100.00% - - - - 

D3 

LP (W) 3 14.97% 905555 301852 10.53 0.008 

SS (mm/s) 3 81.21% 4913854 1637951 57.17 0.000 

RS (rpm) 3 0.98% 59290 19763 0.69 0.591 

Error 6 2.84% 171915 28652 - - 

Total 15 100.00% - - - - 

 
(V1 − V9). The empirical relationship between the depths (D1, D2, and D3) and the laser 
process parameters can be expressed by Equations (1)-(3), which presents a model 
based on fit regression modeling and allows the evaluation of the depths (D1, D2, and 
D3) as a function of the laser parameters (LP, SS, and RS). 
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1D 1137 1.359LP 112SS 0.0036RS 48.14SS SS 0.2147LP SS= − + − + + × − ×  

2D 1257 1.622LP 166SS 0.0056RS 61.35SS SS 0.2569LP SS= − + − + + × − ×  

3D 893 2.804LP 1365SS 190.4SS SS 0.387LP SS= + − + × − ×  

Figure 4 shows the depths (D1, D2, and D3) calculated using the regression formula 
(Equations (1)-(3)) for all 16 modeling data points and the 9 validation data points of 
the process parameters, and their distribution around the bisector of the quadrant. The 
mean relative error is 10.5% for D1, 9.1% for D2, and 7.9% for D3 between the depths 
calculated with the regression formula and the experimental ones; the coefficient of de-
termination, R2, is 0.9830 for D1, 0.9828 for D2, and 0.9726 for D2. The maximum rela-
tive error is still important, thus neural network modeling is proposed in the following 
chapter. 

4. Artificial Neural Networks Model 

ANNs are relatively new computational tools that have found extensive utilization in 
solving many complex problems. The attractiveness of ANNs comes from their 
 

 
 

 
 

 
Figure 4. Scatter plot-measured and predicted D1, D2 and D3 using the regression model. 
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remarkable information processing characteristics, pertinent mainly to nonlinearity, 
fault and noise tolerance, and learning and generalization capabilities. The idea of 
ANNs is not to replicate the operation of the biological system, but to make use of what 
is known about the functionality of biological networks for solving complex problems. 
ANN models are empirical, however, they can provide practically accurate solutions for 
precisely or imprecisely formulated problems and for phenomena recorded as field ob-
servations. These models learn from the preceding data obtained, which is named the 
training set, and then check the system accomplishment using test data [18]. 

The basic units of ANNs are neurons, which are connected to each other with a 
weight factor. ANNs are networks of highly interconnected neural computing elements 
that have the ability to respond to input stimuli and to learn to adapt to the environ-
ment. While a single-layer network has single input or output units, a multilayer net-
work has one or more hiding units between the input and output layers. The multilayer 
perceptron consists of a system of simple interconnected neurons, or nodes, as illus-
trated in Figure 5, representing a nonlinear mapping between inputs and outputs. The 
nodes are connected by weights and output signals, which are a function of the sum of 
the inputs to the node, modified by a simple nonlinear function. Two working phases 
are included in ANN models: the phase of learning and the phase of recall. During the 
learning phase, known data sets are commonly used as a training signal in input and 
output layers. The recall phase is performed in one run using the weights obtained 
during the learning phase [19]. 

The choice of the best ANN structure for modeling a given process is done by vary-
ing the number of hidden layers and the number of neurons in each one. Each ANN 
structure is trained several times to avoid the effect of the randomly chosen weight co-
efficients in the beginning of the learning phase. The first trial of ANN modeling was 
done with one hidden layer, and the number of neurons in the hidden layer was varied. 
Results show that the learning becomes perfect for over 20 neurons, but the model 
cannot be validated with the validation data. For less than 20 neurons the model has a 
high gap between prediction and experimentation, therefore the use of several hidden 
layers is beneficial. The number of neurons in each hidden layer is varied from 1 to 20, 
and the best model is found to have a neural structure of 3 neurons in the input layer 
(LP, SS, and RS), three hidden layers having the structure 2-15-8, and an output layer of 
3 neurons (D1, D2, and D3). This model has a coefficient of determination, R2, of 1.000 
for the modeling data and 0.995 for the validation data. The average error for all the 
modeling and validation data is 3.5% for D1, 2.2% for D2, and 2.5% for D3; the maxi-
mum relative error is 12.6% for D1, 13.1% for D2, and 10.7% for D3; and the gap be-
tween the maximum error and the minimum error is 46.7 µm for D1, 42.8 µm for D2, 
and 150.8 µm for D3. 

Figure 6 shows the depths (D1, D2, and D3) predicted by the ANN model for all 16 
modeling data points and the 9 validation data points for process parameters and their 
distribution around the bisector of the quadrant. The coefficient of determination is 
0.9969 for D1, 0.9985 for D2, and 0.9968 for D3. All the points are on the bisector, which 
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Figure 5. The ANN based model structure. 

 

 
 

 
 

 
Figure 6. Scatter plot-measured and predicted D1, D2 and D3 using the ANN based model. 

 
means that the model is perfectly accurate compared to the regression model. 

Using the modeling and validation tests, the fitness of the ANN model and the re-
gression model (R-model) are characterised in Table 6. The regression squared value is 
used for the modeling data (RM2) and the validation data (RV2) for all depths, as well as 
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for the depths separately (RD12, RD22, and RD32) using modeling and validation data. 
Also shown is the average error for all depths, and the margin of error which represents 
the gap between the maximum and the minimum model errors divided by the median 
for each response (D1-3). 

The ANN based model is much better than the regression based model, as shown in 
Table 6, in terms of the regression squared and the average errors expressed as a per-
centage. The gaps between the maximum and minimum error in the ANN model are 
46.7 µm for D1, 42.8 µm for D2, and 150.8 µm for D3, and the gaps in error for the re-
gression model are 44.7 µm for D1, 65.9 µm for D2, and 247.9 µm for D3. These errors 
represent the errors of the model, the errors produced by process repeatability, and the 
errors of measurement, which was determined previously to be 11.3 µm for D1, 12.6 µm 
for D2, and 75.7 µm for D3. These measurement errors of and repeatability errors rep-
resent noise in the modeling process, which ANN modeling clearly demonstrates its 
ability to avoid. 

Figure 7 shows a comparison between the hardness curves obtained by microhard-
ness measurements, the curve shape predicted by the regression model, and the curve 
shape predicted by the ANN model for the validation testes V2, V4, V6, and V8. The 
graphs shows that both models are able to predict the microhardness curve shape, with 
the ANN model closest to reality. 

5. Conclusion 

In this paper, a predictive modeling based on regression and artificial neural network 
analysis of laser transformation hardening for cylindrical of AISI 4340 steel workpieces 
is presented. Several laser surface transformation hardening parameters and conditions 
are analyzed and their correlation with multiple physical and geometrical attributes is 
examined using a structured experimental and numerical modelling investigations un-
der consistent practical process conditions. After identifying the parameters that pro-
vide the best information about the laser heating and the surface transformation proc-
ess, conventional regression and artificial neural network analysis are proposed to build 
an accurate and consistent hardness profile prediction model. The process parameters 
included in the study are laser power, beam scanning speed, and the workpieces rota-
tional speed. The upper and the lower limits for each parameter are chosen considering 
the start of the trans-formation hardening and the maximum hardened zone without 
surface melting (1800 W to 2400 W for the laser power, 3 mm/s to 6 mm/s for the 
scanning speed, and 3000 rpm to 6000 rpm for the workpiece rotational speed). The 
 
Table 6. The regression squared, average error and gap for the regression model and the ANN 
based model. 

Model 
R squared Average error Gap (µm) 

RM2 RV2 RD12 RD22 RD32 D1 (%) D2 (%) D3 (%) D1 D2 D3 

R-model 0.990 0.986 0.983 0.983 0.973 10.5 9.1 7.9 44.7 65.9 247.9 

ANN 1.000 0.995 0.997 0.998 0.995 3.5 2.2 2.5 46,7 42,8 150,8 
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Figure 7. Comparison between measurement and prediction models for tests V2, V4, V6 and V8. 

 
hardened surface physical and geometrical attributes are extracted from the experi-
mental microhardness curves. The results demonstrate that the resulting models are 
able to predict the depths representing the maximum hardness zone, the hardness drop 
zone and the overheated zone without martensite transformation. Because of its ability 
to model highly nonlinear problems, the artificial neural network based predictive 
model presents the best results and can predict the hardness profile with good accuracy. 
Globally, the performance of the hardness profile prediction model shows significant 
improvement. With a global maximum relative error less than 5% under various condi-
tions, the prediction model can be considered efficient and have led to conclusive re-
sults, due to the complexity of the heat treatment process. The performance of the 
modelling process can be improved by including additional surface transformation 
hardening parameters and conditions. The inclusion of parameters like surface rough-
ness and cooling rate in the predictive modelling procedures with others applications 
for complex geometric features are among the main directions to consider for the fu-
ture works. 
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