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Abstract 
Software is an important part of automotive product development, and it is 
commonly known that software quality assurance consumes considerable ef-
fort in safety-critical embedded software development. Increasing the effec-
tiveness and efficiency of this effort thus becomes more and more important. 
Identifying problematic code areas which are most likely to fail and therefore 
require most of the quality assurance attention is required. This article presents 
an exploratory study investigating whether the faults detected by static analy-
sis tools combined with code complexity metrics can be used as software qual-
ity indicators and to build pre-release fault prediction models. The combina-
tion of code complexity metrics with static analysis fault density was used to 
predict the pre-release fault density with an accuracy of 78.3%. This combina-
tion was also used to separate high and low quality components with a classi-
fication accuracy of 79%. 
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1. Introduction 

Software quality assurance is overall the most expensive activity in safety-critical 
embedded software development [1] [2]. Increasing the effectiveness and effi-
ciency of software quality assurance is more and more important given the size, 
complexity, time and cost pressures in automotive development projects. 
Therefore, in order to increase the effectiveness and efficiency of software quali-
ty assurance tasks, we need to identify problematic code areas most likely to 
contain program faults and focus the quality assurance tasks on such code areas. 
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Obtaining early estimates of fault-proneness helps making decisions on testing, 
code inspections and design rework, to financially plan possible delayed releases, 
and affordably guide corrective actions to the quality of the software [3]. 

One source to identify fault-prone code components can be their failure his-
tory, which can be obtained from bug databases; a software component likely to 
fail in the past is likely to do so in the future [4]. However, in order to get accu-
rate predictions, a long failure history is required. Such a long failure history is 
usually not available, moreover maintaining long failure histories is usually 
avoided altogether [4]. 

A second source to estimate fault-proneness of software components is the 
program code itself. Static code analysis and code complexity metrics have been 
shown to correlate with fault density in a number of case studies [5] [6] [7] [8]. 
Static analysis evaluates software programs at compile time by exploring all 
possible execution paths [9] [10]. Static analysis tools can detect low-level pro-
gramming faults such as potential security violations, run-time errors and logical 
inconsistencies [11]. Code complexity metrics have been proposed in different 
case studies to assess software quality [1] [4] [12]. 

In this article, we apply a combined approach to create accurate fault predic-
tors. Our process can be summarized in the following three steps:  

1) Data Preparation: the data required to build our fault predictors are:  
a) Static analysis faults: we execute static code analysis on each component. 

We define the static analysis fault density of a software component as the num-
ber of faults found by static analysis tools, after reviewing and eliminating false 
positives, per KLOC (thousand lines of code).  

b) Pre-release faults: we mine the archives of several major software systems at 
Daimler and map their pre-release faults (faults detected during development) 
back to its individual components. We define the pre-release fault density of a 
software component as the number of faults per KLOC found by other methods 
(e.g. testing) before the release of the component.  

c) Code complexity metrics: we compute several code complexity metrics for 
each of the components.  

2) Model Training: we train statistical models to learn the pre-release fault 
densities based on both a) static analysis faults densities, and b) code complexity 
metrics. In order, to overcome the issue of multicollinearity associated with 
combining several metrics as input variables of the statistical models, we apply 
the standard statistical principal component analysis (PCA) technique on the 
static analysis fault densities and the code complexity metrics.  

3) Model Prediction: the trained statistical models are used to a) predict 
pre-release fault densities of software components (Regression) and, b) discrimi-
nate fault-prone software components from the not fault-prone software com-
ponents (Classification).  

Our major question is whether or not we can use code complexity metrics 
combined with static analysis fault density to predict pre-release fault density, 
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that is: Is combining static analysis tools with code complexity metrics a leading 
indicator of faulty code? The hypotheses that we want to confirm in this article 
are: 

1) static analysis fault density combined with code complexity metrics can be 
used as an early indicator of pre-release fault density; 

2) static analysis fault density combined with code complexity metrics can be 
used to predict pre-release fault density at statistically significant levels; 

3) static analysis fault density combined with code complexity metrics can be 
used to discriminate between fault-prone and not fault-prone components.  

The organization of the article is as follows. After discussing the state of the 
art in Section 2, we describe the design of our case study in Section 3. Our results 
are reported and discussed in Section 4. Section 5 concludes and discusses future 
work. 

2. Related Work  
2.1. Failures and Faults 

In this work, we use the term fault to refer to an error in the source code. We re-
fer to an observable error at program run-time as failure. We assume that, every 
failure can be traced back to a fault, but a fault does not necessarily result in a 
failure. 

Faults which have been identified before a software release, typically during 
software testing, are referred to as pre-release faults. If faults are identified after a 
software release as a result of failures in the field (by the customer), then such faults 
are referred to as post-release faults. The focus of this work is on pre-release 
faults to obtain an early estimate of software component’s fault-proneness in order 
to guide software quality assurance towards inspecting and testing the compo-
nents most likely to contain faults. 

Fault-proneness is defined as the probability of the presence of faults in the 
software [13]. Such probability is estimated based on previously detected faults 
using techniques such as software testing. The research on fault-proneness has 
focused on 1) the definition of code complexity and testing thoroughness me-
trics, and 2) the definition and experimentation of models relating metrics with 
fault-proneness. 

2.2. Code Metrics 

Software complexity metrics were initially suggested by Chidamber and Kemerer 
[14]. Basili et al. [15], and Briand et al. [5] were among the first to use such me-
trics to validate and evaluate fault-proneness. Subramanyam and Krishnan [7], 
and Tang et al. [8] showed that these metrics can be used as early indicators of 
external software quality. 

Nagappan et al. [4] empirically confirmed that code complexity metrics can 
predict post-release faults. Based on a study on five large software systems, they 
showed that 1) for each software, there exists a set of complexity metrics that 
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correlates with post-release faults, 2) there is no single set of metrics that fits all 
software projects, 3) predictors obtained from complexity metrics are good es-
timates of post-release defects, and 4) such predictors are accurate only when 
obtained from the same or similar software projects. Our work builds on the 
study of Nagappan et al. [4], and focuses on pre-release faults while taking into 
consideration not only the code complexity metrics but also the faults detected 
by static analysis tools to build accurate pre-release fault predictors. 

2.3. Statistical Techniques 

A number of statistical techniques have been used to analyze software quality. 
Khoshgoftaar et al. [16], and Larus et al. [17] used multiple linear regression 
analyses to model the software quality as a function of software metrics. The 
coefficient of determination, R2, is usually used to quantify how much variability 
in the software quality can be explained by a regression model. A major difficul-
ty when using regression models to combine several metrics is the issue of mul-
ticollinearity among the metrics, which is explained by the existence of in-
ter-correlations between the metrics. Multicollinearity can lead to an overesti-
mation of the regression estimate. For example, high cyclomatic complexity 
usually correlates with a high amount of code lines [4]. 

One approach to overcome multicollinearity is applying Principal Component 
Analysis (PCA) [18] [19] on the metrics before applying regression modeling. 
Using PCA, a subset of uncorrelated linear combinations of metrics, which ac-
count for the maximum possible variance, is selected for use in regression mod-
els. Denaro et al. [13] used PCA on a study that considered 38 software metrics 
for the open source projects Apache 1.3 and 2.0 to select a subset of nine prin-
cipal components which explained 95% of the total data variance. Nagappan et 
al. [4] used PCA to select a subset of five principal components out of 18 com-
plexity metrics that account for 96% of the total variance in one of the studied 
commercial projects. 

2.4. Static Analysis 

In this work, we used the faults detected by static analysis tools to predict the 
pre-release fault density. Our basic hypothesis is that while static analysis tools 
only find a subset of the actual faults in the program’s code, it is highly likely 
that these detected faults, combined with code complexity metrics would be a 
good indicator of the overall code quality. This is explained by the fact that static 
analysis tools can find faults that occur on paths uncovered by testing. On the 
other hand, testing has the ability to discover deep functional and design faults, 
which can be hardly discovered by static analysis tools. In other words, code 
complexity metrics would complement the static analysis fault detection capabil-
ities to account for the type of faults that cannot be detected by static analysis 
tools, and hence such a combination can form accurate predictors of pre-release 
faults. 
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Nagappan et al. [20] showed at Nortel Networks on an 800 KLOC commercial 
software system, that automatic inspection faults detected by static analysis tools 
were a statistically significant indicator of field failures and is effective to classify 
fault-prone components. Nagappan et al. [21] applied static analysis at Microsoft 
on a 22 MLOC commercial system and showed that the faults found by static 
analysis tools were a statistically significant predictor of pre-release faults and 
can be used to discriminate between fault-prone and non fault-prone compo-
nents. Again, our approach does not only make use of the faults detected by static 
analysis, but also uses code complexity metrics; it goes beyond the works of Na-
gappan et al. by not only using the faults detected by static analysis tools as an 
indicator of pre-release faults, but also combines these faults with code complex-
ity metrics in a mathematical model which delivers a more accurate predictor 
and classifier of pre-release faults. It is important to note that the focus of our 
work as well as the related works [20] [21] is on the application of non-verifying 
static analysis tools. The study of the impact of using verifying static analysis 
tools on the prediction accuracy of pre-release fault densities goes beyond the 
scope of this work and is planned as a future work. 

3. Study Design  

The goal of this article is to come up with fault predictors that evaluate our hy-
potheses. Our experiments were carried out using eight software projects of an 
automotive head unit control system (Audio, Navigation, Phone, etc.). In the 
remainder of the article, we will be referring to these eight projects as Project 1 
to 8. For reasons of confidentiality, we cannot disclose which number stands for 
which project. Each project, in turn, is composed of a set of components. The 
total number of components is 54. These components have a collective size of 
23.797 MLOC (million LOCs without comments and spaces). All components 
use the object oriented language C++. Table 1 presents a high level outline of 
each project. 

3.1. Faults Data 

Daimler systematically records all problems that occur during the entire product 
life cycle. In this work, we are interested in pre-release faults, that is faults that 
have been detected before the initial release. For each component of the eight 
projects (Project 1 to Project 8 from Table 1), we extracted from an internal 
fault database all bugs detected for the latest release. The fault database is conti-
nuously updated from testing teams, integration teams, external teams or third 
party testers. Such faults do not include problems submitted by customers in the 
field which are only found in post-release scenarios. The faults extracted from 
the fault database are then used to compute the pre-release fault density. 

Moreover, we executed static analyses on each component and extracted the 
identified faults. These faults were then used to compute the static analysis fault 
density. We used commercial non-verifying static analysis tools in this study. 
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Table 1. Software projects researched. 

Projects # Components Code Size 

Project 1 8 2.026 MLOC 

Project 2 4 1.762 MLOC 

Project 3 9 4.795 MLOC 

Project 4 3 3.555 MLOC 

Project 5 21 5.070 MLOC 

Project 6 2 1.664 MLOC 

Project 7 3 2.215 MLOC 

Project 8 1 2.710 MLOC 

3.2. Metrics Data 

For each of the components, we compute a number of code metrics, as described 
in Table 2. We limit our study on the metrics commonly used and selected over 
a long period of time by the software quality assurance team at Daimler. 

4. Case Study 

The case study below details the experiments we executed to validate our hypo-
theses. Table 3 defines abbreviations used in this section. 

4.1. Correlation Analysis 

In order to investigate the possible correlations between the pre-release fault 
density and the code complexity metrics as well as the static analysis fault den-
sity, we applied a robust correlation technique, Spearman rank correlation. 
Spearman rank correlation has the advantage over other correlation techniques 
such as Pearson correlation to detect also non-linear correlations between ele-
ments. 

Table 4 summarizes the correlation results. It shows a statistically significant 
positive correlation between the static analysis fault density and the pre-release 
fault density. It also shows a statistically significant positive correlation between 
the pre-release fault density and some of the code complexity metrics. The cor-
relations between the code complexity metrics (row 1 to row 6), as well as be-
tween the code complexity metrics and the static analysis fault density (row 7), 
are an early indicator of the existence of the multicollinearity problem when us-
ing both code complexity metrics and static analysis fault density as input para-
meters of statistical prediction models.  

In this work we assume statistical significance at 99% confidence. Further-
more, all metrics are normalized before computing the correlations. 

4.2. Predictive Analysis 

In order to estimate the pre-release fault density, we applied statistical regression 
techniques where the dependent variable is the pre-release fault density, and the  
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Table 2. Metrics used for the study. 

Metric Description 

Statements # statements in a method 

Parameters # function parameters in a method 

Nesting # nesting levels in a method 

Paths # non-cyclic paths in a method 

Complexity cyclomatic complexity of a method 

Relevant_LOC # relevant LOCs of code without comments, blanks, expansions, etc. 

 
Table 3. Nomenclature. 

Abbreviations Description 

PCA 
Principal component analysis (PCA) is a standard statistical procedure to convert a set of possibly correlated  
variables into a (typically smaller) set of linearly uncorrelated variables by using a coordinate transformation. 

R2 
R squared: coefficient of determination, measures the variance in the predicted variable that is accounted by the 
regression built using the predictors (code metrics combined with static analysis fault density). 

MSE Mean squared error (MSE) is a measure of the unbiased error estimate of the error variance. 

ROC curve 
Receiver operating characteristic (ROC) curve, is a popular measure for evaluating classifier performance. The ROC 
curve is created by plotting the true positive rate against the false positive rate at various threshold settings. 

AUC 
Area under curve (AUC) equals the probability that the classifier predicts a randomly chosen true positive higher 
than a randomly chosen false negative. 
The larger the AUC, the more accurate is the classification model. 

 

Table 4. Correlation results of pre-release fault density with code metrics and static analysis fault density. 

Metric Statements Parameters Nesting Paths Complexity R_LOC 
Static Analysis  
Fault Density 

Pre-Release 
Fault Density 

Statements 1        

Parameters 0.55 1       

Nesting −0.32 0,042 1      

Paths −0.079 0.33 0.84 1     

Complexity 0.3 0.42 −0.13 −0.055 1    

Relevant_LOC −0.3 −0.13 0.79 0.46 −0.13 1   

Static Analysis 
Fault Density 

−0.22 0.13 0.37 0.067 0.31 0.52 1  

Pre-Release Fault 
Density 

0.7 0.82 −0.15 0.079 0.55 −0.13 0.69 1 

 
independent variables are the code complexity metrics combined with the static 
analysis fault density. However, one difficulty associated with combining several 
metrics is the issue of multicollinearity. For instance, (see Table 4) the State-
ment, Parameters and Complexity metrics not only correlate with pre-release 
fault density, but they also strongly correlated with each other. To overcome the 
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problem of multicollinearity between the independent variables (see Table 4 
where correlations between code metrics have been identified), we used the 
standard statistical principal component analysis (PCA) technique. Multicolli-
nearity might lead to an inflated variance in the estimation of the dependent va-
riable, that is the pre-release fault density. 

We extracted the principal components out of the 7 independent variables 
which include the six complexity metrics and the static analysis fault density. 
Figure 1 shows that 4 principal components result in variance close to 98%. 
Therefore, in this study, we selected the number of principal components as 4, 
which we used to model our prediction model. We split our data into two parts: 
1) train data which accounts for 70% of the available data, and 2) test data 
representing the remaining 30%. We first transform both train and test data to 4 
components which explained 98% of the total data variance using PCA. Then, 
we fit several models to the code complexity data, and the static analysis fault 
density separately as predictors and the pre-release fault density as the depen-
dent variable. We then combined both code metrics and static analysis fault 
density as predictors for the pre-release fault density. The models we tested in-
clude linear, exponential, polynomial regression models as well as support vector 
regressions and random forest. As a measure of the regression fits, we compute 
R2. R2 measures the variance in the predicted variable that is accounted by the 
regression built using the predictors. As a measure of the unbiased error esti-
mate of the error variance, we use the mean squared error (MSE). 

Table 5 shows that when using both the complexity metrics and the static 
analysis fault density as predictors, we obtain the best fit using the random forest 
model; the R2 value increases to 0.783 and the MSE decreases to 0.216. There-
fore, we conclude that it is more beneficial to combine both code metrics and 
static analysis to explain pre-release faults. We do not present the regression eq-
uations to protect proprietary data. The validation of the model goodness is re-
peated 10 times using the 10-fold cross validation technique. 
 

 
Figure 1. Extracted principal components. 
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Table 5. Regression fits. 

Predictors R2 MSE 

Static Analysis Fault Density Alone 0.676 0.323 

Complexity Metrics Alone 0.507 0.493 

Both Complexity Metrics and the Static 
Analysis Fault Density 

0.783 0.216 

 
In order to address the fact that the above results are not by chance we re-

peated the data split (train: 70% and test: 30% of the data) as well as the model 
fitting several times. To quantify the sensitivity of the results we applied the 
Spearman rank correlation between the predicted and the actual pre-release fault 
densities. Table 6 reports the correlations as well as the accuracy (R2) of the pre-
diction when applied on three random splits of the data. The Spearman correla-
tion shows a strong positive correlation always stronger when both complexity 
metrics and static analysis are combined. 

4.3. Classification Analysis 

In this section, we discuss the experimental results showing how well the 
combination of code complexity metrics with static analysis fault density 
performs with respect to categorizing software components based on their 
fault-proneness. 

In order to classify software components into fault-prone and not fault-prone 
components, we applied several statistical classification techniques. The classifi-
cation techniques include random forest classifiers, logistic regression, passive 
aggressive classifiers, gradient boosting classifiers, K-neighbors classifiers and 
support vector classifiers. The dependent variables for the classifiers are the code 
complexity metrics and the static analysis fault density, the independent variable 
is the result of binarizing (i.e. fault-prone vs. not fault-prone) the pre-release 
fault density. We binarized the pre-release fault-density to create a binary classi-
fication problem (i.e. fault-prone vs. not fault-prone). We split the overall data 
into 2/3 training and 1/3 testing instances using stratified sampling. In order to 
address the fact that the classification results were not by chance we repeated the 
data splitting experiments. Our experiments showed that logistic regressions de-
livered the most accurate classifiers. Table 7 shows the accuracy results of the 
classification based on four data splits when using the logistic regression. 

We now want to determine the quality of our classification model. The accu-
racy of a classification model is characterized by misclassification rates. In this 
work, a Type I misclassification, also called false positive is when the model pre-
dicts that a module is not fault-prone when it is. Type II misclassification, also 
called false negative is when the model predicts that a module is fault-prone 
when it is not. In order to compare the actual observed and predicted classes for 
each component, we categorized each predicted class into four individual cate-
gories as shown in Table 8. As evaluation measures, we compute precision and  
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Table 6. Summary of fit and correlation results of random model sampling. 

 

R2 Correlation Results (Spearman) MSE 

Complexity 
Metrics 

Static 
Analysis 

Both 
(Proposed 

Model) 

Complexity 
Metrics 

Static 
Analysis 

Both 
(Proposed 

Model) 

Complexity 
Metrics 

Static 
Analysis 

Both 
(Proposed 

Model) 

Split 1 0.485 0.694 0.895 0.842 0.935 0.946 0.514 0.306 0.104 

Split 2 0.625 0.838 0.915 0.791 0.918 0.957 0.374 0.161 0.084 

Split 3 0.506 0.590 0.729 0.847 0.789 0.880 0.493 0.409 0.270 

 
Table 7. Precision and recall values for the classification model on four random data 
splits.  

 Precision Recall 

Split 1 0.739 0.375 

Split 2 0.717 0.358 

Split 3 0.723 0.357 

Split 4 0.725 0.365 

 
Table 8. Comparing observed and predicted component classes in a confusion matrix. 
Used to compute precision and recall values of classification model. 

Predicted class 

Observed class 

 Fault prone Non-fault prone 

Fault prone True negative (TN) False negative (FN) 

Non-fault prone False positive (FP) True positive (TP) 

 
recall defined as 1) ( )precision TP TP FP= ÷ +  and 2) ( )recall TP TP FN= ÷ + . 
The intuition behind precision and recall is the following: 
• Recall: how many fault-prone components our classifiers were able to identi-

fy correctly as fault-prone.  
• Precision: how many of the components classified by our classifiers as 

fault-prone are actually fault-prone.  
All two measures are values between zero and one. A precision of one indi-

cates that the classification model does not report any false positives. A recall of 
one implies that the model does not report any false negatives. Table 7 reports 
the recalls and precisions for the classification model on four random data splits. 
The mean precision over all splits lies at 0.726, the mean recall lies at 0.419. High 
precision relates to a low false positive rate, meaning (according to Table 8) the 
probability to classify true fault prone components as non-fault prone ones is 
low. Conversely, high recall relates to a low false negative rate; meaning low 
probability to classify true non-fault prone components as fault prone. The recall 
value of our classification model is modest and needs to be further improved. 
Nevertheless, our model still delivers a safe classification; non-fault prone com-
ponents would get more software quality assurance attention, while these com-
ponents are truly non-fault prone. A visual representation of the performance of 
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the classification model is provided in Figure 2, which plots the Receiver Oper-
ating Characteristic (ROC) metric. The area under the ROC curve (AUC) equals 
the probability that the classifiers predict a randomly chosen true positive higher 
than a randomly chosen false negative. The larger the AUC, the more accurate is 
the classification model. As shown in Figure 2, the accuracy of the classification 
model lies at 79% (AUC). 

4.4. Study Validation 

The validation of our study is based on the metrics validation methodology pro-
posed by Schneidewind [22]. Following the Schneidewind’s validation scheme, the 
quality indicator is the pre-release fault density (F) and the metric suite (M) is 
the combination of the static analysis fault density together with the code com-
plexity metrics. The six validation criteria are the following: 

1) Association: “This criterion assesses whether there is a sufficient linear as-
sociation between F and M to justify using M as an indirect measure of F” [22]. 
We identified a linear correlation between the pre-release fault density and the 
combination of the static analysis fault density with the code complexity metrics 
at a statistically significant level warranting the association between F and M. 

2) Consistency: “This criterion assesses whether there is sufficient consisten-
cy between the ranks of F and the ranks of M to warrant using M as an indirect 
measure of F” [22]. We demonstrated the consistency between the pre-release 
faults and the combination of static analysis fault density and code complexity 
metrics in Section 3 in Table 5. 

3) Discriminative Power: “This criterion assesses whether M has sufficient 
discriminative power to warrant using it as an indirect measure of F” [22]. This 
is satisfied based on the results in Section 6, where we showed that discriminant 
analysis can classify effectively fault-prone from not fault-prone components. 
 

 

Figure 2. ROC curve for logistic regression using code complexity metrics 
and static analysis fault density to classify software components. 
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4) Tracking: “This criterion assesses whether M is capable of tracking changes 
in F (e.g., as a result of design changes) to a sufficient degree to warrant using M 
as an indirect measure of F” [22]. Table 6 justifies the ability of M to track F. 

5) Predictability: “This criterion assesses whether M can predict F with re-
quired accuracy” [22]. The correlation analysis results as well as the prediction 
analysis results in Section 3. 

6) Repeatability: “This criterion assesses whether M can be validated on a 
sufficient percentage of trials to have confidence that it would be a dependable 
indicator of quality in the long run” [22]. We demonstrated the repeatability 
criterion by using random splitting techniques in Section 3. A limitation of our 
study with respect to repeatability is that all data used are from one software 
system.  

5. Conclusions and Study Limitations  

In this work, we verified the following hypotheses: 
1) static analysis fault density combined with code complexity metrics can be 

used as an early indicator of pre-release fault density; 
2) static analysis fault density combined with code complexity metrics can be 

used to predict pre-release fault density at statistically significant levels; 
3) static analysis fault density combined with code complexity metrics can be 

used to discriminate between fault-prone and not fault-prone components.  
This allows us to identify fault-prone components and focus most of the soft-

ware quality assurance on such components. And this allows us to increase the 
effectiveness and efficiency of the expensive quality assurance tasks at Daimler. 

The results reported in our study 1) are heavily dependent on the quality of 
the static analysis tools used at Daimler as well as the quality of the manual re-
views executed to eliminate false positives, and 2) might not be repeatable with 
same degree of confidence with other tools. The defects detected by static analy-
sis tools might be false positive. In our study, an internal review of the faults 
identified by static analysis tools has been executed, and only true positive faults 
have been used in this study. Moreover, it is possible that static analysis tools do 
not detect all faults during the development process. Such missed faults can be 
found by testing which would increase the pre-release fault density and conse-
quently might perturbate the correlation. In order to mitigate possible skewness 
of the correlation, our hypothesis was that combining the static analysis fault 
density with code complexity metrics would account for faults not identified by 
static analysis tools. Although we could derive good predictors using this com-
bination on the head unit control system at Daimler, this might not be genera-
lizable to other software projects. 

6. Future Work  

We plan to further validate our study by evaluating it on more projects and with 
more sophisticated metrics, which might result in even better predictors. We al-
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so plan to extend the study by considering more data sources such as test cover-
age metrics. We are also investigating criteria on assessing the similarities be-
tween software projects, such as the polar chart proposed by Boehm et al. [23], 
where projects can be classified based on five dimensions (personnel, dynamism, 
culture, size, criticality). Such similarity criteria might allow us to increase the 
accuracy of the pre-release fault predictors across similar projects. 
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