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Abstract 
IoT is considered as one of the key enabling technologies for the fourth in-
dustrial revolution that is known as Industry 4.0. In this paper, we consider 
the mechatronic component as the lowest level in the system composition 
hierarchy that tightly integrates mechanics with the electronics and software 
required to convert the mechanics to intelligent (smart) object offering well 
defined services to its environment. For this mechatronic component to be 
integrated in the IoT-based industrial automation environment, a software 
layer is required on top of it to convert its conventional interface to an IoT 
compliant one. This layer, which we call IoT wrapper, transforms the conven-
tional mechatronic component to an Industrial Automation Thing (IAT). The 
IAT is the key element of an IoT model specifically developed in the context 
of this work for the manufacturing domain. The model is compared to exist-
ing IoT models and its main differences are discussed. A model-to-model 
transformer is presented to automatically transform the legacy mechatronic 
component to an IAT ready to be integrated in the IoT-based industrial au-
tomation environment. The UML4IoT profile is used in the form of a Do-
main Specific Modelling Language to automate this transformation. A pro-
totype implementation of an Industrial Automation Thing using C and the 
Contiki operating system demonstrates the effectiveness of the proposed 
approach. 
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1. Introduction 

Based on one of the most commonly used definitions, the term Mechatronics 
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emphasizes on the synergistic integration of the three discipline areas, i.e., me-
chanical engineering, electronics and intelligent computer control, in the design 
and manufacture of products and processes [1], i.e., it emphasizes on synergy. 
What is not clear by this definition is the level at which this integration should 
be performed, i.e., at the system level, which is the traditional approach, or at 
the subsystem or even at the mechanical unit (component) level. The latter is 
proposed in Model Integrated Mechatronics [2] and refined with the 
3+1SysML-view model [3] [4]. This approach defines the Mechatronic compo-
nent as the main building block that abstracts the mechanical object to the soft-
ware level, and transforms it to a smart object by adding additional functionality 
to the one offered by the mechanical part. The so constructed mechatronic 
components are integrated with cyber components and humans to construct the 
industrial automation system. This approach slightly finds its road to production 
in the context of Industry 4.0, e.g., [5], since it greatly reduces the coupling be-
tween the system components compared to the traditional one, which considers 
the integration of the three disciplines at the system integration level. 

A substantial number of communication mechanisms and middleware are 
used for the integration of the constituent components of industrial automation 
systems (IAS). DPWS [6], one of the most recent, is the result of extensive re-
search based on the service-oriented architecture (SOA). It is based on SOAP 
which was the dominating technology used in SOA implementations. However, 
the REST paradigm is gaining more attention in manufacturing the past few 
years [7] [8]. A comparison of REST with SOAP in the context of the manufac-
turing domain can be found in [7]. Cloud computing has also attracted the in-
terest of researchers. Cloud manufacturing defines a new service-oriented man-
ufacturing model where cloud computing and IoT deeply influence the devel-
opment process of manufacturing systems [9]. IoT technologies greatly reduce 
the time for decision-making that is very critical in modern manufacturing en-
vironments [10]. Both, cloud computing and IoT, have been moving from 
buzzwords and hypes to tangible practical technologies that subtly influence and 
change our world [11]. A state-of-the-art survey in cloud manufacturing is given 
in [9], which considers IoT as a technology that deeply influences the develop-
ment of cloud manufacturing. 

IoT is aligned well with the architecture of a manufacturing enterprise and it 
is able to provide “vital solutions to planning, scheduling, and controlling of 
manufacturing systems at all levels” [12]. Several approaches consider IoT as a 
technology that can be utilized as an integration mechanism to be used down to 
the sensor and actuator level of the industrial automation system. Others con-
sider IoT as the new logical transition from the automation and connectivity 
concepts that exist in the IAS domain for many years. Bradley et al. [13], in an 
article with title “The Internet of Things—The future or the end of mechatron-
ics”, argue that many of the smart components associated with the IoT will be 
essentially mechatronic in nature, and will be constructed as far as it regards 
their interaction with the physical world on the conventional hierarchical model. 
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This model considers the controller of the mechatronic component in the loop 
with the controlled physical unit through sensors and actuators. 

For the conventional mechatronic component to be integrated in the IoT- 
based industrial environment a software layer is required on top of it to convert 
its conventional interface to an IoT-compliant one. Thus, the adoption of the 
IoT as integration technology for the system, transforms the conventional me-
chatronic component to an Industrial Automation Thing (IAT). This transfor-
mation is more likely, as authors also argue in [13], to bring significant changes 
to the way mechatronic, and related, systems are designed and configured. There 
is already an increasing complexity in the job of the industrial engineer in the 
task of transferring the functionality of the physical world in the software world 
in the level of the IAT. To this, the complexity of adding an extra layer to trans-
form the conventional mechatronic component to an IAT is added. New proto-
cols, languages, environments and architectural paradigms should be used and 
successfully integrated with the already used conventional architectures and this 
complicates the job of the industrial engineer. To this direction, authors in [14] 
present UML4IoT with focus on the modeling of the IAT. UML4IoT is a 
UML-based approach that realizes the model driven engineering paradigm to 
exploit IoT in the manufacturing domain. 

In this paper, 1) we extend the model of the IoT introduced in [14], and 2) de-
fine a model-to-model transformer to automate the construction of IATs based 
on the Contiki OS [15] and the C language. In the extended IoT model, the IAT 
is still the key artifact for the adoption of the IoT infrastructure in the manufac-
turing domain. Based on this model the manufacturing system is considered as a 
composition of cyber-physical and cyber components along with humans [16]. 
All these components are considered as Things, either permanent or on demand, 
that collaborate exploiting an IoT communication infrastructure to realize a 
higher level of behavior, i.e., the one of the system level. 

The presented approach is discussed in comparison with other approaches 
and mainly the IoT-A reference architecture that has been adopted by the Papy-
rus for IoT project [17], which is building a platform for the design of IoT sys-
tems in general. This project has many similarities with our project; both 
projects use UML and SysML as modeling languages, and Papyrus as tool to 
provide a modeling solution for IoT. Our approach focuses on manufacturing 
systems. More specifically, it focuses on the case that a high-level design specifi-
cation for the mechatronic component is not available. Specific annotations were 
defined to annotate the C source code specification of the mechatronic compo-
nent so as to automatically transform the mechatronic component to an IAT. 
The approach is presented using as case study the Liqueur production laboratory 
system. The LWM2M IoT application protocol [18] running on top of CoAP 
[19] is used as the IoT protocol stack. 

The remainder of this paper is structured as follows. Section 2 positions this 
research against related work. In Section 3, the proposed extension to the IoT 
model which is used in the UML4IoT approach is presented and discussed in 
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comparison with existing IoT models. In Section 4, the Contiki based Industrial 
Automation Thing is presented along with the case study. The model-to-model 
transformer for the C language and the Contiki operating system is presented in 
section 5 and the paper is concluded in the last section. 

2. Related Work 

IoT offers new levels of connectivity in the industrial domain that may lead to 
higher efficiency, flexibility, and interoperability among industries [20]. Howev-
er, not only many definitions exist for the IoT but also several models. These 
models, e.g., ETSI, IETF, SENSEI, have been developed to capture the key con-
cepts of the domain and provide the infrastructure to develop frameworks and 
architectures for the systems based on IoT. Fei et al. [21] claim that even though 
IoT has been used in various application domains there is still no clear and uni-
form definition and architecture about it. Therefore, the IoT domain suffers 
from an inconsistent usage and understanding of the meaning of several key 
terms, as also claimed in [22]. The definition of an IoT domain model is a pre-
requisite for defining IoT Architectures. A detailed discussion on the IoT models 
can be found in [23], where the IoT-A reference model for IoT is presented and 
validated. Authors in [24] present and discuss applications of IoT in Manufac-
turing and describe a five-layer architecture for manufacturing based on IoT. 

Authors in [25] focus on the device nature of Thing and consider sensors, ac-
tuators and controllers as IoT devices, i.e., things. They focus on the data field 
structures and evaluate the benefit of using an IP smart gateway as the decentra-
lized peripheral to integrated sensors, actuators and the controller and claim that 
this may improve the performance of IoT devices. We do not agree with the use 
of sensors and actuators as first-class model elements in the high-level design 
specification of the system. Sensors and actuators are just technology artefacts 
used to integrate the physical with the cyber world so they have no place in the 
high-level design spec of the system. In our approach, the IAT, which encapsu-
lates sensors, actuators and the controller, plays the role of the Thing and 
represents the key construct in the IoT manufacturing environment. 

MDD becomes more and more popular in the development of embedded 
software systems and various reports refer efficiency gains, from up to 50%, for 
example, in the development in the car industry [26], with high error reductions 
and a rapid increase of the maturity level of developed products. MDD is consi-
dered as a promising solution to address the complexity of software develop-
ment in IoT [27] and improve quality characteristics of the produced software. 
Malavolta and Muccini [28] argue that MDD is the right tools to address the 
complexity of wireless Sensor Networks development exploiting abstraction, 
reuse, separation of concerns and automation. They present a framework to sys-
tematically study, classify and compare existing MDA approaches in this area 
[28]. Several works publish results that exploit the MDD paradigm in IoT based 
systems to improve their quality characteristics but also the ones of their devel-
opment process. 
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Thang et al. [27] present FRASAD, a framework based on MDA to manage 
the complexity of IoT applications. They present a rule based model and a do-
main specific language to describe the application, using the sensor node as key 
concept. The primary objective is to model the sensor node software. Contiki is 
also supported among other OSs by this framework. Authors assume that the 
application logic of the sensor node program is captured in a Platform Indepen-
dent Model (PIM), which is constructed using a set of rules they have defined to 
describe behavior of the sensor node programs. This PIM is next mapped 
through a Domain Specific Language to the specific platform where it is in-
dented to be executed. However, the approach focuses more on the message dis-
semination compared to the processing which is considered as an optional part 
of a sensor node. Our approach focuses on the interface of the Industrial Auto-
mation Thing; the behaviour which is very complicated compared to one of a 
sensor node is defined using another DSML we have defined for structuring the 
cyber-physical component. 

Authors in [29] present the software architecture of a platform developed to 
address issues, among which the lack of development toolkits, that limit the dif-
fusion of IoT within industrial environments. They also describe an innovative, 
IoT oriented, model-driven development toolkit that focuses on the seamless in-
tegration of heterogeneous industrial devices and sensors, into existing legacy 
systems by transforming them into web services. The proposed toolkit allows 
inexperienced developers to discover and compose distributed devices and ser-
vices into mashups using a modelling tool. Thus, the use of the MDD approach 
is mainly on the generation of the mashups and does not focus on the modelling 
of a mechatronic component as is the case of our approach. Furthermore, au-
thors do not refer or describe the domain modelling language that they use in 
their MDD approach. 

A very early approach to model complex IoT systems with UML and then 
generate RESTful interfaces from these models is presented by Prehofer [30]. 
Authors do not define any DSML but they construct class diagrams and state 
charts using only primitive UML model elements. Authors in [31] describe an 
approach to define a visual DSML for the IoT based on UML. They model the 
Thing, which they consider as key construct for building an IoT system, using 
the UML component construct and its interface using provided and required in-
terfaces. Authors do not address the mapping of the conventional object- 
oriented (OO) interfaces of the Thing with the ones of the REST paradigm. 

Yingfeng Zhang et al. [32] present a real-time information capturing and in-
tegration architecture of the internet of manufacturing things (IoMT) to provide 
a new paradigm by extending the techniques of IoT to the manufacturing field. 
They use the term manufacturing thing but they do not focus on its structure 
and its development process. Instead, they focus on the overall architecture for a 
manufacturing system and describe a framework with focus on real-time track-
ing and tracing for the dynamic monitoring of the manufacturing process. 

To the best of our knowledge there is no other work that focuses on the auto-
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mation of the transformation process of the conventional mechatronic compo-
nent to an IoT compliant one, i.e., to an Industrial Automation Thing ready to 
be integrated into the IoT-based industrial environment. 

3. Towards an IoT Model for Manufacturing 
3.1. The IoT-A Reference Model 

De et al. [33] describe the key concepts of the IoT-A reference architecture that 
is a result of an EU funded IoT project. These concepts and their interrelations 
are depicted in Figure 1. Based on this, device is attached to entity, which is as-
sociated with resource that is accessed through service. In more detail, authors 
consider the entity as the “thing” in the IoT, i.e., the focus of interactions by 
humans and/or software agents. The device represents the hardware component 
that is either attached to an entity or it exists in its environment and monitors it. 
The resource is the actual software component that provides information on the 
entity or enables the controlling of the device. A service exposes the functionality 
of a device by accessing its hosted resources. 

3.2. The Proposed IoT Model 

Figure 2 captures the high-level key concepts of our IoT model. Based on this, 
the IoT is defined as a composition of Things and a processing and communica-
tion (IPV6-based) infrastructure. Any artifact that is able to communicate with 
other Things using the processing and IPV6-based communication infrastruc-
ture (Proc&ComnInfr) is considered as Thing. Things collaborate to achieve  
 

 
Figure 1. Example key concepts and interac-
tion in the IoT-A model (De et al. 2011). 

 

 
Figure 2. High level key concepts in IoT. 
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higher level of behavior compared to the one offered by each one of the collabo-
rating Things. Collaborating Things form a new Thing of type SystemAsThing 
that represents a system of Things. 

A Thing may be either a system of Things (SystemAsThing) or a component 
(ComponentAsThing). A ComponentAsThing is a Thing that does not utilize 
IoT for the integration of its constituent components. This type of Thing is used 
to represent in the IoT world conventional systems or components that have 
been transformed to Things (ComponentAsThing) by adding on top of their 
conventional interface an IoT-compliant one. The smallest Thing of this type is a 
sensor or actuator. The Proc&ComnInfr is a composition of: 1) processing nodes 
and 2) communication devices, i.e., gateways, bridges, switches, routers, etc. 
Proc&ComnInfr is modelled as a composition of Things (ComponentAsThing) 
assuming that these devices are IoT enabled; this will be the case in the near fu-
ture. The Cloud is considered part of the Proc&ComnInfr. 

3.3. The Model of Thing in Manufacturing 

Figure 3 presents the proposed model for the Thing. Based on this, a Thing is 
either real, cyber or virtual. A RealThing is either permanent or on demand 
Thing. A permanent Thing is a composition of a cyber-physical object (CpOb-
ject) and a cyber IoT enabler (CyberIotEnabler). An OnDemandThing is an ag-
gregation of a PhysicalObject and a cyber-physical IoT enabler (CpIotEnabler). 
As cyber-physical IoT enabler we model any device such as laptop, tablet, mobile 
phone, wearable, RFID reader, that provides an IoT like interface and is able to 
interact with a physical object. As physical object we consider a human, an in-
animate object or even animal with an embedded or attached tag. A human in-
teracts with an app, i.e., application specific IoT wrapper and is temporarily 
transformed to a Thing. Physical objects of type animals or inanimate objects  
 

 
Figure 3. The model of thing in IoT. 
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with an embedded or attached tag interact with an RFID reader with IoT like in-
terface for the same reason. A cyber-physical object is any physical object that: 1) 
implements a kind of functionality, i.e., material and/or energy transformations 
and 2) has been transformed to a smart object by appending on it information 
processing functionality. A mechatronic component is an example of cyber- 
physical object. A cyber IoT enabler integrated with virtual objects and deployed 
on a processing unit constructs a virtual Thing (virtualThing). The IoTwrapper 
of the UML4IoT approach is an example of cyber IoT enabler. A cyberThing is 
defined as a composition of one CpIotEnabler and one-to-many cyberObjects. 
This allows the developer to optionally group cyber objects of the system design 
model and map these to one cyberThing. 

A Thing may expose to its environment: 1) part of its structure in terms of 
properties and/or 2) part of its processing or storage functionalities. These func-
tionalities are exposed as services. Services are discriminated to: a) IoT infra-
structure services (IotService), b) application domain services and c) application 
specific services. All types of services may be managed (activated, configured, 
updated, etc.) through the IoT communication infrastructure. Communication 
infrastructure services may be considered similar to the Industrial Automation 
Thing services with the remark that Industrial Automation Things perform ma-
terial, energy and information processing while communication infrastructure 
Things perform only energy and information processing. For example, device 
management services, defined by the OMA LWM2M [18] are IotServices. Native 
services are services that would be defined for a specific application domain, e.g., 
home automation, manufacturing, or system specific services, such as the gener-
ate LiqueurTypeA service of the Liqueur Plant laboratory production system 
[14]. Device management is implemented by the management interface of the 
LWM2M. On the other side, Thing management is domain or application spe-
cific and should be implemented by specific cyber components on top of the de-
vice management and service interface, e.g., the one of LWM2M. 

The IoT processing and communication infrastructure (Proc&ComnInfr) 
should provide an environment for a service-based collaboration of Things. Each 
Thing implements functionalities offered to the environment as services with 
negotiated QoS that should be discovered and exploited by other Things. It may 
also utilize services of other Things to realize its behavior. The cyber compo-
nents of the manufacturing system model are deployed during the deployment 
time on Things of type ComponentAsThing (see Figure 2). UML/SysML design 
models of the system are marked with the IoT model elements using the 
UML4IoT profile to automatically transform the system to an IoT-compliant 
one. 

3.4. Discussion on the Proposed IoT Model 

Our definition for the Thing is different from a widely accepted one, described 
by De et al. [33], which defines the thing and its relations to devices, resources 
and services. Device, Resource, Service and Thing are also model elements in the 
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IoT model presented by Stephan [34]. In our approach, the ComponentAsThing 
encapsulates and hides how sensing of its physical part as well as actuation are 
realized, since this is an implementation issue. Based on this, we do not consider 
sensors and actuators first class model elements in our model and we do not 
capture these artifacts in the design model of the system. Thus, actors of the OO 
approach or terminators of the SA approach are modeled either as Industrial 
Automation Things or as human Things. 

This definition of Thing satisfies the requirement set by Zhuming et al. [12] 
according to which all interactions among the system constituent components, 
which may be humans, machines and products should be performed under the 
same umbrella. This allows the developers to focus on the system’s functionality 
and not worry about interactions, thus increasing the productivity. 

In the design model of the system we do not capture resources. A resource is a 
technology artifact used: 1) to represent the exposed properties and services of a 
Thing, and 2) to access these through a well-defined set of operations to achieve 
low coupling between collaborating Things. The LWM2M defines a set of such 
operations, i.e., READ, EXECUTE, WRITE, etc., implemented on top of the http 
operations. 

The RESTful as well as the SOAP paradigms can be utilized for accessing the 
services offered by Things. Thus, we adopt a different meaning for service from 
the widely accepted and described, e.g., [18], where access to resources from the 
outside world finally happens through services. IoT-A [23] which is a result of 
the IoT-A EU project, consider the service as an entity that accesses a Resource 
which is associated with an Entity that has attached a Device. It should also be 
noted that while a resource is defined in IoT-A as the core software component 
that represents an entity in the digital world, a Device is attached to a Resource. 
We do not adopt this model because it is technology driven. Our model focuses 
on the system modeling level and its objective is to offer a platform independent 
modeling of the target system. In our model, a Thing has structural (attributes) 
and behavioral properties (functions/methods). Those properties that are ac-
cessible from its environment are represented as resources. The RESTful para-
digm is adopted for accessing the resources. In this context and to exploit the 
benefits of IoT, the networking entities of the IoT Proc&ComnInfr are also con-
sidered as Things (IoT-Thing NetworkingThing) that provide their own set of 
information processing services required to establish the communication infra-
structure of the IoT. 

Plant processes as well as other functionalities of the plant are assigned to cy-
ber objects of the system’s design model. These cyber objects may be marked as 
cyberThings. Alternatively, cyber objects may be deployed on other cyberThings 
or on Things of the Proc&ComunInfr. In both cases the corresponding services 
are mapped to resources of the corresponding Thing. 

Our approach differs from the one of the ebb its platform [20] that identifies 
the following four layers which are considered required to bind the physical 
world with software services:  
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1) Physical-world layer, where devices, sensors and physical-objects are cap-
tured,  

2) The IoT layer, 
3) The internet-of-services layer and, 
4) The business system mediation and product life cycle layer. 
Pramudianto et al. [35] capture sensors and actuators as first-class model ele-

ments in their IoT meta model and use the term virtual object to refer to the 
software entity that acts as a proxy of the real-world object. In our model, the 
meaning of the virtual Thing is completely different. We use the term software 
representative (SR) to refer to what authors in [35] call virtual object. 

4. A Contiki Based Industrial Automation Thing 
4.1. The Liqueur Production Laboratory System 

The my Liqueur production mechatronic system, used as case study in this work, 
is composed of the following mechatronic components: smartSilo1, smartSilo2, 
smartSilo3, smartSilo4 and smartPipe (see Figure 4). The system is based on the 
case study initially used by Basile et al. [36] and then extended by Thramboulidis 
[16] to be compliant with the mechatronic component concept. The smartSilo 
mechatronic components are reserved in couples to produce specific types of li-
queurs. SmartSilos 1 and 4 form one couple; smartSilos 2 and 3 form the other 
couple. A mechatronic component has a well-defined interface through which 
exposes its behavior to be used by the liqueur production processes. This inter-
face exposes the functionalities offered by the silo such as fill, empty, mix and 
heat. Using the common pipe at the same time for liquid transfer among the si-
los is not allowed. Moreover, mixing the liquid in two silos at the same time is 
not permitted due to a constraint in power consumption. Implementation issues 
regarding the physical silo are encapsulated and hidden from the mechatronic 
component’s environment. 

Our intention is to integrate the components of this conventional mechatron-
ic system using IoT and gain from the low coupling that this technology intro-
duces among the interacting components. The use of the IoT will also enable the 
system to exploit the benefits of this technology regarding the user interaction by 
allowing end users to produce custom types of liqueur. The end user would be 
able to define, through an app (myLiqueurApp), the production parameters of 
the desired type of liqueur, as shown in Figure 4. 

4.2. The Cyber-Physical Component 

The legacy smartSilo Mechatronic/cyber-physical component is composed of the 
physical silo (physical part), a processing, storage and communication unit and 
the low-level control software (cyber part) required for the smartSilo to provide 
a higher level of abstraction functionality compared to the one provided by the 
physical silo. As shown in Figure 5, which presents the high-level architecture 
of the cyber-physical component, the software part is composed of two main 
parts. The first part is the software representation of the physical object, i.e., the  
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Figure 4. The Liqueur production system used as 
case study. 

 

 
Figure 5. The architecture of the cyber- 
physical component. 

 
mechanical unit, into the software domain. This part does not add any extra 
functionality; it only encapsulates the details of the integration of the physical 
world with the cyber world. On top of this, another part, the controller in Figure 
5, transforms the physical object to a smart one adding extra functionality. This 
part encapsulates the low-level control of the physical object required to trans-
form the physical world object into a smart cyber-physical component that pro-
vides its functionality through a well-defined interface. 

We use the Interface construct of UML to specify the cyber interface of a cy-
ber-physical component. The Interface is used in UML to declare a set of public 
features and obligations that together constitute a coherent service [37]. In this 
sense, an Interface specifies a contract that any instance of the mechatronic 
component shall fulfil. The UML class diagram of Figure 6 presents the interface 
of the smartSilo Mechatronic component in terms of provided and required in-
terfaces. The SmartSiloUsageIf represents the provided interface while the 
SmartSiloUserIf represents the required one. In the required interface, we show 
how to model the interaction between SmartSilo and its client with the Signal and 
Reception constructs of UML in order to represent the possibly asynchronous 
nature of this interaction. Thus, the heatingCompleted and mixingCompleted  
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Figure 6. The cyber interface of the SmartSilo mechatronic component. 

 
signals sent by the SmartSilo will trigger an asynchronous without a reply reac-
tion to the SmartSilo client, e.g., the type A liqueur generation process, through 
the corresponding Receptions captured in the SmartSiloUserIf. 

4.3. Towards a Contiki-Based Industrial Automation Thing 

The 6LoWPAN IoT gateway of Weptech electronic Gmbh running the Contiki 
operating system is used to host the controller of the smartSilo mechatronic 
component. The 6LoWPAN IoT gateway, which is based on an ARM®Cortex®– 
M3 SoC with 512 kB Flash and 32 kB RAM, functions as a border router in a 
6LoWPAN network. It connects a wireless IPv6 network, over an 802.15.4 com-
pliant radio interface in the 2.4 GHz band, to the Internet via a 10BASE-T 
Ethernet interface. 

Contiki is a lightweight operating system ported to various microcontroller 
architectures on resource constraint devices. It was selected mainly for its 
event-driven kernel that guaranties fast response times to events and to its ability 
for dynamic loading and replacement of individual programs and services that 
leads to very flexible Mechatronic components whose behaviour may be mod-
ified during run-time. The interfacing of the cyber part with the physical one, 
has been developed using the event-driven handling mechanism of Contiki to 
get a better response time compared to the traditional scan cycle approach 
mainly used in industry. Sensor signals generate interrupts which are handled by 
Contiki and transformed to asynchronous software events. These Events are 
broadcasted and captured by the corresponding event handling routines. Thus, 
the high-level sensor signal is transformed to the highLevelReached asynchron-
ous event. This event is handled by the corresponding event handling routine, 
which is responsible to implement the sensor data handling algorithm. The data 
handling algorithm sends among others a close signal to the inValve and acti-
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vates the sending of a fillingCompleted event to the client of the mechatronic 
component, i.e., the liqueur generation process. 

The response of the system from the time that the sensor generates the signal 
to the time that the signal arrives to the inValve actuator has an average value of 
39.20 μs. Listing 1 presents a part of the object-based C implementation of the 
smart silo cyber part that is related with the interface of the component with its 
environment. This implementation is for the case that the required interface will 
be modelled by call back functions instead of signals and receptions. It is evident 
that both alternatives, i.e., signals or call back functions, imply a tight coupling 
among the smartSilo and the components that use its behaviour, in the sense 
that these interfaces should be known in advance for the development of the 
component’s clients. 

A model-to-model transformer is required to automate the process of gene-
rating the IAT. This transformer will use as input the properly annotated with 
the DSML conventional mechatronic component. One approach is to mark the 
UML design specification of the mechatronic component with the stereotypes 
defined by the UML4IoT profile. If a UML design is not available then the 
source code of the cyber part of the mechatronic component is properly anno-
tated with specific annotations that have been defined based on the UML profile. 
An example of annotated code with Java-like annotations is given in Listing 2,  
 

 
Listing 1. Part of the C object-based implementation of the cyber part of the 
mechatronic component. 

 

 
Listing 2. Part of the C object-based implementation of the cyber part of the mechatronic component annotated with the 
UML4IoT java-like annotations. 

746 



T. Foradis, K. Thramboulidis 
 

where objects and object types of the cyber-physical component as well as their 
properties that should be exported to the IoT environment are properly anno-
tated. 

In Figure 7, the Contiki-based silo industrial automation thing developed 
with the proposed approach is shown. In the current implementation, the Wep-
tech embedded board is used as processing unit while a hardware simulator is 
used for the silo. The Raspberry Pi and the XDK of Robert Bosch are alternative 
supported platforms. 

4.3. The Interfaces of the Industrial Automation Thing 

Adopting the OMA LWM2M application protocol, the interface of the Industrial 
Automation Thing is well defined and independent of the behavior that is im-
plemented by the component. This interface is defined using UML provided and 
required interfaces as shown in Figure 8. Based on this figure the IAT has three 
provided interfaces and three required that are independent of the nature of the 
component. This feature combined with the ability of Contiki to dynamically 
load and replace individual services, results to a completely flexible component  
 

 
Figure 7. The silo industrial automation thing based on a hardware silo si-
mulator. 

 

 
Figure 8. Industrial automation thing interfaces (provided and required). 
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regarding its behavior. New or replaced behavior can be activated by the same 
well-defined REST interface of the Industrial Automation Thing. 

A comparison with Figure 6 that captures the conventional mechatronic 
component interface points out the flexibility of the AIT compared to the con-
ventional one. Through this REST interface, resources may be created and used 
on demand based on requirements assuming that the physical part supports the 
requested new behavior. Resources, Resource Instances, Objects, Object In-
stances which are exposed by the IAT as well as their attributes, are accessed by 
the clients of the IAT through the device management and service enablement 
interface (DM&SE If). IPSO smart objects [38] have been adopted in this work 
to satisfy the requirement for interoperability. 

5. Automating the Generation Process of IAT 

For the automation of the generation process of the IAT a model-to-model 
transformer has been implemented. This transformer accepts as input the anno-
tated legacy source code and applies a set of transformation rules properly de-
fined to get the source code of the IAT. 

5.1. The Model-to-Model Transformer 

Α prototype model-to-model transformer was developed based on Autogen and 
GNU Guile. Autogen (https://www.gnu.org/software/autogen/) is a GNU tool 
that supports creation and maintenance of source code. As shown in Figure 9, 
Autogen takes as input the annotated legacy code of the smart object, a template 
file and the definitions file. The template file implements the set of transforma-
tion rules. It actually defines the structure of the textual output of Autogen, i.e., 
the structure of the IAT source code, making use of autogen’s macro-type for-
mat and embedded scheme code. The definitions file provides the information 
required to instantiate the template file. More specifically, it includes the 
LWM2M object/resource/instance properties and other source-level informa-
tion. The definitions file can be generated by the appropriate scheme procedures  
 

 
Figure 9. Transformation process of the IAT. 
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of the c-parser Guile module that uses as input the annotated legacy source code, 
as shown in Figure 9. The Guile module that implements the c-parser scheme 
procedures was developed as a high-level recursive descent parser, based on the 
guile-parser-combinators module  
(https://git.dthompson.us/guile-parser-combinators.git). GNU Guile is an im-
plementation of the Scheme programming language  
(https://www.gnu.org/software/guile/). Autogen collaborates with the Guile VM 
through guile procedure calls embedded in the template file. The output of the 
transformation process is the source code of the IAT in a format ready to be 
compiled with the Contiki operating system and then deployed. 

5.2. Transformation Rules 

The following rules that apply for each object of the lwm2m client have been de-
fined.  

Rule 1:Create wrapper functions for annotated behaviors. 
For each function with the BehaviorResource annotation create a wrapper 

function with input parameters:  
lwm2m_context_t *ctx, const uint8_t *arg, size_targsize, uint8_t *outbuf, 

size_t outsize 
E.g., Source:static int fill(void); 
Target: static intfill(lwm2m_context_t *ctx, const uint8_t *arg, size_targsize, 

uint8_t *outbuf, size_t outsize); 
Rule 2:Create getters/setters functions for each property annotated with the 

PrimitiveRes annotation. 
For each attribute annotated with the PrimitiveRes annotation create the cor-

responding read and write function depending on the applied operations on the 
attribute defined in the annotation. 

E.g., for the silo_state property 
staticintget_silo_state(lwm2m_context_t *ctx, uint8_t *outbuf, size_t outsize) 

{ 
char *value; 
  value = get_silo_state_inString(silo->state); 
returnctx->writer->write_string(ctx, outbuf, outsize, value, strlen(value));} 
Rule 3:Construct the Resource model.  
For each annotated attribute or function create an entry using the 

LWM2M_RESOURCE_CALLBACK macro of the lwm2m implementation 
which is integrated into the Contiki OS. E.g., for the silo_state 

LWM2M_RESOURCE_CALLBACK(0,{get_silo_state, NULL, NULL}), 
Append this entry to a list of resources, i.e., silo_resources, using the 

LWM2M_RESOURCES macro. 
Create the corresponding object instance using the LWM2M_INSTANCE 

macro and register the resources. E.g., LWM2M_INSTANCE(0, silo_resources) 
Append it to the list of silo instances using the LWM2M_INSTANCES.  
E.g.,LWM2M_INSTANCES(silo_instances, …. ); 
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Create the Object and registers its instances using the LWM2M_OBJECT ma-
cro. E.g.,  

LWM2M_OBJECT(silo_obj, 1663, silo_instances); 
Rule 4:Modify setter functions. 
For each attribute annotated with the ObservableResource annotation, modify 

its setter function (set_<attribute name>())by appending a call to the 
lwm2m_object_notify_observersfunction. 

Assumption: For each observable attribute a setter function exists. E..g.,  
Source: void set_filling_completed(){   
 silo->filling_completed = 1;} 
Target: void set_filling_completed(){   
 silo->filling_completed = 1; 
lwm2m_object_notify_observers(&silo_obj, "/0/7");  }  
Rule 5:Generate and handle the initialize function for the object. 
5.1 Generate an initialize function to initialize the legacy object and register it 

to lwm2m by a call to thelwm2m_ engine_register_object function.  
The legacy initialize function of the object should be properly annotated. E.g.,  
void ipso_ silo_init(void) {   
 silo_init(); // legacy object initialization function 
 lwm2m_engine_register_object(&silo_obj); } 
5.2 Append the initialize function prototype to theipso-objects.hfile. E.g.  
void ipso_silo_init(void); 
5.3 Append a call statement to the initialize function of each object to theip-

so_objects_init()function body of theipso-objects.cfile. E.g., 
void ipso_objects_init(void) { 
ipso_silo_init(); 

6. Conclusion 

In this paper, we consider the tight integration of the physical world with the 
cyber one at the mechatronic component level. A mechatronic component offers 
its functionality through well-defined mechanical, electrical and software inter-
faces. In this sense the industrial automation system is a composition of mecha-
tronic components along with cyber components and humans. IoT is adopted 
for the integration of these components to exploit the benefit of this technology 
and UML4IoT is utilized to automatically transform the conventional mecha-
tronic component into an IoT compliant cyber-physical one, i.e., to an Industrial 
Automation Thing. The IoT model used in the UML4IoT approach is extended 
towards a complete IoT model for the manufacturing domain. The transforma-
tion rules required for the development of the model-to-model transformer have 
been developed and validated through a prototype implementation of the li-
queur production laboratory system. The prototype implementation of the silo 
industrial automation thing based on a Contiki enabled embedded board and 
the C language is used to demonstrate the applicability and the effectiveness of 
the proposed approach. 
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