
Journal of Software Engineering and Applications, 2017, 10, 457-481
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.105026 May 26, 2017

Evaluation of Selected Control Programming
Languages for Process Engineers by Means of
Cognitive Effectiveness and Dimensions

Gülden Bayrak, Felix Ocker, Birgit Vogel-Heuser

Institute of Automation and Information Systems, Technical University of Munich, Munich, Germany

Abstract
Different programming languages can be used for discrete, abstract and
process-oriented programming. Depending on the application, there exist ad-
ditional requirements, which are not fulfilled by every programming lan-
guage. Flexible programming and maintainability are especially important
requirements for process engineers. In this paper, the programming languages
Activity Diagram, State Chart Diagram and Sequential Function Chart are
compared and evaluated with regard to these requirements. This evaluation is
based on the principles of cognitive effectiveness and cognitive dimensions.
The aim of this paper is to identify the programming language suited best for
controlling sequential processes, e.g. thermomechanical or batch processes.

Keywords
Cognition, Cognitive Science, Graphical User Interfaces, Human
Computer Interaction, Human Factors, Programmable Logic
Controllers, Process Control

1. Introduction

Certain products can only be produced by a combination of discrete manufac-
turing and process technologies. The manufacturing process of these products
integrates both characteristics of the process and of the manufacturing technol-
ogy. Companies offering such products are therefore subject to the challenges of
both technologies. These include “increasing efficiency, effectiveness and quality
in design of software engineering […] to shorten engineering and start-up and
ease maintenance” [1]. Thermomechanical and batch processes usually consist
of a number of sub-processes in a unique sequential order [2]. These sub-
processes generally affect the resulting product and change the product state to

How to cite this paper: Bayrak, G., Ocker,
F. and Vogel-Heuser, B. (2017) Evaluation
of Selected Control Programming Lan-
guages for Process Engineers by Means of
Cognitive Effectiveness and Dimensions.
Journal of Software Engineering and Ap-
plications, 10, 457-481.
https://doi.org/10.4236/jsea.2017.105026

Received: April 7, 2017
Accepted: May 23, 2017
Published: May 26, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.105026
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.105026
http://creativecommons.org/licenses/by/4.0/

G. Bayrak et al.

458

“non-commutative”. Companies usually rely on Programmable Logic Control-
lers (PLCs) to control (experimental) machines that implement these processes
[3].

A desired product in this domain is defined by the individual process steps,
their parameters and the steps’ sequence. In industry, the correlations between
these influencing factors and the resulting product properties are often analyzed
experimentally. As process engineers have the appropriate expertise, they devel-
op and modify the sequence as well as the parameters of the individual steps in
each experiment. Such modifications are realized on code level (PLC). However,
adaptation of sequences, parameters and timing constraints in PLC code is er-
ror-prone and time consuming for process engineers, who are often PLC pro-
gramming novices [4]. This holds true for a wide variety of lab size machines to
develop new process technologies, e.g. batch processes or even a timber press.
Batch processes in chemical production are characterized by the existence of a
recipe for each product, which specifies the sequence of process steps and the
corresponding control of valves.

In order to support especially process engineers, who have the necessary ex-
pert knowledge but lack in programming skills, code should be changeable. This
greatly facilitates the engineering of processes based on experiments.

Another important factor is the reduction of development costs. Maintaina-
bility costs increase continuously and already account for up to 90% of costs
throughout the software product lifecycle, according to estimates [5]. Therefore,
maintainability has to be especially considered.

Flexible programming very well indicates changeability, which refers to the
possibility of changing or adjusting a program according to different needs [6].
Flexible programming can be broken down into modifiability [6] and modulari-
ty [7] [8]. Harrison et al. [9] subdivided maintainability into modifiability and
understandability. All in all, an adequate way of engineering processes should ful-
fill the requirements of flexible programming (R1) and those of maintainability
(R2). These two overlap in the need for modifiability (R1.1). In addition to this,
R1 also includes modularity (R1.2), while R2 demands understandability (R2.1).

A hierarchical supervision (hierarchical scheme) programming is also impor-
tant because it is of relatively low complexity. Hence, its understandability is
higher than that of a conventional nonhierarchical one [10]. It was shown that
understandability and maintainability in graphical programming languages are
better than in textual programming languages [11]-[17]. Therefore, we do not
consider textual programming languages in this paper. However, there also exist
limitations to understandability in graphical programming languages. Miller’s
Law [18] states that an average human can hold up to 7 ± 2 objects in working
memory.

The main contribution of this publication is the analysis of the programming
languages Activity Diagram (AD), State Chart Diagram (SC) and Sequential
Function Chart (SFC) regarding the concepts of flexible programming and
maintainability. These consist of the requirements modifiability, understanda-

G. Bayrak et al.

459

bility and modularity. Since the requirements refer to the visual syntax of the
programming languages, the methods for analyzing the structural complexity as
well as the cognitive efficiency of the notations are researched first and applied
afterwards.

The remainder of this contribution is structured as follows. Within Section 2,
we present an application example and introduce the discrete programming
languages AD, SC and SFC. This section concludes with a comparison of the
programming languages’ visual syntax and metaclasses. Section 3 discusses the
state of the research on methods for comparison of programming languages in
terms of the requirements modifiability (R1.1), modularity (R1.2) and unders-
tandability (R2.1). It also includes an overview of existing work and their results.
The correlation between the requirements and descriptive methods for compar-
ison of dissimilar languages is discussed in Section 4. Section 4 also includes the
comparison and evaluation of AD, SC and SFC in terms of modifiability, mod-
ularity and understandability. It ends with a summary of the evaluation’s results.
Finally, Section 5 concludes the paper and gives an outlook on future research.

2. Application Example in AD, SC and SFC

PLCs provide various graphical control-flow-oriented programming languages
for the implementation of discrete processes. IEC 61131-3 [19] includes three
graphical programming languages: Sequential Function Chart (SFC), Ladder
Diagram (LD) and Function Block Diagram (FBD). Previous work of our group
shows that the Activity Diagram (AD) and State Chart Diagram (SC) are the
most appropriate languages for process engineers [20] [21]. The plcML-Editor
[20], which includes AD and SC, provides model-driven graphical modeling for
PLCs. Both the visual syntax and the meta-model of the programming language
SC are based on Witsch [22] and the SFC programming language is based on
CoDeSys V3 [23].

In order to prevent gaps in the information flow of the design process, it is de-
sirable to select notations which have high suitability values in many, or even in
all, phases of the design process of production systems [24]. In an expert survey,
the different suitability potentials of notations were assessed according to the
phases of the design process [24]. It was shown that SC are of great importance
in all phases, while the SFC seems to be the most important description language
in late phases. The flowchart, which is similar to an AD, and the SC have similar
suitability values in the implementation and commissioning phase. We conclude
that the programming languages AD, SC and SFC should be further investigated
regarding their appropriateness for thermomechanical and batch processes.

2.1. Process Steps in the Application Example

As an application example, we use the production of a shaft with flanges with
graded properties in a metal forming plant. The flange forming consists of the
four process steps heating, transforming, forming and cooling. This is exemplary
for most of the processes in the CRC TTR30, independent from the resources

G. Bayrak et al.

460

used [25]. In this case, resources refer to technical compositions/machines.
“Heating”, e.g., may be realized in one prototype (metal forming) by inductive
heating and in another (friction pressure) by friction heating. Each possible
combination of the process steps in metal forming (cp. Figure 1) leads to specif-
ic product properties. On the one hand, the discrete process sequence “preheat,
transport, heat, form and cool” delivers a product A (shaft with flanges) with the
property functionally graded A1 (distribution of hardness at the edge of the
workpiece). The process sequence “parallel heat and cool form and finally cool”
on the other hand delivers a product A with the property functionally graded A2
(distribution of hardness in the interior of the workpiece).

Another possible sequential process that consists of the same four process
steps is a plastic pressing (cp. Figure 1, Product B). We consider the workpiece
to already be put into the press, so it starts with a preheating of the hardboards.
Thereafter, the workpiece is heated and formed in parallel. After this, depending
on which mode has been selected, either the forming process is completed and
the workpiece is cooled (for example by water- or airflow), or the workpiece is
cooled during the forming process.

In the following, we compare the visual syntax and the metamodels of AD, SC
and SFC at the example of the third process sequence. We realized AD and SC
with the UML-Editor [20] and SFC with CoDeSys 3.0, which is a PLC Program-
ming environment [23] (cp. Figures 2(a)-(c)).

2.2. Activity Diagram (AD)

In Figure 2(a), the AD for the process of Product B (cp. Figure 1) is presented.

Figure 1. Different sequences of the basic process steps
heating, transporting, forming and cooling resulting in
products A (shaft with flanges)or B with different prod-
uct characteristics (A1, A2,···).

Product
A2

heating forming

cooling

Product
B

preheating

heating forming

cooling forming

…

transporting

preheating

Product
A1

heating

cooling

forming

G. Bayrak et al.

461

Figure 2. (a) Simple steps of plastic pressing in AD.
(b) Simple steps of plastic pressing in SC. (c) Simple
steps of plastic pressing in SFC.

G. Bayrak et al.

462

The program starts (Start Point) with an initialization Action such as preheating
of the hardboards. The parallelization of processes, e.g. heating and forming, is
realized by Fork and Join. The decision between the nodes cooling and forming
and only cooling is represented by a Decision Point. Finally, the program ends
with two End Points.

This action is performed until a fixed end-condition, defined by the process
engineers, holds true. The end condition is a parameter of the action and cannot
be learned from the control flow. In AD, only the outgoing transitions of deci-
sion nodes have guard conditions. An action corresponds to the real duration of
a process in terms of a technical system, e.g. the time until a work piece has
reached a certain temperature. This corresponds to the comprehension of a
process engineer.

2.3. State Chart Diagram (SC)

States are the main elements of the SC. From the perspective of a process engi-
neer, states in a programmed technical system are either static (e.g., “heated”,
“formed”) or dynamic (e.g. “heating”, “forming”). Figure 2(b) shows the dy-
namic states of a plastic pressing process. States can have Entry, Do, and Exit
Actions. The elements Start-, Choice- and End Point have the same function/
semantic construct as their equivalents in AD (Start-, Decision-, and End Point).
Additionally, there is a static conditional branch Junction, which also has a
merge and decision function. Parallelization can be realized by Fork/Join (ana-
logously to AD) or with an additional composite State (depicted in Figure 2(b)).
Within SC, processes run pseudo parallel, i.e. that the modeled parallel behavior
is realized sequentially with priority numbers. In contrast to an AD, the (end-)
conditions are integrated in the Transitions.

2.4. Sequential Function Chart (SFC)

Figure 2(c) shows the sequence of an exemplary plastic pressing process in SFC.
SFC is suitable for depicting sequential behaviors of a control system. The con-
trol sequences are time- and event-driven. Unlike AD and SC, which begin with
a Start Point, all SFC programs must begin with an Init Step. This is the first step
to be activated whenever an SFC is started. The Init Step (depicted by a rectangle
with a double border line) has a similar visual syntax like a “normal” Step (rec-
tangle with thin border line). A Step can be associated with an IEC action with
qualifier. These are shown to the right of the corresponding step in a box that
consists of two parts. SFC has no End Point, but the Jump Node may be used for
designing the end of the process step (jump to the Init Step) or for jumping to
another step in the program. Branches and parallelization can be realized with a
visual syntax (horizontal double lines). As in the case of SC, SFC can also have
Steps with Entry, Do and Exit actions.

2.5. Comparison of the Metaclasses of AD, SC and SFC

Within this section, we show the similarities and differences between AD, SC,

G. Bayrak et al.

463

and SFC on the metaclass level. To compare the different programming lan-
guages, it is necessary to analyze the metamodels of AD, SC and SFC. Table 1
shows an overview of the concrete metaclasses of the different metamodels. Ge-
neric metaclasses can be created by comparing the individual metamodels’ vari-
ous metaclasses including their internal relationships. This means that different
generic semantic constructs are realized by certain metaclasses of different pro-
gramming languages. Exemplary, the generic metaclass Flow is mapped to the
metaclass Control Flow in AD but to the metaclass Transition in SC and SFC. A
Branching is realized in AD with Decision and Merge Node, in SC with Pseudo
State (Choice, Junction) and in SFC with a Transition Flow (cp. Table 1). Some
metaclasses cannot be mapped to generic metaclasses, though. These are Object
Flow, Pin and Central Buffer of AD, Deep History and Exit Point Pseudo State of
SC and Action Association of SFC.

3. State of the Art

In the area of PLC programming different benchmark studies exist, that address
the comparison of LD and Petri Net (PN) design methods with the criteria un-
derstandability, complexity and flexibility [26] [27]. The comparison of 11 high-
level system design methods, among others the state transition diagram and state
machine, is shown in [28]. Cao et al. [29] presented case studies of visual and
formal modeling and design. All these studies have different focuses and a com-
parison of the visual syntax between AD, SC and SFC does not exist. In [30], an
approach is presented that combines the advantages of SC and SFC in sequential
statecharts (SSC) by using a function block encapsulation. The focus is put on
performance, though, and explicitly not on legibility and usability of graphical
notations. Lukman et al. [31] introduced a model-driven engineering approach
for process control based on the newly developed domain-specific modeling
language ProcGraph. They don’t focus on maintainability by process engineers.
We selected AD, SC and SFC, though, due to their prevalence in the domain [17]
[32] and their ease of use, especially for process engineers, who are often pro-
gramming novices.

Table 1. Comparison of the metaclasses of AD, SC and SFC.

Metaclasses generic Metaclasses AD Metaclasses SC Metaclasses SFC

Process Step Action State Step, Action

Flow Control Flow Transition

Transition
Branching

Decision Node

Ps
eu

do
 S

ta
te

Choice

Merge Node Junction

Parallelization
Join Node Join

Fork Node Fork

Start Initial Node Initial Step, Action

End Activity Final Node Final State Transition (Jump)

Structure Activity Partition Composite State -

G. Bayrak et al.

464

The following research of methods for comparison of programming languages
focused on those that consider the requirements modifiability (R1.1), modularity
(R1.2) and understandability (R2.1).

There exist different descriptive methods for the comparison of dissimilar
languages of these sub-requirements. The two prescriptive decision theories
most applied are cognitive dimensions and cognitive effectiveness (cf. Table 2).
Hereby, cognitive dimensions (CD) is a task-specific broad-brush framework for
assessing almost any kind of cognitive artifact addressing primarily non-spe-
cialists [33]. In contrast, cognitive effectiveness (CE) aims at evaluating the
“speed, ease, and accuracy with which a representation can be processed by the
human mind” [34]. Thus, the focus of cognitive effectiveness is rather put on
understandability.

Green [37] and Britton and Jones [36] present a dimension analysis of pro-
gramming languages. The dimension analysis facilitates comparing dissimilar
languages and also helps to identify the relationship between them. Roast et al.
[38] focus on the dimension analysis for program modification. Moody [35] de-
fines the principles for the design of effective visual notations with a cognitive
effectiveness analysis. These principles are intended to support the comparison
of notations in terms of understandability. These methods (cognitive dimensions
and effectiveness) are used for evaluation purposes of programming and model-
ing languages [39] [40] [41] and [42] [43]. Table 3 shows an overview of existing
work with these methods and their results especially for AD and SC separately.

Barji et al. [41] assess graphic expressiveness and intuitive comprehension of
IEC 61499 function blocks, UML SC and Petri net based CNet. The notations are
evaluated by specific criteria. The criterion visual modularity is partially fulfilled
by SC and the criterion visual hierarchy is completely fulfilled by SC. The level of
abstraction of SC is classified as low. The cognitive analysis of Figl et al. [40] is
limited to the routing elements, wherein the routing elements of AD were eva-
luated as easiest to understand. Moody and van Hillegersberg [39] evaluated and
compared the various UML diagrams (i.a. AD) with each other. From a visual
representation view AD was rated better than the other diagrams of UML.

Table 2. Methods of comparing programming languages.

Reference Evaluation of in terms of with

Moody (2009) [35]
Visual notations in software

engineering
Understandability

Cognitive
Effectiveness

Green and Petre
(1996) [33]

Computer programs and
visual notations

Understandability
Cognitive

Dimensions

Britton and Jones
(1999) [36]

Software specification
languages

Ease of
understandability

Cognitive
Dimensions

Green (1989) [37]
Computer/programming

languages
Understandability

Cognitive
Dimensions

Roast et al. (2000)
[38]

Visual and a textual
programming language:

LabVIEW and pseudo-Code

Program
modification

Cognitive
Dimension:

repetitively viscous

G. Bayrak et al.

465

Table 3. Comparison of programming languages in terms of ease of understanding/
maintainable results for UML.

Reference Evaluation of in terms of with Result

Moody et
al. (2009)

[39]

the Visual Syntax
of UML 2.0

understandability
Cognitive

Effectiveness

“AD is the best
from a visual

representation
viewpoint.”

Figl et al.
(2010) [40]

Process modeling
languages (only

routing Elements
of EPC, UML (i.e.
AD), YAWL, and

BMPN)

creating and
understanding

models

Cognitive
Effectiveness

“AD has the most
scores.”

Barji et al.
(2006) [41]

IEC 61499 function
blocks, UML SC

and Petri net based
CNet

graphic
expressiveness
and intuitive

comprehension

Design
criteria for
real-time
control
systems

“The availability of
modularization and

reuse in SC is
partially. SC fulfills
the composition/

hierarchy. The
abstraction level

of SC is low.”

In the above mentioned studies, the UML diagrams (UML 2.0) of OMG were

analyzed, which have a different syntax than the plcML programming languages
[22]. In this work, the plcML programming languages AD and SC [22] are inves-
tigated which have adapted and selected syntax and semantics for the PLC envi-
ronment.

Bauer [44] investigated the semantic differences between SFC and SC and
showed that it is not possible to translate one language into another. But this
does not exclude that a discrete process can be realized in two programming
languages (cf. section 2.5). The visual syntax differences between SFC and SC for
the above mentioned requirements are not addressed. The ontological analysis
as defined by the Bunge-Wand-Weber Model [45], which is also used for the
evaluation of modeling languages, cannot distinguish between two notations
which have the same semantics but different syntax [46]. Our focus is to com-
pare the different programming languages, which have similar semantics (ge-
neric semantic) but different syntax.

In summary, for the comparison of AD, SC and SFC academia lacks ap-
proaches which investigate visual syntax for programming mechanical processes
in terms of the requirements R1 and R2.

4. Concept of Analysis

In order to evaluate the programming languages AD, SC and SFC, the relation-
ships between requirements, cognitive dimensions and effectiveness, and their
criteria are investigated. Table 4 shows the correlation between the requirements
R1 and R2 as well as the cognitive methods.

The requirements can be evaluated by the corresponding principles/criteria of
cognitive dimensions or/and effectiveness. For assessing the programming lan-

G. Bayrak et al.

466

guages’ modularity (R1.2), both their degree of abstraction (CD) and their com-
plexity management (CE) have to be considered. It was shown, that modularity
is very much related to abstraction [47], but the criterion complexity manage-
ment additionally analyzes the visual modularity. The requirement modifiability
(R1.1) can be evaluated by the cognitive dimension viscosity. However, con-
cerning understandability (R2.1), both cognitive dimensions and cognitive effec-
tiveness offer different criteria to be taken into account. When comparing the
relevant properties of cognitive dimensions [48] with the principles of cognitive
effectiveness [34] concerning understandability, it becomes evident, that the
prior are a subset of the latter (cf. Table 5). Britton and Jones [36] thereby define
the properties of cognitive dimensions as properties of languages that contribute
to ease of understanding of representations. Thus, for the requirement unders-
tandability, it is sufficient to examine the principles of cognitive effectiveness.

4.1. Modifiability Analysis (R1.1)

The modifiability of the three programming languages is analyzed with the cog-
nitive dimension viscosity. Viscosity is defined as resistance to change, i.e. the
effort for making changes in a program [38]. Thereby, repetitive viscosity and

Table 4. Relationship between requirements and cognitive dimensions and effectiveness.

Requirement
Requirement

(sub)

Evaluation
with

Cognitive…
Relevant principles/criteria

R1: flexible
programming

R1.2: modularity
Dimensions

abstraction, (can increase hidden
dependencies and visibility)

Effectiveness complexity management

R1.1: modifiability Dimensions viscosity

R2:
maintainabili

ty of the
program

R2.1:
understandability

Dimensions
redundant recording, consistency,

visibility, closeness of mapping, hidden
dependencies, abstraction

Effectiveness

semiotic clarity, perceptual
discriminability, semantic transparency,

complexity management, cognitive
integration, visual expressiveness, dual
coding, graphic economy, cognitive fit

Table 5. Comparison of CE and CD concerning understandability.

Criteria of Cognitive Effectiveness [34] Criteria of Cognitive Dimensions [48]

Semiotic clarity, graphic economy Consistency (hard mental operations)

Semiotic clarity, perceptual discriminability Consistency (visibility)

Cognitive fit Closeness of mapping (role expressiveness)

Perceptual discriminability, visual
expressiveness, dual coding

Hidden dependencies (visibility)

Complexity management Abstraction gradient, hidden dependencies

G. Bayrak et al.

467

knock-on viscosity can be distinguished. Repetitive viscosity considers “the na-
ture of the change which takes place in terms of pre- and post-conditions and
the user actions which can achieve that change” [38]. This can be easily quanti-
fied through the number of necessary further actions. Knock-on viscosity on the
other hand “concerns the manner in which an artifact can limit or restrict how a
goal is reached” [38]. This is harder to examine, though, and is partially reflected
by the number of necessary actions. Therefore, we limit the viscosity evaluation
within this paper to the metric of repetitive viscosity: the length of the minimal
action sequence for a program modification. The shorter this action sequence,
the easier the realization of the associated program modification [38]. We inves-
tigate the change in a program with the following program modification actions,
which are typical requirements of process engineers for thermomechanical
processes. Thereby we assume that in all programs a Process-Library (Activity-,
State-, and Step-Library for thermomechanical processes (like heating, forming,
etc.)) exists:

1) Creation of the different process sequences (greenfield, total of 18 different
process sequences)

2) All possible maximal process sequences in a program with decision nodes
(includes 9 process steps, 2 parallel process steps and 6 decision nodes)

3) Exchange the process step with another process step (minimal change in a
process sequence)

4) Add new process step(s)/parallelization/branching (minimal change in a
process sequence)

5) Changes for a new experimental test (includes 14 different changes)
The creation of the different process sequences 1) contains for each generated

program the activities: insert nodes (start-, stop, process step-, decision-node,
etc.), connect the elements, insert, if necessary, a transition condition. The
“maximal process sequence” 2) includes all possible program sequences in one
program by using decision nodes. The “exchange [of] the process step with
another process step” 3) includes the activities delete and insert a process step
and connect the new process step with others. The activities of “add new ele-
ment” 4) are delete edges, move elements, insert nodes, connect and, if neces-
sary, insert a transition condition. Finally, the “changes for a new experimental
test” 5) consist of the activities delete edges, delete nodes, move nodes, insert
nodes, connect nodes, and, if necessary, adjust/insert transition conditions. The
result of this program modification is presented in Table 6. It is striking that by
the modifications (1 - 5) in SC more actions are needed as in AD and SFC. This
can be explained by the fact that by every change, the transitions need to be ad-
justed in the appropriate places. Although this is also the case in SFC, SFC allows
the simple adding of elements. That means if one step is added in some position
then the in- and outgoing edges are connected automatically with the preceding
and following steps. Thereby the number of activities is reduced. In case of AD,
this is not the case, so that the number of actions is minimally larger than in the
SFC. Moreover, in SFC not every step has an outgoing edge with a transition

G. Bayrak et al.

468

Table 6. Results of the modifiability analysis.

Pr
og

ra
m

m
in

g

la
ng

ua
ge

s

(1
) C

re
at

io
n

of
 th

e
di

ffe
re

nt

pr
oc

es
s s

eq
ue

nc
es

(2
) A

ll
po

ss
ib

le
 m

ax
im

al
 p

ro
ce

ss

se
qu

en
ce

s i
n

a
pr

og
ra

m
 w

ith

de
ci

sio
n

no
de

s

(3
) E

xc
ha

ng
e

th
e

pr
oc

es
s

st

ep
 w

ith
 a

no
th

er

pr
oc

es
s s

te
p

(4
) A

dd
 n

ew
 p

ro
ce

ss

st
ep

(s
)/

pa
ra

lle
liz

at
io

n/
br

an
ch

in
g

(5
) C

ha
ng

es
 fo

r a
 n

ew

ex
pe

rim
en

ta
l t

es
t

A
ve

ra
ge

 o
f t

he
 n

um
be

r

of
 th

e
ac

tiv
iti

es

AD 15.89 48 3 7.5 7.36 16.35

SC 23.22 63 4.33 10.67 10.5 22.34

SFC 15.44 44 3 5.33 4.07 14.37

condition. For example, all conditions forn-parallel process steps are combined
within one transition condition in SFC (see section 4.3). Instead of amending
various transition conditions (more actions), just one complex transition condi-
tion (one action) must be adjusted. This has the disadvantage that the transition
condition is more complex than simple transitions and thereby prevents the
modularization. This point is discussed in the next section.

In summary, the SFC has the minimal actions by program modification and
fulfills best the requirement modifiability with AD.

4.2. Modularity Analysis (R1.2)

In this section, the criteria of complexity management and abstraction are ana-
lyzed to show the visual degree of modularization of programming languages.
(cf. Table 4). These criteria are complexity management by modularity and hie-
rarchy and abstraction. Abstraction describes the amount of structure inherence
in the languages.

4.2.1. Complexity Management
Modularization and hierarchy are two important mechanisms that reduce pro-
gram complexity by means of reuse and, thus, can increase the understandability
[46] [49]. To make a statement about the degree of modularization, the pro-
gramming languages must be studied for the visual modularizing capability. The
visual modularization depends on the visual syntax of programming languages.
That means that the process steps, transitions and all further information that
belong together must be encapsulated for modular programming.

For example, the transition “temperature is reached” is associated with the
process step heat, the transition “destination reached” is associated with the
process step transport etc. In order to support the way of modular thinking,
transitions, which are dependent from the previous process step, are encapsu-
lated in these.

Which programming languages support visual modularization is discussed on
basis of Figure 3. This figure shows the representation of the individual process

G. Bayrak et al.

469

Figure 3. Realization of modularity in different programming languages.

steps with the corresponding switching conditions. Module heating1 in SC is
composed of a state heating1 and a transition h1. However, the module heating1
in SFC consists a step heating1 and two transitions (“h1 AND u1 AND ku” and
“h1 AND u1 AND k”). Since in SFC no (visual) decision nodes exist, the transi-
tion ku has to be inserted together with the process step dependent transition h1
into one transition condition (see SFC part in Figure 3: “h1 AND u1 AND ku”).
Therefore, transition conditions will be more complex.

This means that if a change is necessary (for example exchange of one process
step) the dependent transition conditions must also be changed. This requires
high effort, is time consuming and the combination of transition conditions of
several steps inhibits the modularization (cf. Figure 4).

The process step-end conditions in AD are integrated in the activity step/
process step respectively. After completion of the parallel steps, decision nodes
decide which step should come next. AD is the only programming language
which encapsulates the end condition in their activity, and thus, fulfills the visual
modularization. SC and SFC do not fulfill this property because of their distinc-
tion between states/steps and transitions.

The second mechanism is the hierarchy which reduces the complexity of the
program. In a hierarchy the programs can be represented on different levels of

G. Bayrak et al.

470

Figure 4. Different step dependent-transition conditions in-
side of one transition in SFC. h1: heating completed, u1: form-
ing completed.

detail, so that the complexity remains manageable at each level. All three lan-
guages support the top-down understanding and hence the hierarchy.

4.2.2. Abstraction
Decomposition and abstraction of a language are important properties [36]. The
decomposition can be divided into horizontal and vertical decomposition [43].
While the horizontal decomposition takes place at the same level of abstraction
(for example composite State in SC), in the vertical cutting, the model is de-
composed into sub-hierarchical models. The horizontal decomposition is often
referred to as a hierarchical decomposition. AD provides the horizontal decom-
position through the mechanism swimlanes and SC through the mechanisms of
composite state and orthogonal state. SFC does not support the horizontal de-
composition. All programming languages, however, fulfill the vertical decompo-
sition. Abstraction is on the one side a useful dimension for program modifica-
tion [37] and can reduce viscosity [50]. Although the degree of abstraction is
dependent from the application domain [51], the degree of visual abstraction of
a programming language may be determined by the hidden dependencies [50].
With hidden dependencies, important relationships are not visible in a model,
such as the process step dependent transition (cf. Figure 3). Compared to SC
and SFC, AD has a high level of abstraction.

4.3. Understandability Analysis (R2.1)

This section includes the cognitive effectiveness analysis in terms of understan-
dability. The nine principles for designing cognitively effective visual notations
are defined as follows [34]:
• Semiotic Clarity: There should be a 1:1 correspondence between semantic

constructs and graphical symbols.
• Perceptual Discriminability: Different symbols should be clearly distinguish-

able from each other.

G. Bayrak et al.

471

• Semantic Transparency: Use visual representations whose appearance sug-
gests their meaning.

• Complexity Management: Include explicit mechanisms for dealing with
complexity.

• Cognitive Integration: Include explicit mechanisms to support integration of
information from different diagrams.

• Visual Expressiveness: Use the full range and capacities of visual variables.
• Dual Coding: Use text to complement graphics.
• Graphic Economy: The number of different graphical symbols should be

cognitively manageable.
• Cognitive Fit: Use different visual dialects for different tasks and audiences.

Complexity Management has already been discussed in the previous section.
The remaining eight principles are investigated for AD, SC, and SFC in the fol-
lowing.

4.3.1. Semiotic Clarity
The principle of semiotic clarity is defined by the 1:1 mapping of semantic con-
structs to the visual syntax (graphical symbols). The list of semantic constructs is
defined by the list of concrete metaclasses in the AD, SC, and SFC metamodels
[22]. Thereby, concrete metaclasses are not enumeration and not abstract me-
taclasses [34]. The metaclasses of AD, SC and SFC were already introduced in
Table 1. If semantic constructs cannot be assigned to a symbol, four types of
anomalies can occur [34] [43]:
• Symbol deficit: a construct is not represented by any symbol
• Symbol redundancy: a single construct is represented by multiple symbols
• Symbol overload: a single symbol is used to represent multiple constructs
• Symbol excess: a symbol does not represent any construct

We calculate the net symbol balance (nbSymbols) which gives a statement
about the actual number of symbols in consideration of the four types of anoma-
lies. This is calculated as follows [52] (1):

Constructs Excess Deficit Redundancy OverloadnbSymbols n n n n n= + − + − (1)

The language, which has the least percentage of overall anomaly types (symbol
excess, deficit, redundancy, and overload), fulfills the principle of semiotic clari-
ty best. Table 7 shows the result of the evaluation of AD, SC and SFC. In sum-
mary AD has 12 constructs and 9 symbols. With 8.3% symbol redundancy (me-
taclass “Activity Partition”) and 25% symbol overload (metaclasses “Control and
Object Flow”, “Decision and Merge Node”, and “Join and Fork Node”), AD has
a net symbol balance (nbSymbols) of 10. Concerning SC, we distinguish two va-
riants. SC includes a “Pseudo State” that has a kind “Pseudo State Kind” which is
an enumeration class with a different visual syntax. If we consider the enumera-
tion (cp. column SC-A in Table 7), SC has 10 constructs and 11 symbols. With
20.0% symbol redundancy and 10.0% symbol overload, SC has an nbSymbols of
12. In contrast, according to the definition of Moody [34], we do not calculate
the enumeration as a semantic construct in variant B. In that case, SC has 5

G. Bayrak et al.

472

Table 7. Results of the comparison of semiotic clarity.

 AD
SC SFC

A B A B

Constructs 12 10 5 6 6

Symbols 9 11 11 18 10

Excess in % 0 0 20 0 0

Deficit in % 0 0 0 0 0

Redundancy in % 8.3 20 20 50 33.3

Overload in % 25 10 20 0 0

Total anomaly in % 33.3 30 60 50 33.3

Net Symbol Balance 10 11 6 9 8

constructs and 11 symbols. Variant B of SC has 20% symbol excess, 20% symbol
redundancy and 20% symbol overload, resulting in an nbSymbols of 6. The SFC
metamodel [22] has the concrete metaclasses “Step”, “Action Association”,
“Transition”, and “Action”. “Action” has attributes (entry, do, exit) causing var-
iations in the corresponding symbol, which corresponds to different semantic
constructs. The evaluation shows that SFC has 6 constructs. Considering the
different labels of “Action Qualifier” as symbols of their own leads to a total of
18 symbols (cp. column A in SFC). With 50% symbol redundancy SFC has an
nbSymbols of 9. Variant B of SFC, which disregards the different labels, has
33.3% symbol redundancy and a net symbol balance of 8.

Variant A of SC exhibits the lowest anomaly (30.0%) and fulfills the principle
of semiotic clarity best. AD and SFC (variant B) are almost as good with an
anomaly of 33.3%.

4.3.2. Perceptual Discriminability
Perceptual Discriminability is defined by the ease and accuracy to distinguish
between different symbols. This is a precondition for correct interpretation of
diagrams [53]. For this we calculate in this section the visual distance and the
visual-semantic congruence of the visual syntax of AD, SC and SFC and com-
pare these.

1) Visual Distance
There exist eight distinct visual variables (vVar) by Bertin [54], which are di-

vided into categories planar (horizontal and vertical position of the symbol-(x, y)
coordinate) and retinal variables (shape, color, size, brightness, orientation/di-
rection, texture/grain). A symbol can consist of combination of these visual va-
riables (e.g. shape = circle and color = blue), which can generate an infinite
number of symbols by use of different visual variables. The differentiation is
measured by the number of visual variables (where they differ) and the size of
this difference. The visual distance between symbols is calculated in according to
[34] (2):

{ }
{ }

visual distance Symbol1 vVar1, vVar2, , vVarn
Symbol2 vVar1, vVar2, , vVarn

=
∩

�
�

 (2)

G. Bayrak et al.

473

The greater the visual distance between symbols, the faster and more accu-
rately they can be recognized. The differentiation also depends on the user’s ex-
pertise. For example, novices have a higher requirement to distinctness than ex-
perts.

For example, the visual distance between an activity and a decision node is
equal to one, because it only differs by the form. The colors of the symbols are
the same depending on the tool.

The comparison of all symbols within an AD yields the result that AD has two
symbols with visual distance of zero (merge and decision node, fork and join
node). Overall, the symbols can be clearly distinguished from each other since
38% of the symbols in AD have a visual distance of four.

Compared to other programming languages (AD and SC) SFC has with a vis-
ual distance of one, the highest percentage of 35. This means that in SFC 35% of
all symbols have only a visual distance of one and therefore the differentiation is
rather poor. However, 53% of symbols in SFC have a visual distance of three. SC
has a marginally better differentiation as AD, because 43% of all symbols in SC
have a visual distance of 4. AD has only 38%.

2) Visual-Semantic Congruence
In general, the visual distance should be equal between two symbols and the

semantic distance between the corresponding two constructs (metaclasses).
Constructs with different semantics should have clearly distinguishable symbols
and similar constructs should have symbols as similar as possible [55]. The se-
mantic distance is defined by the shortest path between the metaclasses of the
inheritance hierarchy [34]. In AD, for example each semantic distance between a
Control Flow and Object Flow and Decision Node and Merge is two. The dif-
ference between visual and semantic distance is between one and two. In SC and
SFC, however, the metric cannot be used directly for the calculation of the se-
mantic distance because SC has the enumeration-class “Pseudostate” which has
a plurality of different “attributes”, each having a separate symbol. According to
[34], this results in a semantic distance of zero. This is not possible, though, be-
cause the semantic distance between constructs must be one at minimum. A se-
mantic distance equal to zero would mean that this is one and the same con-
struct.

In order to determine the semantic distance in the constructs, such metac-
lasses must be converted into an equivalent model. The State metaclass with its
IsAttribute, for example, can be transferred into an abstract class State with four
child classes. Thus, a semantic distance of two between the respective child
classes would result therefrom. The enumeration metaclass pseudo-State can al-
so be converted for the calculation of the semantic distance into an abstract class
with corresponding child classes except for the metaclass Pseudostate ForkJoin.
Here, fork and join have the same implementation [22] and have therefore a se-
mantic distance of zero.

In summary, AD fulfills the discriminability requirement best and SC and SFC
fulfill it partially.

G. Bayrak et al.

474

4.3.3. Semantic Transparency
The principle of semantic transparency improves speed and accuracy of under-
standing by naive users [34] and means that the semantics of a symbol is trans-
parent from its appearance alone. Here Moody [34] distinguishes between three
levels of semantic transparency with a continuous changeover. Semantic imme-
diacy means that the meaning of a symbol can be derived solely from its ap-
pearance without explanation (strong positive association). In contrast, semantic
perversity means that a different or opposite meaning is associated by the ap-
pearance (negative association, false mnemonic). Between semantic immediacy
and semantic perversity is the semantic opacity, in which the symbol has any de-
sired relationship between appearance and meaning (neutral, conventional). The
AD and SC symbols are international standard [32]. The common graphical de-
sign of SFC is also defined in a norm [17]. These defined symbols of AD, SC, and
SFC are widely used and internationally understood. Moody investigated the
symbols of the notation BPMN 2.0 [56]. The symbols of BPMN already contain
some symbols that are used also in AD, SC and SFC. According to Moody, the
symbols of the following constructs are semantically opaque:
• AD: Activity, Decision Node,
• SC: State, Decision Node, Junction, Start- und End-Node,
• SFC: Step, Init-Step.

In general, almost all symbols of AD, SC and SFC are semantically opaque.
Generally, we can assume that process engineers are not experts and hence, they
cannot interpret or properly associate the abstract symbols. For example, the en-
try, do and exit actions are implemented in CoDeSys with three different mark-
ers (cf. Figures 2(a)-(c)). The marker for entry, which is represented with the
letter “E” and the marker for do, which is represented by a filled rectangle, can
be interpreted differently by a naive user. However, the marker X, which stands
for “exit-action”, is more semantically immediate, because open windows in
windows or other operating systems will leave with an “X” and therefore the as-
sociation with “exit” is given. Generally, all of the symbols in AD, SC and SFC
are semantically opaque. AD and SC additionally have the symbol swimlane and
composite state respectively, which are more semantically transparent because of
using spatial enclosure [43]. The Fork symbol of AD and SC is a split icon that
effectively conveys the notion of “path transformation” but that does not clarify
whether it represents a fork or a join [56]. The Join Symbol of AD and SC and
the Branch symbol of SFC share its analysis with the Fork. Additionally, the al-
ternative Branch symbol of SFC does not make clear if it stands for a normal
transition or for an alternative branch. In summary, all symbols of the pro-
gramming languages are semantically opaque und partially semantically per-
verse.

4.3.4. Cognitive Integration
The cognitive integration will only be used if a system is represented by several
diagrams, whereupon conceptual and perceptual integration are distinguished.
Conceptual integration is a mechanism that aims to help the reader to bring to-

G. Bayrak et al.

475

gether information from individual diagrams into a coherent mental representa-
tion of the system.

The process flow for thermomechanical processes is hierarchical (cp. section
1). All three programming languages fulfill the conceptual integration because of
this hierarchical representation. The AD also supports the structural informa-
tion with use of swimlanes. The information comes from a different diagram
(class diagram) and is integrated by the swimlane in AD. The perceptual integra-
tion, however, is a mechanism that aims at simplifying the navigation between
multiple diagrams. Because of the project structure overview (which is now
supported by all programming environments such as CoDeSys) all three lan-
guages fulfill this requirement.

4.3.5. Visual Expressiveness
The visual expressiveness gives a conclusion about the use of the full range and
capacities of visual variables. This principle is measured by the number of used
visual variables (planar and retinal variables) and the capacity (the range of val-
ues for each variable) [54]. The scale level and the capacity of the visual variables
are defined in [43] [56]. The spectrum of the visual variable “texture” is fully
used by all programming languages (see Table 8). The programming languages
AD and SC use the spectrum of visual variable “color” with a saturation of at
least 50%. The saturation of SFC however is only a maximum 28%, because only
two colors are used. The planar variables are used in AD by swimlanes (vertical
and horizontal) and SC by regions within a composite state.

In summary, the capacity of visual variables is used more in AD and SC than
in SFC.

4.3.6. Dual Coding
This principle describes the use of a combination of text and graphics. As men-
tioned before, the discriminability of transitions and branches by SFC is very
difficult, but the additional label branch on the visual representation makes it
easier to convey information. All of the programming languages support the ad-
ditional label information on action/state/step and transition that helps the
process engineer on the one hand to modify the newly created or advanced pro-
gram and on the other hand to understand the completed program. AD and SC
additionally support labels on branches (such as decision node, junction, etc.). In

Table 8. Visual expressiveness of AD, SC and SFC.

[40] [54] AD SC SFC

Visual
variable

Power Capacity Count Saturation Count Saturation Count Saturation

Position
(x,y)

Interval 10 - 15 2 13.3% - 20% 1 6.6% - 10% 0 0%

Shape Nominal Unlimited 5 - 4 - 3 -

Colour Nominal 7 - 10 6 60% - 85.7% 5 50% - 71.4% 2 20% - 28.6%

Grain Nominal 2 - 5 3 100% 3 100% 2 100%

G. Bayrak et al.

476

summary AD, SC, and SFC fulfill the principle dual coding.

4.3.7. Graphic Economy
The graphical complexity is defined by the number of graphical symbols in a
notation [35]. The number of symbols of AD, SC and SFC varies between 9 and
11. However, Miller’s Law [18] states that the maximum number of objects an
average human can hold in working memory is 9. The number of symbols of AD
is 9, the one of SC is 11 and the one of SFC is 10 (cf. Table 7), so only AD is still
in the range of Miller’s Law.

4.3.8. Cognitive Fit
Different adapted representations of information should be used for different
tasks and different target groups according to cognitive fit. For this purpose, the
three points of cognitive fit (3-way fit) must be taken into account [43]:
• target group (customer, user, domain expert)
• medium (paper, whiteboard, computer)
• task characteristics

The notation must be adapted or improved, according to which target group
is addressed, which medium is used, and what task is to be solved. Therefore,
different representations of information within a notation can arise for different
tasks and different target groups (expert, novice). The following 3-way fit points
are relevant for the analysis of AD, SC and SFC:
• target group: process engineer of thermomechanical processes (no experts for

AD, SC and SFC)
• medium: Computer, PLC Control Software
• task characteristics: flexible programming etc.

4.4. Summary of the Evaluation

Within the previous sections, the three programming languages AD, SC and SFC
were evaluated concerning changeability, indicated by flexible programming,
and maintainability. We assessed these two factors indirectly by use of the re-
quirements modifiability, modularity and understandability. The result of the
modifiability analysis has shown that SFC fulfilled the modifiability requirement
best, followed by AD. In contrast, SC fulfilled this requirement marginally. Ac-
cording to the modularity analysis, AD is the only programming language,
which meets this requirement completely. SC meets this requirement only par-
tially and SFC hardly. Concerning the requirement understandability, AD fulfills
many criteria completely in contrast to SC and SFC. In summary (see Table 9),
AD meets the requirements of process engineers, namely changeability and
maintainability, best. SFC and SC fulfill these requirements only partially. There-
fore, the AD is the most suitable programming language according to the cogni-
tive effectiveness and dimensions analysis.

5. Conclusion and Outlook

In industry, process engineers/technologists often have to adapt and design new

G. Bayrak et al.

477

Table 9. Results of the analysis.

Requirements AD SC SFC

Modifiabilty + o +

Modularity + o -

U
nd

er
st

an
da

bi
lit

y

Semiotic Clarity + + o

Perceptual Discriminability + + o

Semantic Transparency o o o

Cognitive Integration + + +

Visual Expressiveness + + o

Dual Coding + + +

Graphic Economy + o o

Cognitive Fit no rating

control sequences from a technological point of view. More specifically, they
change and test alternative control parameters to develop a certain product by
combining prepared library elements from a logical point of view. However, we
cannot expect any PLC or other programming skills from these process engi-
neers or technologists. Their main requirements towards programming lan-
guages are changeability, indicated by flexible programming, and maintainabili-
ty. These are represented by the requirements modifiability (R1.1), modularity
(R1.2) and understandability (R2.1). An evaluation of these requirements was
realized by use of the principles of cognitive effectiveness and dimensions. Since
companies in this field of business usually rely on PLCs to control their (experi-
mental) machines, we analyzed AD, SC and SFC concerning modifiability, mod-
ularity and understandability. It became apparent that AD is suited best to fulfill
the specific requirements of process engineers, namely changeability and main-
tainability. Therefore, Activity Diagram should be provided as an additional
language in PLC environments to allow technologists to adapt existing or design
new recipes and control sequences. In future work these theoretical results
should be proven by empirical validation with students and engineers. These re-
sults also allow further optimization of the programming languages’ visual syn-
tax for new generations of engineering environments.

References
[1] Vogel-Heuser, B. (2014) Usability Experiments to Evaluate UML/SysML-Based

Model Driven Software Engineering Notations for Logic Control in Manufacturing
Automation. Journal of Software Engineering and Applications, 7, 943-973.
https://doi.org/10.4236/jsea.2014.711084

[2] Mersch, H., Behnen, D., Schmitz, D., Epple, U., Brecher, C. and Jarke, M. (2011)
Gemeinsamkeiten und Unterschiede der Prozess-und Fertigungstechnik (Commo-
nalities and Differences of Process and Production Technology). Automatisi-
erungstechnik, 59, 7-17.

[3] Basile, F., Chiacchio, P. and Gerbasio, D. (2013) On the Implementation of Indus-
trial Automation Systems Based on PLC. IEEE Transactions on Automation Science
and Engineering, 10, 990-1003. https://doi.org/10.1109/TASE.2012.2226578

https://doi.org/10.4236/jsea.2014.711084
https://doi.org/10.1109/TASE.2012.2226578

G. Bayrak et al.

478

[4] Vogel-Heuser, B., Friedrich, D. and Bristol, E.H. (2003) Evaluation of Modeling
Notations for Basic Software Engineering in Process Control. Annual Conference of
the IEEE, 3, 2209-2214.

[5] Bayrak, G. (2015) Vergleich und Evaluation von Beschreibungsmitteln für die
Automatisierung hybrider Prozesse. PhD Thesis, Technical University of Munich,
Munich.

[6] Sturm, A., Dori, D. and Shehory, O. (2010) An Object-Process-Based Modeling
Language for Multiagent Systems. IEEE Transactions on Systems, Man, and Cyber-
netics Part C: Applications and Reviews, 40, 227-241.
https://doi.org/10.1109/TSMCC.2009.2037133

[7] Walz, G.A. (1980) Design Tactics for Optimal Modularity. Proceedings of
AUTOTESTCON: International Automatic Testing Conference, Washington DC,
281-284.

[8] Bhat, J.M. and Deshmukh, N. (2005) Methods for Modeling Flexibility in Business
Processes. BPMDS Workshop in Conjunction with CAISE, Montpellier.

[9] Harrison, R., Counsell, S. and Nithi, R. (2000) Experimental Assessment of the Ef-
fect of Inheritance on the Maintainability of Object-Oriented Systems. Journal of
Systems and Software, 52, 173-179.

[10] Lee, J. and Hsu, P. (2007) Implementation of a Remote Hierarchical Supervision
System Using Petri Nets and Agent Technology. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, 37, 77-85.
https://doi.org/10.1109/TSMCC.2006.876056

[11] Curtis, B., Sheppard, S.B., Kruesi-Bailey, E., Bailey, J.W. and Boehm-Davis, D.A.
(1989) Experimental Evaluation of Software Documentation Formats. Journal of
Systems and Software, 9, 167-207.

[12] Cunniff, N. and Taylor, R.P. (1987) Graphical vs. Textual Representation: An Em-
pirical Study of Novices’ Program Comprehension. Empirical Studies of Program-
mers: Second Workshop, Washington DC, 7-8 December 1987, 114-131.

[13] Meyer, B. (1992) Pictures Depicting pictures: On the Specification of Visual Lan-
guages by Visual Grammars. Proceedings of the 1992 IEEE Workshop on Visual
Languages, Seattle, 15-18 September 1992, 41-47.
https://doi.org/10.1109/WVL.1992.275785

[14] Kahn, K.M. and Saraswat, V.A. (1990) Complete Visualizations of Concurrent Pro-
grams and Their Executions. Proceedings of the 1990 IEEE Workshop on Visual
Languages, Skokie, 4-6 October 1990, 7-15.
https://doi.org/10.1109/WVL.1990.128375

[15] Glinert, E.P. (1990) Nontextual Programming Environments. In: Chang, S.-K., Ed.,
Principles of Visual Programming System, Prentice-Hall, Inc., Upper Saddle River,
144-230.

[16] Raeder, G. (1985) A Survey of Current Graphical Programming Techniques. Com-
puter, 18, 11-25. https://doi.org/10.1109/MC.1985.1662971

[17] Nordbotten, J.C. and Crosby, M.E. (1999) The Effect of Graphic Style on Data
Model Interpretation. Information Systems Journal, 9, 139-156.
https://doi.org/10.1046/j.1365-2575.1999.00052.x

[18] Miller, G.A. (1956) The Magical Number Seven, plus or minus Two: Some Limits
on Our Capacity for Processing Information. Psychological Review, 63, 81-97.
https://doi.org/10.1037/h0043158

[19] Lewis, R.W. (1998) Programming Industrial Control Systems Using IEC 1131-3.
IET, London. https://doi.org/10.1049/PBCE050E

https://doi.org/10.1109/TSMCC.2009.2037133
https://doi.org/10.1109/TSMCC.2006.876056
https://doi.org/10.1109/WVL.1992.275785
https://doi.org/10.1109/WVL.1990.128375
https://doi.org/10.1109/MC.1985.1662971
https://doi.org/10.1046/j.1365-2575.1999.00052.x
https://doi.org/10.1037/h0043158
https://doi.org/10.1049/PBCE050E

G. Bayrak et al.

479

[20] Witsch. D. and Vogel-Heuser, B. (2011) PLC-Statecharts: An Approach to Integrate
UML-Statecharts in Open-Loop Control Engineering-Aspects on Behavioral Se-
mantics and Model-Checking. World Congress of International Federation of Au-
tomation Control, Milan, 29 August-3 September 2011, 7866-7872.
https://doi.org/10.3182/20110828-6-it-1002.02207

[21] Witsch, D., Ricken, M., Kormann, B. and Vogel-Heuser, B. (2010) PLC-Statecharts:
An Approach to Integrate UML-Statecharts in Open-Loop Control Engineering.
InternationalConference on Industrial Informatics, Osaka, 13-16 July 2010, 915-
920. https://doi.org/10.1109/indin.2010.5549619

[22] Witsch, D. (2013) Model-Driven Design of Control Software Basing on UML under
Consideration of the Domain-Specific Requirements of Machine and Plant
Engineering (Modellgetriebene Entwicklung von Steuerungssoftware auf Basis der
UML unter Berücksichtigung der domänenspezifischen Anforderungen des
Maschinen- und Anlagenbaus). PhD Thesis, Technical University of Munich, Mu-
nich.

[23] 3S-Smart Software Solutions, CoDeSys. http://www.codesys.com/

[24] Foehr, M., Lüder, A. and Steblau, A. (2012) Analyse der praktischen Relevanz
verschiedener Beschreibungsmittel im Entwurfsprozess von Produktionssystemen.
Entwurf komplexer Automatisierungssysteme, Kongress: Fachtagung EKA,
Magdeburg, 61-72.

[25] Bayrak, G., Flach, A. and Vogel-Heuser, B. (2009) New Methods of Process Man-
agement in the Development of Technological Treatments. In: Steinhoff, K., Maier,
H.J. and Biermann, D., Eds., Functional Graded Materials in Industrial Mass Pro-
duction, Verlag Wissenschaftliche Scripten, Auerbach, Rep. of Collaborative Re-
search Centre TRR30, 145-153.

[26] Zhou, M.C. and Twiss, E. (1998) Design of Industrial Automated Systems via Relay
Ladder Logic Programming and Petri Nets. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, 28, 137-150.
https://doi.org/10.1109/5326.661096

[27] Peng, S.S. and Zhou, M.C. (2004) Ladder Diagram and Petri-Net-Based Discrete-
Event Control Design Methods. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, 34, 523-531.
https://doi.org/10.1109/TSMCC.2004.829286

[28] Bahill, T., Alford, M., Bharathan, K., Clymer, J.R., Dean, D.L., Duke, J., Hill, G.,
LaBudde, E.V., Taipale, E.J. and Wayne Wymore, A. (1998) The Design-Methods
Comparison Project. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 28, 80-103. https://doi.org/10.1109/5326.661092

[29] Cao, L., Zhang, C. and Zhou, M. (2008) Engineering Open Complex Agent Systems:
A Case Study. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, 38, 483-496. https://doi.org/10.1109/TSMCC.2008.923863

[30] Yu, L., Grüner, S. and Epple, U. (2013) An Engineerable Procedure Description
Method for Industrial Automation. Conference on Emerging Technologies and
Factory Automation, Cagliari, 10-13 September 2013, 1-8.

[31] Lukman, T., Godena, G., Gray, J. and Strmčnik, S. (2010) Model-Driven Engineer-
ing of Industrial Process Control Applications. Conference on Emerging Technolo-
gies and Factory Automation, Bilbao, 13-16 September 2010, 1-8.
https://doi.org/10.1109/etfa.2010.5641224

[32] Object Management Group (2007) OMG Unified Modeling Language (OMG
UML), Superstructure, V2.1.2. OMG Document Number, formal/2007-11-02.
http://www.omg.org/spec/UML/2.1.2/

https://doi.org/10.3182/20110828-6-it-1002.02207
https://doi.org/10.1109/indin.2010.5549619
http://www.codesys.com/
https://doi.org/10.1109/5326.661096
https://doi.org/10.1109/TSMCC.2004.829286
https://doi.org/10.1109/5326.661092
https://doi.org/10.1109/TSMCC.2008.923863
https://doi.org/10.1109/etfa.2010.5641224
http://www.omg.org/spec/UML/2.1.2/

G. Bayrak et al.

480

[33] Green, T.R.G. and Petre, M. (1996) Usability Analysis of Visual Programming En-
vironments: A “Cognitive Dimensions” Framework. Journal of Visual Languages
and Computing, 7, 131-174. https://doi.org/10.1006/jvlc.1996.0009

[34] Moody, D.L. (2011) Why a Diagram Is Only Sometimes Worth a Thousand Words:
An Analysis of the BPMN 2.0 Visual Notation.
https://pdfs.semanticscholar.org/dc09/25bd6d879f6b867806f8badfc70d2e30b4a4.pd
f

[35] Moody, D.L. (2009) The “Physics” of Notations: Towards a Scientific Basis for Con-
structing Visual Notations in Software Engineering. IEEE Transactions on Software
Engineering, 35, 756-779. https://doi.org/10.1109/TSE.2009.67

[36] Britton, C. and Jones, S. (1999) The Untrained Eye: How Languages for Software
Specification Support Understanding in Untrained Users. Human-Computer Inte-
raction, 14,191-244. https://doi.org/10.1080/07370024.1999.9667269

[37] Green, T.R.G. (1989) Cognitive Dimensions of Notations. In: Sutcliffe, V.A. and
Macaulay, L., Eds., People and Computers, Cambridge University Press, Cam-
bridge, 443-460.

[38] Roast, C., Khazaei, B. and Siddiqi, J.L.A. (2000) Formal Comparisons of Program
Modification. 2000 IEEE International Symposium on Visual Languages, Seattle,
10-13 September 2000, 165-171. https://doi.org/10.1109/VL.2000.874380

[39] Moody, D.L. and van Hillegersberg, J. (2008) Evaluating the Visual Syntax of UML:
An Analysis of the Cognitive Effectiveness of the UML Family of Diagrams. Inter-
national Conference on Software Language Engineering, Toulouse, 29-30 Septem-
ber 2008, 16-34.

[40] Figl, K., Mendling, J., Strembeck, J.M. and Recker, J. (2010) On the Cognitive Effec-
tiveness of Routing Symbols in Process Modeling Languages. Lecture Notes in
Business Information Processing, 47, 230-241.

[41] Barji, A., Hagge, N. and Wagner, B. (2006) Comparative Study of Using CNet, IEC
61499, and Statecharts for Behavioral Models of Real-Time Control Applications.
International Conference on Emerging Technologies in Factory Automation, Pra-
gue, 20-22 September 2006, 750-757.

[42] Reijers, H.A. and Mendling, J. (2011) A Study into the Factors that Influence the
Understandability of Business Process Models. SMCA, 41, 449-462.
https://doi.org/10.1109/tsmca.2010.2087017

[43] Genon, N., Heymans, P. and Amyot, D. (2011) Analysing the Cognitive Effective-
ness of the BPMN 2.0 Visual Notation. International Conference on Software Lan-
guage Engineering, Braga, 3-4 July 2011, 377-396.
https://doi.org/10.1007/978-3-642-19440-5_25

[44] Bauer, N. (2002) Statecharts versus Sequential Function Charts. Automatisie-
rungstechnik, 50, 533-540.

[45] Wand, Y. and Weber, R.A. (1990) An Ontological Model of an Information System.
IEEE Transactions on Software Engineering, 16, 1282-1292.
https://doi.org/10.1109/32.60316

[46] Jazdi, N., Maga, C. and Göhner, P. (2011) Reusable Models in Industrial Automa-
tion: Experiences in Defining Appropriate Levels of Granularity. IFAC World Con-
gress, 18, 9145-9150.

[47] Prieto-Diaz, R. and Neighbors, J.M. (1986) Module Interconnection Languages.
Journal of Systems and Software, 6, 307-334.

[48] Blackwell, A.F., Whitley, K.N., Good, J. and Petre, M. (2001) Cognitive Factors in
Programming with Diagrams. Artificial Intelligence Review, 15, 95-114.

https://doi.org/10.1006/jvlc.1996.0009
https://pdfs.semanticscholar.org/dc09/25bd6d879f6b867806f8badfc70d2e30b4a4.pdf
https://pdfs.semanticscholar.org/dc09/25bd6d879f6b867806f8badfc70d2e30b4a4.pdf
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1080/07370024.1999.9667269
https://doi.org/10.1109/VL.2000.874380
https://doi.org/10.1109/tsmca.2010.2087017
https://doi.org/10.1007/978-3-642-19440-5_25
https://doi.org/10.1109/32.60316

G. Bayrak et al.

481

https://doi.org/10.1023/A:1006689708296

[49] Vogel-Heuser, B., Fischer, J., Rösch, S., Feldmann, S. and Ulewicz, S. (2015) Chal-
lenges for Maintenance of PLC-Software and Its Related Hardware for Automated
Production Systems: Selected Industrial Case Studies. Industrial Conference on
Software Maintenance and Evolution, Bremen, 29 September-1 October 2015, 362-
371.

[50] Blackwell, A.F. and Green, T.R.G. (2003) Notational Systems—The Cognitive Di-
mensions of Notations framework. In: Carroll, J.M., Ed., HCI Models, Theories and
Frameworks: Toward a Multidisciplinary Science, Morgan Kaufmann, San Francis-
co, 103-134.

[51] Börger, E. and Stärk, R. (2003) Abstract State Machines: A Method for High-Level
System Design and Analysis. In: Science and Business Media, Springer, Berlin.
https://doi.org/10.1007/978-3-642-18216-7

[52] Moody, D.L., Heymans, P. and Matulevicius, R. (2010) Visual Syntax Does Matter:
Improving the Cognitive Effectiveness of the I Visual Notation. Requirements En-
gineering, 15, 141-175. https://doi.org/10.1007/s00766-010-0100-1

[53] Winn, W. (1993) An Account of How Readers Search for Information in Diagrams.
Contemporary Educational Psychology, 18, 162-185.
https://doi.org/10.1006/ceps.1993.1016

[54] Bertin, J. (1983) Semiology of Graphics: Diagrams, Networks, Maps. University of
Wisconsin Press, Madison.

[55] Gurr, C.A. (1999) Effective Diagrammatic Communication: Syntactic, Semantic and
Pragmatic Issues. Journal of Visual Languages and Computing, 10, 317-342.
https://doi.org/10.1006/jvlc.1999.0130

[56] Genon, N., Amyot, D. and Heymans, P. (2010) Analysing the Cognitive Effective-
ness of the UCM Visual Notation. In: International Workshop on System Analysis
and Modeling, Springer, Berlin Heidelberg, 221-240.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

https://doi.org/10.1023/A:1006689708296
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/s00766-010-0100-1
https://doi.org/10.1006/ceps.1993.1016
https://doi.org/10.1006/jvlc.1999.0130
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Evaluation of Selected Control Programming Languages for Process Engineers by Means of Cognitive Effectiveness and Dimensions
	Abstract
	Keywords
	1. Introduction
	2. Application Example in AD, SC and SFC
	2.1. Process Steps in the Application Example
	2.2. Activity Diagram (AD)
	2.3. State Chart Diagram (SC)
	2.4. Sequential Function Chart (SFC)
	2.5. Comparison of the Metaclasses of AD, SC and SFC

	3. State of the Art
	4. Concept of Analysis
	4.1. Modifiability Analysis (R1.1)
	4.2. Modularity Analysis (R1.2)
	4.2.1. Complexity Management
	4.2.2. Abstraction

	4.3. Understandability Analysis (R2.1)
	4.3.1. Semiotic Clarity
	4.3.2. Perceptual Discriminability
	4.3.3. Semantic Transparency
	4.3.4. Cognitive Integration
	4.3.5. Visual Expressiveness
	4.3.6. Dual Coding
	4.3.7. Graphic Economy
	4.3.8. Cognitive Fit

	4.4. Summary of the Evaluation

	5. Conclusion and Outlook
	References

