
Journal of Software Engineering and Applications, 2017, 10, 324-337 
http://www.scirp.org/journal/jsea 

ISSN Online: 1945-3124 
ISSN Print: 1945-3116 

DOI: 10.4236/jsea.2017.104019  April 13, 2017 

 
 
 

Complexity Measure of Software  
Composition Framework 

Nalinee Sophatsathit 

Faculty of Science, Suan Sunandha Rajabhat University, Bangkok, Thailand  

  
 
 

Abstract 
This article proposes a pragmatic approach to software composition based on 
matching criteria by mimicking integrated hardware counterpart. The tangi-
ble value of consumer goods as described by Cox instills this logical derivation 
of the proposed approach. As software gradually matures in component form, 
various software compositions can be systematically assembled from related 
existing software. Two application software are composed based on their 
functionality matching. Their composition complexities are measured by 
function point. The total effort unveils a noteworthy finding that high com-
plexity software demands larger effort to deploy. Thus, the proposed software 
composition framework not only offers the freedom of development man-
dates to the development team, but also broadens the horizon of cost and 
project evaluations by arriving at the proper mix of constituent components 
in the software product. 
 

Keywords 
Software Composition, Functionality Matching, Function Point,  
Complexity Measure 

 

1. Introduction 

The proliferation of software application in daily operations is undeniably deep- 
rooted and intertwined with every fabric of life. Complicated as software systems 
are, they evolve in much the same manner as the chaotic world of their creator. 
The advent of personal computer has brought about myriad of applications op-
erated and supported by software bundles. Yet no one complains about the 
shortcomings of these heterogeneous software systems created by unassociated 
developers that were never meant to interoperate. Nonetheless, new develop-
ment paradigms such as structured, modular, object-oriented, and aspect- 
oriented approaches were employed to accommodate and exploit software ap-

How to cite this paper: Sophatsathit, N. 
(2017) Complexity Measure of Software 
Composition Framework. Journal of Soft-
ware Engineering and Applications, 10, 
324-337. 
https://doi.org/10.4236/jsea.2017.104019 
 
Received: February 15, 2017 
Accepted: April 10, 2017 
Published: April 13, 2017 
 
Copyright © 2017 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.104019
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.104019
http://creativecommons.org/licenses/by/4.0/


N. Sophatsathit 
 

325 

plications to their fullest extent. Business values were added, whereby new soft-
ware services were created. This in turn elevated software use to a new level of 
sophistication. Strategic software application has transformed the development 
paradigm into component-based development (CBD). As such, new software 
compositions can be deployed with less effort by means of reuse, plug-and-play, 
and other composition techniques. The evidence will become clearer as devel-
opment efforts are measured quantitatively by means of Function Point estab-
lished by Albrecht, et al. [1]. 

Meanwhile, software architects and engineers are working hard to mimic the 
design and construction processes of its counterpart. Hardware components are 
standardized to furnish product diversification. Special purpose hardware can be 
fabricated to fulfill the desired functionality in a relatively straightforward and 
time/cost saving manner. The design and construction processes are concep-
tually and technically similar to each other since the processes receive greater 
level of attention and scrutiny to be reused, streamlined, and automated. They 
are firmly established as tangible goods [2]. Software products, on the other 
hand, must have gone through various development stages before delivery, yet 
they are still far from standardization in comparison to their hardware counter-
part. 

Bearing such problems in mind, one of the new challenges in software devel-
opment is how to build software by composition technique from the existing 
software or software components. The principal consideration is to determine 
how well the constituent components interoperate. This implies matching of 
component functionalities. The issue will be further explored in the remaining 
sections of this article. 

This paper is organized as follows. Section 2 recounts some related work on 
software component. Section 3 describes the proposed software component and 
its matching criteria. A concise case study is given to demonstrate the viability 
and performance of the proposed approach in Section 4. Section 5 presents some 
final thoughts and future enhancement. 

2. Related Work 

Software composition is an approach to building software applications using re-
lated existing software. The notion has been around for some time such as Sun’s 
Jini environment [3]. The composition of software and its components brings 
about a new paradigm of software creation, i.e., software composition through 
existing components. Such a notion entails various mechanisms that allow soft-
ware components to be plugged-in and interacted in creating a new application. 
Numerous efforts have been attempted to unify concepts, axioms, and relation-
ships within and among software domains. The goals are to expand the horizon 
of technologies, implementations, and other concrete details to cope with soft-
ware advancement. The advent of the Internet technology opens a whole new 
realm of development paradigms. Development life cycle shortens. Third party 
outsourcing becomes pragmatic alternatives of development effort. The choice 



N. Sophatsathit 
 

326 

does not come without certain prices: well-defined interface, deployment policy, 
verification/monitoring/maintenance of software components, and integration 
of operations. 

One of the prominent technique was established by Parnas [4] that used key-
word in context (KWIC), consisting of task, a set of lines of text as input, and the 
set of all circular shift of all lines in alphabet order as output. He was the first to 
describe how software architecture guided modifiability via shared data model 
and data abstraction model. As the scale of software functions and operations 
expands, arrays of support services and measurements are called for. Various 
research endeavors have been attempted on software engineering environments 
[5] [6]. Ironically, software engineering environments in primitive integrated 
development environment (IDE) forms have been around since the introduction 
of Ada Programming Support Environment (APSE). APSE and its derivatives, 
Common APSE Interface Set, (CAIS) [5], as well as their competing develop-
ment environment family—the Portable Common Tool Environment (PCTE) 
and PCTE+ [6], were the two most comprehensive but homogeneous Integrated 
Programming Support Environments (IPSE) then. More environment specifics, 
such as PNMPI inter-tool communication [7], offered dynamic loading and 
concurrent use at the expense of some infrastructure compliance overhead.  

The expansion of distributed processing also imposes additional interopera-
bility requirements among software composition techniques. Interoperability is 
usually achieved through API, message interfaces, command-line options [8], as 
well as an information structure model describing the communication bindings 
between Tool Communications [9] structures. These endeavors exemplify the 
needs for resolving heterogeneity that may exist among software composition. 
Some approaches handled the issue by means of Workflow Management Coali-
tion [10], as well as meta-data and ontology mechanisms [11] to ensure reliable 
operation of intercommunicating systems. 

Modern software development is fast-paced and short-lived. New releases 
come out every other week. Competing apps are available for test drive on a 
weekly basis. The development process has to adapt COTS components that take 
care of the aforementioned technical issues without reinventing the wheel. Thus, 
the emphasis should be focused on software composition guideline and tech-
nique that permit timely and correctly functioned software. Unfortunately, the 
irreducible essence such as complexity, conformity, changeability, and invisibil-
ity [12] make software construction difficult. We will look into some of software 
composition issues to establish a proposed software composition framework. 
Some details will be further elaborated in the next section. 

3. Proposed Approach 

As software operations span the distributed computing networks, conventional 
software/tool interoperability through API, message interfaces, and command- 
line options, serve as a comprehensible and convenient interface. The notion of 
Component Mill architecture [13] furnishes an infrastructure for component 



N. Sophatsathit 
 

327 

integration in heterogeneous environments by exposing the meta-component 
model and constructs to supporting technologies. Interoperability enhancement 
can be further fine-tuned with the help of dynamic and late binding mechanisms 
as software is executed in the form of a separated application. Unfortunately, 
these provisions inevitably introduce a new layer of human interconnecting 
complexity ranging from command language semantic, analysis and design ab-
stractions, user-friendliness overhead, code and style legibility restrictions, and 
so on. 

Bearing the above issues in mind, we propose a framework for component 
composition that encompasses the following attributes: 
 well-defined component composition technique 
 self-contained and loosely-coupled building blocks 

Such provisions call for a suitable integration technique to ensure their proper 
operations. Modern software development paradigms, prevalent as they are, fo-
cus on the commonality of processing format to facilitate interoperability. The 
good old notion of IDE has been rejuvenated as a means for creating, operating, 
integrating, storing, retrieving, and maintaining of the desired information. Un-
fortunately, most IDEs operate on homogeneous basis, whereby foreign data 
must undergo format conversion upon importation, let alone the software itself. 
In so doing, the ultimate goal of the IDE as being truly interoperable is defeated. 
Moreover, the extraneous data and format conversions inevitably introduce ad-
ditional processing burden that, in many cases, does not justify the efforts in ex-
change for imperfect conversion and information loss. At any rate, newer IDEs/ 
IPSEs are more commonplace in development community, e.g., the .NET, EJB, 
and CORBA, yet still preserve their locality. For all practical composition pur-
poses, any foreign software or tools must comply with the underlying mandate 
in order to co-exist. 

The proposed framework for software composition matching will therefore 
entail flexible and extensible development methodology of problem solving 
software components. In order to align different software functionalities with 
user’s requirements, all pertinent interfaces must, to some degree, match with 
the requirements. The principal directive of the proposed composition frame-
work is the matching strategy that covers the constituent components. Case in 
point, as depicted in Figure 1, the matching strategy sets a stage for three soft-
ware component development, namely, A, B, and C. Component A requires that 
its input be exclusive, while B and C presumably share common input interface. 
Once complete, input artifacts must undergo the same set of development tran-
sition so as to preserve the matching requirement. Nonetheless, the eventual 
output operations are individually crafted to best satisfy each matching require-
ment so established. 

One compelling issue that stands out in the composition process is software 
component acquisition. From reuse to complete rewrite (the latter is apparently 
an extreme case which often results in scope creep and corruption), the difficulty 
is matching component with available components. At the heart of the matching  



N. Sophatsathit 
 

328 

 
Figure 1. Software composition framework. 
 
process, two considerations that must be taken into account are service require-
ment identification and granularity of service. Praserttitipong, et al. [14] [15] 
proposed some formalities of requirement identification to quantitatively assess 
the matching process. Three component acquisition requirements were estab-
lished, namely, plug-in match, subsume match, and exact match. Situations arise 
when selective or no match occurs, thereby matching scenarios precipitated 
from the above requirements are proposed and summarized in Figure 2. The 
plug-in match of Figure 2(a) represents extraneous functions offered by the 
composite software (H) that exceed what the user (n) requests. Thus, the set of 
available functions becomes,  

{ } { }, , ,  extran i ni H nS U S S∈= =  

where extra ∈ SH. By the same token, subsume match yields  

{ } { }, , ,  deficitn i Hi H nS U S S∈= = , which still falls short of user satisfaction. The 
exact match, on the contrary, is the ideal scenario of software composition, while 
miss-out match is obviously irrelevant. The partial match, in general, calls for 
some degrees of customized tailoring in the form of wrapper or derivation. As 
such, it remains to be a problematic matching issue to reckon with. 

From the development standpoint, software component is fundamentally 
composed of a set of operational methods that, in turn, are derived from some 
predecessor base methods. Let Hi and ni denote the ith component of the existing 
software and user’s request, respectively. Notationally, Hi = {sm1, sm2, …, smj} 
denotes the set of constituent component methods, i.e., component method 1, 
component method 2, and so on. Similarly, ni = {rm1, rm2, …, rmk} denotes the 
set of the matching methods, i.e., matching method 1, matching method 2, and  

External interface

Class 
specification

method (input, 
inquiry)

A B C

Transitions 

(interface)

in
te

rm
ed

ia
ri

es

Mediation (internal interface)

DB DBDB

buffering (output)



N. Sophatsathit 
 

329 

 
(a)                                         (b) 

 
(c)                                         (d) 

Figure 2. Software component acquisition matching: (a) plug-in match; (b) subsume 
match; (c) exact match; and (d) partial/miss-out match. 
 
so on. Moreover, j ≠ k. The partial match process is to find subsets of Hi that 
cover as much of each rmi as possible. The partial matching procedure proceeds 
as follows: 

Initialization 
For each rmi of ni 
 Get first method of smi 
 While not ((match or partial match [rmi, smi]) and end_method_list) 
  ni' ∪ rmi   // collect set complement ni'  
 Get next method of smi 
 If match rmi or partial match rmi 
  ni ∪ (smi or ni\smi) // \ symbol denotes partial match 
end_for each 
Thus, the resulting ni will be partially covered by some smi of Hi that match 

the corresponding rmi, i.e., ni = {smi| \smi, where smi ∈ Hi, smi ⊂ rmi}. The miss- 
out match of smj, denoted by ni' = {rmi, where rmi ∈ ni}, constitutes the set com-
plement of ni which must be either imported or purchased from external 
sources, locally built, or outsourcing under the pre-established governance. The 
last two choices required additional customization efforts. 

Irrespective of which matching process will fit final business process, it is ap-
parent that the proposed framework by and large offers dynamic inherent provi-
sions for different software component composition schemes. As a consequence, 
development delegation can stay focus on the more important tailoring strategy, 
yet still operationally maintain composition compliance with user’s require-
ments. 

n

H

H

n

H,n

H n

(a) (b)

H,n

H n

H n

(c) (d)



N. Sophatsathit 
 

330 

4. Case Study 

A small web-database application was set up to demonstrate the viability of the 
proposed composition framework. The application consisted of a conventional 
front-end software and standard back-end database management systems 
(DBMS). The software components were mutually independent but logically 
connected through a software connectivity map. The configuration is depicted in 
Figure 3. 

Figure 4(a) and Figure 4(b) illustrate a few sample class diagrams of the 
front-end application interfaces (APIs) to interact with the users. Figure 5 shows 
the available functionality of a typical DBMS. 

The very core of this web-database application is the design and construction 
of the software connectivity map that must follow the established (business) op-
erational objectives and Internet standards. The map construction is carried out 
as follows: 
1. set up the matching policy according to the established operational objectives. 
2. design, either in-house or delegation/outsourcing, the required front-end API 

components and back-end DBMS functions based on the proposed software 
component acquisition requirements. 

 initialization 
-collect the number of API classes and their corresponding attributes rmi in ni 
-collect the number of entity templates and their attributes from the available 

DBMS in templatei 
 for each rmi of ni 

get all pertinent attributes that are manipulated by the class method 
while not (match([attrib_class_methodi, templatei]) and end_attrib_class_ 

method_list) 
 get next attrib_class_method 
if match rmi or partial match rmi 
 ni ∪ (templatei or ni\templatei ) 
end_for each 

3. consider for all practical composition purposes, plug-in match is the best sce-
nario since extra DBMS functions available mean ease of future feature en-
hancement. Other matching scenarios such as exact match yield a sufficient 
solution but do not leave any room for expansion; subsume match and partial 
match call for additional development efforts, time, and costs. 

 

 
Figure 3. Software operational mapping between front-end and back-end. 

mapping
DBMS

ap
pl

ic
at

io
n 

A
PI



N. Sophatsathit 
 

331 

 
(a) 

 
(b) 

Figure 4. (a) Front-end class diagram; (b) Front-end class diagram. 

+setUsername(in username : string)
+setPassword(in password : string)
+getUsername() : string
+getPassword() : string
+setUsernameAndPassword(in username : string, in password : string)
+setUserPict(in pict : string)
+getUserPict() : string

-id : Integer
-Username : String
-Password : String
-User_Pict_Url : string
-Type : int
-Name : string

User

+setConnection(in db:DBController)
+login(in u1:User) : bool
+logout(in u1:User) : bool
+update(in u1:User) : bool
+find(in u1:User) : object
+findUserListByPlace(in place : string) : object
+findUserListByRoom(in room : string) : object
+getAllUSer() : object

-user1:User
-usern:List

User_PST

+openConnection() : bool
+commit() : bool
+rollback() : bool
+executeSQL() : int
+closeConnection() : bool

-connnectionString : string
-host : string
-port : string

DBController

จัดการ

0..* 1

<<bind>>

+setUsername(in username : string)
+setPassword(in password : string)
+getUsername() : string
+getPassword() : string
+setUsernameAndPassword(in username : string, in password : string)
+setUserPict(in pict : string)
+getUserPict() : string
+getRoom() : string
+getPlace() : string

-id : Integer
-Username : String
-Password : String
-User_Pict_Url : string
-Room : string
-Place : string
-Type : int
-Name : string

User

+setConnection(in db:DBController)
+login(in u1:User) : bool
+logout(in u1:User) : bool
+update(in u1:User) : bool
+find(in u1:User) : object
+findUserListByPlace(in place : string) : object
+findUserListByRoom(in room : string) : object
+getAllUSer() : object

-user1:User
-usern:List

User_PST

+openConnection() : bool
+commit() : bool
+rollback() : bool
+executeSQL() : int
+closeConnection() : bool

-connnectionString : string
-host : string
-port : string

DBController

จัดการ

0..* 1

+getMsgStr() : string
+setMsgStr(in msgstr : string)
+setSender(in snd:User)
+getSender() : object
+setReciever(in rcv:User)
+getReciever() : object
+setSentTime(in dt:DateTime)
+getSentTime() : object

-messageString : string
-sender:User
-reciever:User
-sent_Time:DateTime
-ID : int

Message
+setConnection(in db:DBController)
+sent(in msg:Message)
+findMsgByReciever(in rcv:User) : object
+deleteMsg(in msg:Message)

-msg:Message
-msgn:List

Message_PST

จัดการ

0..* 1

จัดการ

0..*

1

<<bind>>

<<bind>>



N. Sophatsathit 
 

332 

 
Figure 5. Samples back-end DBMS functions. 

 
4. conduct detailed design as a transitional tailoring to adjust the software com-

position in concert with operating formats and standards. In this case, devise 
all front-end API artifacts, logic, look and feel, etc., following the Internet op-
erational standards and services. This may require involvement as the devel-
opment life cycle of new e-business practices, policies, law enforcement, and 
technology shrink. Consultation with the intermediaries is thus necessary so 
that minimal development endeavor will be expended. Latest available IDE 
service supports, ontology discovery, and the likes are also carried out at this 
stage. As depicted in Figure 6, the Person_API class was split into three mes-
sage groups, namely, secured_login/PK_iden/access_rights, and NULL/NO_ 
iden/access_list, representing registered and general users, respectively. 

5. a final touch-up is performed to ensure that the application complies with the 
mediation interface, i.e., browser, platform, and other communication discip-
lines. 
Effort assessment of application (or apps) was measured by Function Point 

(FP). The method was first defined by Albrecht [16] as “a methodology to estimate  

Name Type

User ID User_pic_url

Username Room

Password Place

UserMessage AnnounceSnd/rcv Snd/rcv/del
11 0..*0..*

Forum Replymanage manage
11 0..*0..*

Message ID

Message string

Sender ID

Receiver ID

Send time

Announce ID

Post type

Post sender

Recv student ID

Recv time

manage

News

File url News topicSend time News 
descriptionNews ID

Reply ID

Sender

Send time

User ID

Forum ID

Reply string

Forum ID

Sender

Send time Announced
by 0..*

1



N. Sophatsathit 
 

333 

 
Figure 6. Message splitting. 

 
the amount of the “function” the software is to perform, in terms of the data it is 
to use (absorb) and to generate (produce). The “function” is quantified as “func-
tion points”, essentially, a weighted sum of the numbers of “inputs”, “outputs”, 
“master files”, and “inquiries” provided to, or generated by, the software.” The 
method was later refined by Albrecht and Gaffney [1]. Thus, the Function Point 
Analysis (FPA) is essentially based on five different functional artifacts which are 
further exemplified by Finnie, et al. [17] as shown in Table 1. For example, a 
simple app consisting of two inputs, two outputs, three inquiries, one interface 
file, and one internal file will be equal to 35 FP (2 * 3 + 2 * 4 + 3 * 3 + 1 * 5 + 1 * 
7). 

The experimental data from the above case study are shown in Table 2. Fac-
tors of measurement were classified in accordance with the above Function 
Point allocation guideline. Thus, the external input, output, inquiry, interface 
file, and internal file were classified as simple, average, average, complex, and 
average, whose scores were 3, 5, 4, 10, and 10, respectively. 

Table 3 shows the experimental results obtained from two apps, namely, 1 
and 2 (to keep their anonymity) having different functional components. The 
number of external inputs, outputs, inquiries, interface files, and internal files 
are also listed. The corresponding function points were determined according to 
the above guideline. The matching assessment was determined from their 
matching percentage of service functionality. The actual development efforts 
were taken by man-hour (m-h). 

Figure 7(a) and Figure 7(b), Figure 8(a) and Figure 8(b) depict the propor-
tional FP and total effort results by apps, respectively. It can be drawn from the 
results that the higher the FP is, the more effort must be expended in order to 
tailor the service to suit the user’s needs. 

Figure 9(a) and Figure 9(b) show the FP and total effort of all components 
from both apps, respectively. The same conclusion can be drawn of the rela-
tionship between FP and total effort. 

user

userID  (PK)
username
password
https_login
user_type

edit
delete
timestamp

create

userID 

https_login

secured_login

PK_iden

username

access_rights

password

userID

edit
delete
timestamp

create

userID



N. Sophatsathit 
 

334 

     
(a)                                   (b) 

Figure 7. (a) Function point by apps; (b) Function point by apps. 
 

     
(a)                                   (b) 

Figure 8. (a) Total effort by apps; (b) Total effort by apps. 
 

  
(a)                                       (b) 

Figure 9. (a) FP and total effort; (b) FP and total effort. 
 
Table 1. Function point allocation. 

Description Simple Average Complex 

External Input 3 4 6 

External Output 4 5 7 

External Inquiry 3 4 6 

External Interface File 5 7 10 

Internal File 7 10 15 

 
Table 2. Experimental data. 

Factor Type Score 

External Input simple 3 

External Output average 5 

External Inquiry average 4 

External Interface File complex 10 

Internal File average 10 



N. Sophatsathit 
 

335 

Table 3. Experimental results. 

Apps Component X-input X-output X-inquiry X-interface File X-Internal File FP Effort(m-h) %match Total effort 

1 A 2 0 1 0 0 10 27 37 100 

1 B 1 1 0 0 1 18 21 42 159 

1 C 1 0 0 1 0 13 30 40 156 

1 D 0 1 1 0 0 9 15 25 34 

1 E 0 2 0 0 1 20 27 38 205 

2 I 1 0 1 0 0 7 33 26 60 

2 J 2 1 0 1 1 31 24 48 357 

2 K 1 0 0 0 0 3 23 21 14 

2 L 2 2 1 0 0 20 21 35 147 

Total 1232 

 
A noteworthy benefit precipitating from the proposed framework that was 

conducive toward the complete case study shown in Figure 3 was freedom of 
development mandates. Front-end development team, in particular, could focus 
on their user requirements to best tailor the final deliverable with little concern 
with back-end integration issues. Similarly, back-end development team could 
procedurally build customized (or generalized) functionalities and modules to 
support different functionalities. New software components could be established 
through this operational map reuse as generic connectors. Therefore, the asso-
ciated costs and resources could be procedurally estimated to assess the viability 
of project management. 

5. Conclusion and Future Work 

This article proposes a straightforward software composition framework that 
complements IDE/IPSE supports to enhance software/tool interoperability. As 
developers create myriad of software compositions for general or specific pur-
poses, there bounds to be new requirements precipitating from various software 
applications that call for the software components to co-exist and interoperate. 
Without attempting to do it all, the proposed approach introduces a software 
component matching framework to aid in the development of application. The 
matching process, however, still performs at the component level that from the 
theoretical point of view does not address the root cause of software integration. 
Such a limitation is a challenging software architectural research to be further 
explored. At any rate, the overall provisions entail greater software component 
interoperability that not only augments the-state-of-the-practice opportunistic 
software systems development, but also broadens the horizon of cost and project 
evaluation. It is hoped that the efforts expended on software component compo-
sition will arrive at an applicable framework in the same manner as tangible 
goods already possess. 



N. Sophatsathit 
 

336 

References 
[1] Albrecht, A. and Gaffney, J.J. (1983) Software Function, Source Lines of Code, and 

Development Effort Prediction: A Software Science Validation. IEEE Transactions 
on Software Engineering, SE-9, 639-648. https://doi.org/10.1109/TSE.1983.235271 

[2] Cox, B. (1995) No Silver Bullet Revisited. American Programmer Journal, 8. 

[3] Waldo, J. (1999) The JINI Architecture for Network-Centric Computing. Commu-
nications of the ACM, 42, 76-82. https://doi.org/10.1145/306549.306582 

[4] Parnas, D.L. (1972) On the Criteria to Be Used in Decomposing Systems into Mod-
ules. Communications of the ACM, 15, 1053-1058.  
https://doi.org/10.1145/361598.361623 

[5] Common APSE Interface Set, MIL-STD-1838A, 30 September 1989. 

[6] ECMA Technical Committee (TC33)—ECMA TR/55 (1990) A Reference Model for 
Frameworks of Computer-Assisted Software Engineering Environments. European 
Computer Manufacturers Association, Geneva. 

[7] Schulz, M. and de Supinski, B.R. (2006) A Flexible and Dynamic Infrastructure for 
MPI Tool Interoperability. International Conference on Parallel Processing, Co-
lumbus, 14-18 August 2006, 193-202. https://doi.org/10.1109/icpp.2006.6 

[8] Bao, Y. and Horowitz, E. (1996) A New Approach to Software Tool Interoperability. 
Proceedings of the 1996 ACM symposium on Applied Computing, Philadelphia, 
17-19 February 1996, 500-509. https://doi.org/10.1145/331119.331432 

[9] Harvey, J.G. and Marlin, C.D. (1996) A Layered Operational Model for Describing 
Inter-Tool Communication in Tool Integration Frameworks. Proceedings of 1996 
Australian Software Engineering Conference, Melbourne, 14-18 July 1996, 55-63.  
https://doi.org/10.1109/ASWEC.1996.534123 

[10] El-Khatib, H.T., Williams, M.H., Marwick, D.H. and Mackinnon, L.M. (2002) Using 
a Distributed Approach to Retrieve and Integrate Information from Heterogeneous 
Distributed Databases. The Computer Journal, 45, 381-394.  
https://doi.org/10.1093/comjnl/45.4.381 

[11] Arch-int, N. and Sophatsathit, P. (2003) A Semantic Information Gathering Ap-
proach for Heterogeneous Information Sources on WWW. Journal of Information 
Science, 29, 357-374. https://doi.org/10.1177/01655515030295003 

[12] Brooks, F.P. (1986) No Silver Bullet—Essence and Accidental in Software Engi-
neering. In: Kugler, H.-J., Ed., Proceedings of the IFIP 10th World Computing 
Conference, Elsevier Science, Amsterdam, 1069-1076. 

[13] Sauer, L.D., Clay, R.L. and Armstrong, R. (2000) Meta-Component Architecture for 
Software Interoperability. Proceedings of the International Conference on Software 
Methods and Tools, Wollongong, 6-9 November 2000, 75-84.  
https://doi.org/10.1109/swmt.2000.890423 

[14] Praserttitipong, D. and Sophatsathit, P. (2007) A Synopsis Model for Deterministic 
Behavioral Specifications of an Adaptable Agent. Proceedings of the 5th Interna-
tional Conference on Software Engineering Research, Management and Applica-
tions, Busan, 20-22 August 2007, 655-661. https://doi.org/10.1109/sera.2007.35 

[15] Praserttitipong, D. and Sophatsathit, P. (2007) A Framework for Deterministic In-
tention Specifications of an Agent toward an Incomplete Declared Intention. Pro-
ceedings of the 6th IEEE/ACIS International Conference on Computer and Infor-
mation Science, Melbourne, 11-13 July 2007, 170-175. 

[16] Albrecht, A.J. (1979) Measuring Application Development Productivity. Proceed-
ings of IBM Applications Development Symposium, Monterey, 14-17 October 1979, 
83. 

https://doi.org/10.1109/TSE.1983.235271
https://doi.org/10.1145/306549.306582
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/icpp.2006.6
https://doi.org/10.1145/331119.331432
https://doi.org/10.1109/ASWEC.1996.534123
https://doi.org/10.1093/comjnl/45.4.381
https://doi.org/10.1177/01655515030295003
https://doi.org/10.1109/swmt.2000.890423
https://doi.org/10.1109/sera.2007.35


N. Sophatsathit 
 

337 

[17] Finnie, G.R., Wittig, G.E. and Desharnais, J.-M. (1997) A Comparison of Software 
Effort Estimation Techniques: Using Function Points with Neural Networks, 
Case-Based Reasoning and Regression Models. Journal of Systems and Software, 39, 
281-289. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jsea@scirp.org 

http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Complexity Measure of Software Composition Framework
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Proposed Approach
	4. Case Study
	5. Conclusion and Future Work
	References

