
Journal of Software Engineering and Applications, 2017, 10, 159-167
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.102009 February 21, 2017

Detecting Bank Conflict of GPU Programs Using
Symbolic Execution—Case Study

Koki Hamaya, Satoshi Yamane

Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan

Abstract
GPU (Graphics Processing Unit) is used in various areas. Therefore, the de-
mand for the verification of GPU programs is increasing. In this paper, we
suggest the method to detect bank conflict by using symbolic execution. Bank
conflict is one of the bugs happening in GPU and it leads the performance of
programs lower. Bank conflict happens when some processing units in GPU
access the same shared memory. Symbolic execution is the method to analysis
programs with symbolic values. By using it, we can detect bank conflict on
GPU programs which use many threads. We implement a prototype of the
detector for bank conflict and evaluate it with some GPU programs. The re-
sult states that we can detect bank conflict on the programs with no loop re-
gardless of the number of threads.

Keywords
Graphics Processing Units, GPU, Bank Conflict, Symbolic Execution, Model
Checking

1. Introduction

Nowadays, GPGPU (General-purpose computing on GPU) is one of the most
remarkable topics in the field of HPC and in various study fields [1]. Originally,
GPU is used for graphics processing. Beside, GPGPU is to use GPU for other
general purpose computation. The computation power of GPU achieves results
greatly for not only graphics processing but also other objects.

If you want to make the most use of GPU, you should write GPU programs
with considering the architecture of GPU. One of what you should do is not to
make bank conflict. Bank conflict happens when some processing units in GPU
access the same shared memory. When bank conflict happens, the program in-
struction executed in parallel is executed in sequential. As a result, it makes the
performance lower. It is hard for programmers to find whether bank conflict

How to cite this paper: Hamaya, K. and
Yamane, S. (2017) Detecting Bank Conflict
of GPU Programs Using Symbolic Execu-
tion—Case Study. Journal of Software
Engineering and Applications, 10, 159-167.
https://doi.org/10.4236/jsea.2017.102009

Received: January 13, 2017
Accepted: February 18, 2017
Published: February 21, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.102009
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.102009
http://creativecommons.org/licenses/by/4.0/

K. Hamaya, S. Yamane

160

happens manually. If there is a bank conflict detector for GPU programs, debug-
ging is easier.

In this paper, we propose the method to detect bank conflict. The method uses
symbolic execution to analysis GPU programs. By executing symbolically, GPU
programs using many threads can be executed with the number of states small
and state explosion is lightened. We implement a prototype of our method and
evaluate it with some tests.

2. Related Works

In Utah university, P. Li, G. Li and G. Gopalakrishnan study verification for
GPU programs with symbolic execution [2]. In our study, we target GPU pro-
grams written in CUDA, the environment and language for GPU programs, and
use ordinary symbolic execution. In Utah university’s study, they target GPU
programs written in LLVM, the intermediate representation compiled from
CUDA codes, and use conclic execution. Conclic execution is the technique that
programs are executed regarding a part of variables as symbolic values and other
part of variables as concrete values. It can make the number of states smaller
than symbolic execution.

In Imperial College London, A. Betts et al. study verification for GPU pro-
grams with Boogie [3]. Boogie is the verification language proposed by Micro-
soft Research [4]. They convert GPU programs to the intermediate representa-
tion written in Boogie language. Then Boogie verifier is used to check the satis-
fiability of the intermediate presentation.

In Twente University, M. Huisman et al. study verification for GPU programs
with separation logic [5]. Strictly speaking, permission-based separation logic is
used. They check this logic formula while permission for to read or to write is
added when a memory is accessed and a barrier is executed.

There are two differences between these related works and our study. First, we
target GPU programs written in CUDA instead of GPU programs written in
LLVM. GPU programs written in CUDA is small than written in LLVM so that
we can reduce the number of states. Second, we verify only bank conflict. Bank
conflict happens in the same instruction, so we can assume all instruction is ex-
ecuted at the same time. By these two differences, the number of states in execu-
tion is smaller and the verification is easier.

3. GPU Software
3.1. GPU Hardware

GPU architecture is so unique compared to CPU [1]. GPU has hundreds or
thousands of processing units. Because the number of processing units on GPU
is huge, eight units make a set and GPU assigns this group to jobs. In this paper,
based on names in NVIDIA, a GPU vendor, we call processing units on GPU
SPs (Streaming Processors) and this group SM (Streaming Multiprocessor)
(Figure 1).

K. Hamaya, S. Yamane

161

Figure 1. GPU Architecture.

One SM has eight SPs, one instruction buffer, and one shared memory. There

is only one instruction buffer so that eight SPs in one SM execute the same in-
struction at the same time. Each instruction needs four clocks and Su-
per-pipeline is employed in GPU. So each of eight SPs can execute four instruc-
tions at the same time. Therefore, one SM can execute 32 instructions at the
same time and 32 threads make one warp. GPU handles many warps containing
thousands or millions of threads and each warp is assigned to one SM.

3.2. GPU Programs

GPU Programs are written in the form of SIMD (Single-Instrument Mul-
tiple-Data) [1]. In this form, computers with multiple processing elements per-
form the same operation on multiple data points simultaneously. This form is
suitable to GPU. There are some environments to make GPU programs in form
of SIMD. One of the environments is CUDA. CUDA is the language and pro-
gramming environment for GPU programs. we target GPU programs written in
CUDA and execute it symbolically.

In CUDA, there are some built-in variables to write programs in form of
SIMD. To make the description easier, we describe only one built-in variable,
threadIdx. This variable indicates the index of threads. Enormous threads are
made on GPU. So threads are managed in a three-dimensional such as x-axis,
y-axis, and z-axis. ThreadIdx is defined as a structure containing the variables, x,
y, and z. For example, when six threads are made and each size of dimensions is
3, 2, and 1, threadIdx’s values are the followings. (x, y, z) = (1, 1, 1), (1, 2, 1), (2,
1, 1), (2, 2, 1), (3, 1, 1), (3, 2, 1) Each thread uses the same program but the
processing is changed by using threadIdx. In detail, the condition of branch and
the address of arrays contain threadIdx.

3.3. Shared Memory and Bank Conflict

Shared memory of SM has 32 banks (Figure 2). N address of shared memory
belongs to (N% 32) bank as shown in Figure 2. For example, 0 address and 32
address belong to the same bank, 0 bank. The number of banks is 32 for the
number of threads executed simultaneously is at most 32. One of important
things is that at the same time, different bank can be accessed but the same bank
cannot be accessed. If the same bank is accessed simultaneously, programs is ex-
ecuted not in parallel but sequentially.

Bank conflict is the bug happening by the property of bank. When multiple SP

K. Hamaya, S. Yamane

162

tries to access the same bank of shared memory, completely parallel execution
isn’t achieved and the performance is lower. This phenomenon is called bank
conflict. For example, bank conflict happens in Figure 3. The thread that threa-
dIdx. x is 0 accesses 0 address and the thread that threadIdx is 16 accesses 32 ad-
dress. So these two threads make bank conflict. This example is simple but as
programs are more complicated, it is much harder to detect bank conflict ma-
nually. Therefore, a detector for bank conflict is needed.

4. Model Checking with Symbolic Execution
4.1. Satisfiability Modulo Theories

Before symbolic execution, we describe SAT and SMT. Given a proposal formula
with proposal variables and logic operators, the problem to check whether a set
of variables meeting this formula exists is SAT (Boolean or Propositional Satis-
fiability Testing). If the set exists, it is satisfiable. If not, it is unsatisfiable. A tool
to check SAT is called SAT solver.

SMT is the extension of SAT with backgrounds in the area of mathematics. In
SMT, check a first-logic formula with real number, bit operation, and data
structure. If it is satisfiable, one example meeting this formula is got. Many SMT
solvers have been developed and we use Z3.

Z3 is a SMT solver developed by Microsoft Research [6]. It has such theory
solvers as linear arithmetic, bit-vectors, arrays, and tuples. So we decided to use
it in our algorithm. There are two points to use Z3. First, we check whether a
loop should be expanded in symbolic execution. Second, we check whether bank
conflict happens on each symbolic state.

4.2. Symbolic Execution

Symbolic execution is one of methods to execute and analysis programs [7] [8]
[9]. The main idea of symbolic execution is to use not actual data but symbolic

Figure 2. Shared memory and bank.

Figure 3. Example causing bank conflict.

K. Hamaya, S. Yamane

163

values as inputs and to represent the values of program variables as symbolic
formula. As a result, the final outputs calculated by programs represent func-
tions with symbolic values. In symbolic execution, a state of programs in execute
has the symbolic values of variables and the path condition. A path condition is
a symbolic formula which means the condition to execute this state. Symbolic
execution tree is made as a result of symbolic execution. It is an execution tree
with symbolic formula.

4.3. Model Checking with Symbolic Execution

Model checking is one of formal methods to check whether a program meets a
property. In model checking, use a model to represent the system and a property
met in the system. Generally, a model is an automaton such as Kripke structure
and a property is written in temporal logic.

In our study, a model is a symbolic execution tree and a property is written in
temporal logic. For the states which access shared memory, the conjunction of
the negation of the symbolic formula representing the property and the path
condition is checked by SMT solver. If the conjunction is unsatisfiable, the
property is met. If the conjunction is satisfiable, the property isn’t met and we
can get the counter-example. This counter-example is an example of an input
which doesn’t meet the property.

5. Our Algorithms

In our study, bank conflict on GPU programs is detected. To detect it, we use
model checking with symbolic execution. There are some reasons to use it.

The first reason is to reduce the state explosion. Bank conflict happens be-
tween any pair of threads. The number of states is enormous considering all
combinations of all threads. If we assume that the number of threads is n, the
number of two-threads combinations is ()1 2n n − . In addition, a branch on
programs makes more states and it is easy to guess that the state explosion gets
worse. By using symbolic execution, only one pair of threads having threadIdx
with symbolic values is needed. This is the main reason to use symbolic execu-
tion.

The second reason is that we target GPU programs written in CUDA. Inputs
of programs is usually undecidable, so it is convenient to set symbolic values to
inputs. If inputs aren’t given, we can detect bank conflict.

5.1. Overview

The overview of our study is shown in Figure 4. First, we convert GPU pro-
grams to the control flow graph. Then, symbolic execution is done on the graph
and the graph is converted to the symbolic execution tree. We will describe how
to execute symbolically in the next subsection. Finally, for each state of the
symbolic execution tree, we check whether bank conflict happens by using SMT
solver. Strictly speaking, for each state of the tree, we give the conjunction of the
path condition and the condition for detecting bank conflict to SMT solver. If

K. Hamaya, S. Yamane

164

Figure 4. Overview of our algorithm.

the solver says satisfiable, bank conflict happens. If the solver says unsatisfiable,
bank conflict doesn’t happen. A condition for detecting bank conflict is shown
in the later subsection.

5.2. Symbolic Executor

It describes symbolic executor in our study. It takes a control flow graph as in-
puts and outputs the symbolic execution tree. Each state of a symbolic execution
tree contains a program counter, values of program variables, and a path condi-
tion. Initially, an initial state is made. This path condition is True and program
variables are assigned different symbolic values. Symbolic execution is done in
the following rules.

1) In an assignment expression, the path condition isn’t changed but values of
program variables are calculated.

2) In a branch expression if (e) S1 else S2, the state is divided into two state,
“the state that the condition is true” and “the state that the condition is false”. In
“the state that the condition is true”, the path condition pc is updated to pc ∧
e. In “the state that the condition is false”, the path condition pc is updated to pc

K. Hamaya, S. Yamane

165

∧ e. In both states, the values of program variables aren’t changed.
3) In a loop expression, the loop is expanded until the condition is met. SMT

solver is used to check whether a loop is expanded. If the condition is satisfiable,
expand the loop. If not, stop expanding the loop.

5.3. Model Checking

We check whether bank conflict happens in each state of the symbolic execution
tree. For it, 1) we convert a path condition for one thread convert into the path
condition for two threads and 2) we check satisfiability of the conjunction of two
path conditions and the condition for detecting bank conflict.

1) Two path conditions are needed because bank conflict happens between
two threads. The variables in CUDA are local variables, shared memory va-
riables, device public variables, and built-in variables. Local variables and
built-in variables are peculiar to one thread, so these variables of two threads has
different symbolic values. Shared memory variables and device public variables
are common in threads, so these variables have the same symbolic values.

2) The condition for detecting bank conflict is the conjunction of three condi-
tions. The first condition is for two symbolic variables, a_vaddr and b_vaddr.
These variables indicate the address of shared memory in which we check
whether bank conflict happens. These variables are based on the state of sym-
bolic execution tree. The second condition is the following.

0 blockDim 32, 0 32, 0 32tn a b≤ ≤ ≤ < ≤ < (1)

threadIdx _ 32a tn a= ∗ + (2)

threadIdx _ 32b tn b= ∗ + (3)

The variable, threadIdx_a, indicates one of two threads and the variable,
threadIdx_b, indicates the other. To consider threadIdx in one warp, two threa-
dIdxs need to be chose in a warp. For it, introduce the variables, tn, a, and b. The
third condition is the following.

diff _ _ , diff %32 0a vaddr b vaddr= − = (4)

This condition indicates that the two addresses of shared memory belong to
the same bank. By this condition, we can check whether bank conflict happens.
If SMT solver says satisfiable, bank conflict happens and the counter-example
means the actual values of programs variables. If SMT solver says unsatisfiable,
bank conflict doesn’t happen.

6. Implementation

We develop a prototype of our model checker to detect bank conflict. We pre-
pare seven GPU programs to evaluate the prototype. These programs are a part
of test cases for GPU programs, Gklee Tests, published by Utah University [10].
We made experiments as the number of threads on GPU change to evaluate how
a change of the number of threads affects the verification time. We consider two
group of the result. The first group is the group that GPU programs contain no
loop and other group is that contain a loop.

K. Hamaya, S. Yamane

166

Figure 5 shows the result of evaluation for GPU programs containing no loop.
Programs containing no loop are the five of seven GPU programs. Thanks to
regard the number of threads on GPU as the symbolic value, as the number of
threads increases, the number of states to be checked is fixed. Because the num-
ber of states is fixed, the verification time is also fixed. We achieve the aim that
the state explosion is reduced if the number of threads increases.

Figure 6 shows the result of evaluation for GPU programs containing a loop.
Programs containing a loop are the two of seven GPU programs. In this group,
an increase in the number of threads makes the number of loop unrolling and
leads to an increase in the number of states. It is found that we cannot solve the
state explosion by loops. In our algorithm, a loop is expanded until the loop
condition is unsatisfiable. If the loop condition is related to the number of
threads, the number of loop unrolling is larger as the number of threads is larg-
er. Hence we expect that these two programs had the loop involved in the num-
ber of threads and symbolic executor made a larger number of states than Group
1. Therefore, we need to handle a loop unrolling well to reduce the number of
states.

Figure 5. Group 1.

Figure 6. Group 2.

K. Hamaya, S. Yamane

167

7. Conclusions

In the paper, we describe GPU architecture, model checking with symbolic ex-
ecution, and, the method to detect bank conflict. In our method, we convert
GPU programs written in CUDA to the control flow graph to execute symboli-
cally and execute symbolically the programs on the control flow graph. Then we
check whether bank conflict happens on each states of the symbolic execution
tree given by a symbolic executor.

We evaluated the prototype of this method. The result shows that we can
detect bank conflict on programs with no loop regardless of the number of
threads. It means we achieve to avoid state explosion due to increasing of the
number of threads. However, when we analyze the programs containing a loop,
state explosion happens. Hence we need to reduce the number of states by han-
dling a loop unrolling well.

As the future work, we try to think about the method to reduce the number of
states by using counter-example guided abstraction refinement (CEGAR) [11].
CEGAR is one of good methods to check programs with handling a loop well.
Besides, we try to detect other bugs on GPU programs.

References
[1] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E. and Phillips, J.C. (2008)

GPU Computing. Proceedings of the IEEE, 96, 879-899.
https://doi.org/10.1109/JPROC.2008.917757

[2] Li, P., Li, G. and Gopalakrishnan, G. (2014) Practical Symbolic Race Checking of
GPU Programs. Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, New Orleans, 16-21 November
2014, 179-190. https://doi.org/10.1109/SC.2014.20

[3] Betts, A., et al. (2015) The Design and Implementation of a Verification Technique
for GPU Kernels. ACM TOPLAS, 37, Article No. 10.

[4] Barnett, M., Evan Chang, B.-Y., DeLine, R., Jacobs, B. and Leino, K.R.M. (2005)
Boogie: A Modular Reusable Verifier for Object-Oriented Programs. Vol. 4111,
Springer, Berlin Heidelberg, 364-387.

[5] Huisman, M. and Matej, M. (2013) Specification and Verification of GPGPU Pro-
grams Using Permission-Based Separation Logic.

[6] De Moura, L. and Nikolaj, B. (2008) Z3: An Efficient SMT Solver. Vol. 4963, Sprin-
ger, Berlin Heidelberg, 337-340. https://doi.org/10.1007/978-3-540-78800-3_24

[7] Sarfraz, K., Psreanu, C.S. and Visser, W. (2003) Generalized Symbolic Execution for
Model Checking and Testing. Vol. 2619, Springer, Berlin Heidelberg, 553-568.

[8] Psreanu, C.S. and Willem, V. (2009) A Survey of New Trends in Symbolic Execu-
tion for Software Testing and Analysis. International Journal on Software Tools for
Technology Transfer, 11, 339-353. https://doi.org/10.1007/s10009-009-0118-1

[9] Cadar, C. and Koushik, S. (2013) Symbolic Execution for Software Testing: Three
Decades Later. Communications of the ACM, 56, 82-90.
https://doi.org/10.1145/2408776.2408795

[10] Geof23/GkleeTests. https://github.com/Geof23/GkleeTests

[11] Beyer, D., et al. (2007) The Software Model Checker BLAST. International Journal
on Software Tools for Technology Transfer, 9, 505-525.

https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10009-009-0118-1
https://doi.org/10.1145/2408776.2408795
https://github.com/Geof23/GkleeTests

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	Detecting Bank Conflict of GPU Programs Using Symbolic Execution—Case Study
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. GPU Software
	3.1. GPU Hardware
	3.2. GPU Programs
	3.3. Shared Memory and Bank Conflict

	4. Model Checking with Symbolic Execution
	4.1. Satisfiability Modulo Theories
	4.2. Symbolic Execution
	4.3. Model Checking with Symbolic Execution

	5. Our Algorithms
	5.1. Overview
	5.2. Symbolic Executor
	5.3. Model Checking

	6. Implementation
	7. Conclusions
	References

