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Abstract 
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the 
optimal osmotic dehydration parameters in a case study of papaya. In the 
case, the functional form of the dehydration model is established via a re-
sponse surface technique with the resulting optimization formulation being a 
non-linear goal programming model. For optimization, a computationally ef-
ficient, FA-driven method is employed and the resulting solution is shown to 
be superior to those from previous approaches for determining the osmotic 
process parameters. The final component of this study provides a computa-
tional experimentation performed on the FA to illustrate the relative sensitiv-
ity of this evolutionary metaheuristic approach over a range of the two key 
parameters that most influence its running time-the number of iterations and 
the number of fireflies. This sensitivity analysis revealed that for intermediate- 
to-high values of either of these two key parameters, the FA would always de-
termine overall optimal solutions, while lower values of either parameter 
would generate greater variability in solution quality. Since the running time 
complexity of the FA is polynomial in the number of fireflies but linear in the 
number of iterations, this experimentation shows that it is more computation-
ally practical to run the FA using a “reasonably small” number of fireflies to-
gether with a relatively larger number of iterations than the converse. 
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1. Introduction 

The global agricultural production of fruits and vegetables is a multi-trillion 

How to cite this paper: Cao, T. and Yeo-
mans, J.S. (2017) An Evolutionary Firefly 
Algorithm, Goal Programming Optimiza-
tion Approach for Setting the Osmotic De- 
hydration Parameters of Papaya. Journal of 
Software Engineering and Applications, 10, 
128-142.  
https://doi.org/10.4236/jsea.2017.102007 
 
Received: December 10, 2016 
Accepted: February 4, 2017 
Published: February 7, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.102007
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.102007
http://creativecommons.org/licenses/by/4.0/


T. Cao, J. S. Yeomans 
 

129 

dollar enterprise. The annual worldwide production of papayas currently ex-
ceeds 12 million∙tonnes [1]. As with many agricultural commodities, the high 
moisture content of papayas renders them highly perishable and, due to various 
chemical, microbial, and enzymatic reactions, they commence decomposition 
immediately upon harvesting [2] [3]. It is, therefore, imperative to establish ef-
fective preservation techniques to maintain the overall quality of the produce. 
This is often achieved through various combinations of heat processing and de-
hydration methods [4]. From an operational perspective, the dehydration of pe-
rishable agricultural produce reduces shipping weights, minimizes their packag-
ing requirements, and permits longer storage periods [5]. However, due to in-
consistent product quality, conventionally hot-air dried products using vacuum, 
tray, and cabinet dryers have not received universal acclaim [5] [6] [7]. 

Osmotic dehydration techniques have been introduced as an effective alterna-
tive that yields higher quality end products than traditional drying approaches 
[8]. In osmotic dehydration, the produce is placed into a hypertonic solution 
where water is withdrawn from the produce into the solution due to the differ-
ences in their respective concentrations [8]. In this manner, osmotic dehydra-
tion removes a portion of the water from the produce thereby creating a product 
of intermediate moisture content [9] [10]. A concurrent transfer of the solid 
materials suspended in the hypertonic liquid—such as sugar and salt—also takes 
place between the solution and the product [8] [11] [12]. Beneficially, osmotic 
processing contributes only minimal thermal degradation to the nutrients due to 
the relatively low temperature water removal process in comparison to all stan-
dard hot air drying practices [2] [8] [13] [14]. 

Additionally, osmotic dehydration can also be employed as a pre-treatment to 
supplemental dry-processing methods as it improves numerous functional, nu-
tritional, and sensory properties of fresh produce [15]. The quality of the subse-
quent product is superior to one without pre-treatment due to 1) increases in the 
solid gain transfer of sugar and salt from the solution, 2) the improvements to 
texture of the fruits and vegetables, and 3) the stability of the colour pigmenta-
tion during storage [5] [13]. Thus, in conjunction with other follow-on drying 
technologies, osmotic dehydration produces a superior quality, shelf-stable prod-
uct for both local consumption and export markets. 

Water removal during the dehydration process is influenced by many factors 
such as the concentration and type of osmotic agents, temperature, circulation/ 
agitation of solution, solution-to-sample ratio, thickness of food material, and 
pre-treatment [6] [8]. While an expanding market currently exists for osmo- 
convective dehydrated produce in both domestic and world markets, only li-
mited attention has been paid to the optimization of the requisite osmotic 
processing parameters [5] [13] [16]-[21]. Specifically, an analysis of the mass 
transport measured in terms of water loss and solid (sugar, salt) gains occurring 
within the osmosis process is of considerable “real-world” significance [6] [8] 
[12]. 

Consequently, in this study, the functional form of the osmotic dehydration 
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process is initially determined using response surface techniques [20] [21] [22] 
[23]. It will be shown that the ensuing optimization model can be represented by 
a non-linear goal programming formulation [16]-[21]. The study then investi-
gates the impacts of using the evolutionary Firefly Algorithm (FA) [25] [26] [27] 
to set the optimal osmotic process parameters for the papaya dehydration case 
introduced in [13]. It will be shown that the ensuing solutions calculated by the 
FA for the osmotic parameters are superior to those determined by previous ap-
proaches. The final component of the study provides a comprehensive computa-
tional experimentation performed on the FA using the osmotic dehydration 
models from the case to determine the relative sensitivity of this evolutionary, 
nature-inspired metaheuristic over a range of the two key parameters that most 
influence its running time-the number of iterations and the number of fireflies. 

2. Functional Form and Mathematical Model of the Osmotic  
Dehydration Process 

The initial section of this study examines the papaya case dehydration from [13]. 
The first step requires the formulation of a suitable model of the process res-
ponses to the three main osmotic drying parameters—1) syrup solution concen-
tration, 2) duration of osmosis, and 3) solution temperature—on the solid gain 
and water loss of the papaya. This functional representation will be subsequently 
used to project the solid gain and water loss impacts in the dehydrated papaya 
over the experimental ranges of the three drying parameters. Once an appropri-
ate formulation has been constructed, the second step is to optimize this model 
to determine the optimum solid gain and the maximum water loss achievable 
during osmotic dehydration. In the subsequent model formulation, let C be the 
hypertonic syrup solution concentration measured in ˚Brix, D be the duration of 
the osmosis in hours, and T represent the hypertonic syrup solution temperature 
in ˚C. For the corresponding response variables, let SG represent the solid gain 
of the product and WL be the percentage of water loss during the dehydration 
process. In the papaya case, SG represents the sugar gain percentage in the de-
hydrated papaya. 

Response surface procedures are statistical techniques frequently used for op-
timization in empirical studies [22] [23] [24]. Response surfaces employ quan-
titative data in appropriately designed experiments to simultaneously ascertain 
the various variable relationships within multivariate problems [24]. The equa-
tions constructed describe the effect of various test variables on responses, de-
termine interrelationships among the test variables and represent the combined 
effect of all test variables in any response. Response surfaces enable an experi-
menter to undertake an efficient exploration of a process or system [23] [24]. 
These approaches have frequently been used in the optimization of food 
processes [5] [13] [28] [29] [30] [31] and will, consequently, be employed in this 
study to determine the appropriate mathematical representation. The proposed 
model can then be used to predict the water loss and sugar gain in the dehydra-
tion of papaya over the different experimental ranges for the process durations, 
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syrup concentrations and syrup solution temperatures. 
It should be explicitly noted that any mathematically exact representation of 

the relationship between the osmotic drying parameters in the dehydration 
process remains unknown. However, a response surface approach permits an 
empirical approximation to the unknown mathematical model using appropriate 
experimental design techniques [23] [24]. The specific experimental design 
comprises the three parameters (T, C, D) each fixed at three levels using data 
from [13] to determine the corresponding sugar gain (SG) and water loss (WL) 
responses. The actual response surface experimental design for the various com-
binations of input variables and response variable levels requires the fifteen 
combinations shown in Table 1 (see [13]). 

The experimental values for the corresponding response variables WL and SG 
appear in last two columns of Table 2. 

The empirically determined functional equations for the respective response 
variables, based upon the appropriate response surface experimental design ap-
plied to the sugar gain and water loss outputs of Table 2 [16]-[24], are: 

2 2 263.745 1.56275 0.6615 6.075 0.0286 0.00925 0.79WL T C D T C D= − − − + + + (1) 
213.9088 0.83028 0.04488 0.5125 0.0106 0.00283SG T C D T TC= − − + + +   (2) 

In the food industry, organoleptic properties refer to sensory aspects includ-
ing taste, sight, smell, touch, dryness, moisture content, and stale-fresh factors. 
Reference [13] established organoleptic ranges for the osmotic dehydration pa-
rameters and restricted their search for best parameter settings to values within 
these ranges. In order to find values for the osmotic dehydration parameters, a 
number of contour plots were constructed by changing the values of the three  
 
Table 1. Response surface experimental design layout for 3 variables and 3 levels. 

Treatment 
No. 

Level for 
T 

Temperature 
(˚C) 

Level for 
C 

Concentration 
(˚Brix) 

Level for 
D 

Duration 
(Hrs) 

1 1 50 1 70 0 5 

2 1 50 −1 50 0 5 

3 −1 30 1 70 0 5 

4 −1 30 −1 50 0 5 

5 1 50 0 60 1 6 

6 1 50 0 60 −1 4 

7 −1 30 0 60 1 6 

8 −1 30 0 60 −1 4 

9 0 40 1 70 1 6 

10 0 40 1 70 −1 4 

11 0 40 −1 50 1 6 

12 0 40 −1 50 −1 4 

13 0 40 0 60 0 5 

14 0 40 0 60 0 5 

15 0 40 0 60 0 5 
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variables and observing the effects that these changes instigated in their corres-
ponding response functions [13]. By superimposing the various contours onto a 
single figure, they visually determined best values for the temperature, concen-
tration, and duration as 37˚C, 60 ˚Brix and 4.25 hours, respectively. These set-
tings invoked responses of 4.0% for the sugar gain and 28% for the water loss 
(see Table 3). 

3. A Goal Programming Formulation for Setting Osmotic  
Dehydration Parameters 

The process for finding the best values for the dehydration parameters could be 
considered analogous to a multi-response optimization and can, therefore, be 
transformed into an equivalent mathematical programming approach [21]. In 
this section, this transformation will be achieved by converting the parameter 
setting process into a corresponding goal programming format. 

Based upon the organoleptic requirements for the response functions and pa-
rameters established in [13], the technical constraints for the problem can be 
stated as: 

23.02 44.5WL≤ ≤                        (3) 

2.56 8.1SG≤ ≤                          (4) 

30 50T≤ ≤                           (5) 

50 70C≤ ≤                           (6) 

4 6D≤ ≤                            (7) 

 
Table 2. Experimental data for water loss and sugar gain under different treatments. 

Temperature (˚C) Concentration (˚Brix) Duration (Hrs) Water Loss (%)  Sugar Gain (%) 

50 70 5 44.5  8.1 

50 50 5 35.2  5.5 

30 70 5 31.7  4.5 

30 50 5 23.6  3.0 

50 60 6 44.5  8.2 

50 60 4 39.6  7.0 

30 60 6 27.2  3.9 

30 60 4 23.2  2.5 

40 70 6 37.8  4.8 

40 70 4 34.8  4.3 

40 50 6 28.4  4.4 

40 50 4 25.7  3.4 

40 60 5 29.7  4.3 

40 60 5 30.0  4.3 

40 60 5 30.2  4.4 

 
Table 3. Best osmotic dehydration parameters determined by reference [13]. 

Temperature (˚C) Concentration (˚Brix) Duration (Hrs) Water Loss (%) Sugar Gain (%) 

37 60 4.25 28 4.0 
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Supplemental organoleptic criteria can be added to the variables and res-
ponses for the solution. The objective requirements and targets for these addi-
tional desired preferences have been summarized in Table 4. From a hierarchic-
al achievement perspective, several of these preferences can be recognized as 
more important criteria to attain than the others. Specifically, the water loss 
needs to be as high as possible within the indicated range from a dehydration 
perspective, while the sugar gain ought to be as close to 4% as possible from a 
taste perspective. The relative importance for attaining these hierarchy targets is 
displayed in the last column of Table 4. 

Therefore, from a mathematical programming standpoint, each desired target 
can be quantified as a tentative goal and the entire problem can transformed into 
a conventional goal programming formulation. In the ensuing mathematical 
programming formulation, a percentage deviation objective function weighted 
by the relative importance of each goal is employed to penalize deviations from 
the desired targets. Consequently, the problem for determining osmotic dehy-
dration parameter values can be represented by the subsequent non-linear goal 
programming model. 

Minimize  

( )1 1 2 2 3 3 4 4 5 5 5* * * *  *W P W P W P W N W P N+ ++ + +             (8) 

subject to  

1 30P T= −                            (9) 

1 50N T= −                           (10) 

2 50P C= −                           (11) 

2 70N C= −                           (12) 

3 4P D= −                            (13) 

3 6N D= −                            (14) 

4 44.05N WL= −                         (15) 

4 23.02P WL= −                         (16) 

5 4.00N SG= −                          (17) 

5 4.00P SG= −                          (18) 

6 8.1N SG= −                          (19) 

6 2.56P SG= −                          (20) 

0, 0 1,2,3,4,5,6i iP N i≥ ≥ =                    (21) 

 
Table 4. Ranges for process variables and response goals in the osmotic dehydration. 

Parameter Goal Requirement Lower Limit Upper Limit Relative Importance 

Temperature (˚C) 1 Minimize 30 50 Important 

Concentration (˚Brix) 2 Minimize 50 70 Important 

Duration (Hrs) 3 Minimize 4 6 Important 

Water Loss (%) 4 Maximize 23.02 44.05 Very Important 

Sugar Gain (%) 5 Target = 4.0 2.56 8.1 Extremely Important 
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Several deviation variables have been introduced in order to complete the 
transformation of the problem into the series of defined goals. Specifically, let 

iP  and iN , i = 1 to 6, correspond to the positive and negative deviations, re-
spectively, from the various goal targets and constraint limits shown in Table 4. 
Let iW  represent weighting factors applied to goal i, i = 1 to 5, that denote the 
relative importance in achieving that goal’s target. Without loss of generality, 
each iW  simultaneously includes an appropriate denominator constant neces-
sary to convert the deviation values into requisite deviation percentages. Thus, 
solving the goal programming model would be equivalent to setting optimal pa-
rameter values for the osmotic dehydration process. 

4. A Goal Programming, Firefly Algorithm-Driven  
Optimization Approach 

While numerous different analytical methods could have been employed, the 
solution approach actually applied to the resulting optimization problem uses 
the FA technique. For optimization, it has demonstrated that an FA is more 
computationally efficient than other such commonly-used metaheuristics as en-
hanced particle swarm optimization, genetic algorithms, and simulated anneal-
ing [26]. Hence, an FA procedure can be considered very computationally effi-
cient. Whereas this section briefly summarizes the FA approach, more detailed 
explanations can be accessed in [25] and [26]. 

An FA procedure is a biologically-inspired, population-based, evolutionary 
metaheuristic in which each firefly within the population represents a potential 
solution to the problem. The FA employs three idealized rules: 1) All fireflies 
within a population are unisex, so that one firefly will be attracted to other fire-
flies irrespective of their sex; 2) Attractiveness between fireflies is proportional to 
their brightness, implying that for any two flashing fireflies, the less bright one 
will move towards the brighter one; and 3) The brightness of a firefly is deter-
mined by the value of its objective function. For a maximization problem, the 
brightness can be considered proportional to the value of the objective function. 
Reference [26] demonstrates that the FA approaches the global optima whenever 
the number of fireflies n →∞  and the number of iterations t, is set so that 

1t  . In reality, the FA has been shown to converge extremely quickly into both 
local and global optima [25] [26]. The basic operational steps of the FA are 
summarized in Figure 1 [26]. 

In the FA, there are two important aspects to resolve: the formulation of at-
tractiveness and the variation of light intensity. In a straightforward manner, it 
can be assumed that the attractiveness of a firefly is associated with its brightness 
which in turn is determined by the value of the encoded objective function. In 
the simplest instance, the brightness of a firefly at a location X  would be de-
termined by its calculated objective value ( )F X . However, the attractiveness, 
β, between fireflies is relative and will vary with the distance ijr  between firefly i 
and firefly j. In addition, light intensity decreases with the distance from its 
source, and light is also absorbed in the media, so the attractiveness should be  
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Figure 1. Pseudo code of the firefly algorithm. 

 
allowed to vary with the degree of absorption. Consequently, the overall attrac-
tiveness of a firefly can be defined as  

( )0
2 exp rββ γ−=                         (22) 

where 0β  is the attractiveness at distance r = 0 and γ is the fixed light absorp-
tion coefficient for a specific medium. If the distance ijr  between any two fire-
flies i and j located at iX  and iX , respectively, is calculated using the Eucli-
dean norm, then the movement of a firefly i that is attracted to another more at-
tractive (i.e. brighter) firefly j is determined by  

( )( )( )2
0 ex .pi i ij i j iX X r X Xβ γ αε− − += +            (23) 

In this expression of movement, the second term is due to the relative attrac-
tion and the third term is a randomization component. Reference [26] indicates 
that ∝  is a randomization parameter normally selected within the range [0, 1] 
and iε  is a vector of random numbers drawn from either a Gaussian or uni-
form (generally [−0.5, 0.5]) distribution. It should be pointed out that this ex-
pression is a random walk biased toward brighter fireflies and if 0β  = 0, it be-
comes a simple random walk. The parameter γ characterizes the variation of the 
attractiveness and its value determines the speed of the algorithm’s convergence. 
For most applications, γ is typically set between 0.1 to 10 [26]. For all computa-
tional approaches for the FA considered in this study, the variation of attrac-
tiveness parameter γ is fixed at 5 while the randomization parameter ∝  is in-
itially set at 0.6, but is then gradually decreased to a value of 0.1 as the procedure 
approaches its maximum number of iterations (see [26]). 

By optimizing the goal programming problem formulation using the 
FA-driven procedure, best process parameters for the osmotic dehydration of 
the papaya were determined and these resulting values are displayed in Table 5. 
In comparison to the values found by [13], it can be observed that, while the 
temperature parameter remains essentially the same, the syrup concentration  
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Table 5. Optimal process parameters determined for the osmotic dehydration of papaya. 

 Temperature (˚C) Concentration (˚Brix) Duration (Hrs) Water Loss (%) Sugar Gain (%) 

Reference [13] 37 60 4.25 28 4.0 

FA Solution 37.776 70 4 32.8 4.02 

 
has increased by 10 ˚Brix and the duration of dehydration process has been re-
duced slightly by 0.25 hours. More significantly, in terms of the key response va-
riables, while the sugar gain has remained at the highly desirable target of 4%, 
the water loss has increased by 5%. Consequently, since the water loss response— 
which is obviously the fundamental feature of the osmotic dehydration 
process—has been increased significantly from that determined by [13], this goal 
programming solution represents a significant improvement. 

In any given optimization problem, for a very large number of fireflies n k  
where k is the number of local optima, the initial locations of the n fireflies 
should be distributed as uniformly as possible to ensure that a comprehensive 
search throughout the search domain occurs. As the FA proceeds, the fireflies 
should converge into all of the local optima, including the global ones. By com-
paring the best solutions among all these optima, the global optima can easily be 
determined. As noted above, the FA approaches the global optima whenever the 
number of fireflies n →∞  and the number of iterations t, is set so that 1t   
[26]. In reality, the FA has a tendency to converge very quickly into both local 
and global optima [25] [26] [32]. 

In general, the two parameters that most directly impact the solution search 
time of the FA are the values selected for n and t. Using terminology from com-
putational complexity, the running time for the FA is linear in t, but is second 
order polynomial in n. Obviously, for practical applications, the desire is to be 
able to determine the best solution in the shortest amount of time. This would 
correspond to setting n and t at the minimum possible values that produce the 
best solution(s). However, since the FA’s search process evolves from one popu-
lation to the next and incorporates random components within its solution search, 
the parameter setting is clearly not a strictly deterministic issue—determining 
appropriate values for n and t reflects a component of choice on the part of the 
decision-maker. 

Consequently, for the dehydration of papaya case, an ensuing, post-optimiza- 
tion sensitivity analysis was performed to investigate the impact for different 
combinations of the number of fireflies, n, and the number of iterations, t, on 
the solution quality. Specifically, the value of the firefly parameter was set at n = 
20, 50, 100, 150, 200, 250, 250, 500 and the value for the number of iterations 
was set at t = 100, 250, 500, 1000, 1500, 2500. For 30 runs of each parametric 
combination of fireflies and iterations, the corresponding responses for the wa-
ter loss and sugar gain were recorded. The average values of these responses over 
the 30 runs per combination are provided in Table 6 and visual representation 
of these values appears in Figure 2 and Figure 3, respectively. 

As might have been anticipated, a priori, it can be observed that more stable  
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Table 6. Average sugar gain (%) and water loss (%) for different parameter settings of the 
firefly algorithm. 

No. of 
Fireflies 

Number of Iterations 

100 250 500 1000 1500 2500 

SG WL SG WL SG WL SG WL SG WL SG WL 

20 4.55 33.71 4.60 33.71 4.72 34.25 4.32 33.12 4.25 33.60 4.30 33.79 

50 4.23 32.24 4.49 33.83 4.57 33.98 4.19 33.38 4.03 32.81 4.02 32.80 

100 4.31 33.65 4.14 33.14 4.15 33.23 4.02 32.80 4.02 32.80 4.02 32.80 

150 4.27 33.63 4.32 33.85 4.02 32.80 4.02 32.79 4.02 32.80 4.02 32.80 

200 4.17 33.21 4.02 32.79 4.02 32.80 4.02 32.80 4.02 32.80 4.02 32.80 

250 4.41 34.08 4.02 32.80 4.02 32.80 4.02 32.80 4.02 32.79 4.02 32.80 

500 4.11 33.10 4.02 32.80 4.02 32.80 4.02 32.80 4.02 32.80 4.02 32.80 

 

 
Figure 2. Average water loss (%) in the papaya for different parameter settings of the 
firefly algorithm. 

 

 
Figure 3. Average sugar gain (%) in the papaya for different parameter settings of the 
firefly algorithm. 
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solutions (i.e. those where the average values are closer to optimal) are obtained 
when both the number of fireflies and the number of iterations are larger. More 
explicitly, larger values of n or t produce on average the actual optimal solution, 
while experimental combinations involving smaller parameter values produce 
more solution variability for both the water loss and sugar gain. While there are 
multiple approaches that could be taken to analyze these results, Figure 4 and 
Figure 5 provide visual comparisons of the average water loss and sugar gain 
responses obtained for the minimum and maximum number of iterations con-
sidered in the experimentation. From Figure 4 and Figure 5, it can be observed 
that at t = 2500, the FA always produces the optimal water loss and sugar gain 
solution, on average, for any number of fireflies other than n = 20 (i.e. the FA 
always generated the optimal solution in each of the 30 runs). Conversely, at t = 
100, the average water loss and sugar gain values indicate that there can be 
 

 
Figure 4. Comparison of average water loss (%) in the papaya from runs of 100 gen-
erations and 2500 generations in the firefly algorithm. 

 

 
Figure 5. Comparison of average sugar gain (%) in the papaya from runs of 100 gen-
erations and 2500 generations in the firefly algorithm. 
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variability in the quality of the solution obtained irrespective of the number of 
fireflies employed in the FA process. This implies that the more iterations used, 
the better the solution quality obtained by the FA. 

Similarly, Figure 6 and Figure 7 provide a contrast of the average water loss 
and sugar gain responses based upon the minimum and maximum number of 
fireflies employed. From the Figures, it can be seen that at n = 500 fireflies, the 
 

 
Figure 6. Comparison of average water loss (%) in the papaya from runs with 20 
fireflies and runs with 500 fireflies. 

 

 
Figure 7. Comparison of average sugar gain (%) in the papaya between runs with 20 
Fireflies and runs with 500 fireflies.  
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FA always produces the optimal water loss and sugar gain solutions, on average, 
for any number of iterations other than t = 100. Furthermore, even at t = 100, 
the average solution value is extremely close to the optimal solution. Conversely, 
at n = 20 fireflies, the average water loss and sugar gain values show that there 
can be considerable variability in the quality of the solution obtained irrespective 
of the number of iterations of the FA. These findings clearly demonstrate that 
the more fireflies used in the FA, the better the solution quality. 

It needs to be emphasized that Table 6 shows the average response values for 
each combination of n and t. While the FA in the larger parameter value combi-
nations always converged to the overall optimal solution, the smaller combina-
tions would also frequently produce this optimal value within the set of the 30 
runs. However, there would also be occasions where deviating solution values 
were obtained in some of the runs, thereby distorting the overall averages. Con-
sequently, given the computational complexities of the key running time para-
meters of the FA, a combination of a relatively smaller value of n combined with 
a relatively larger value for t would be preferable from both a solution time and 
solution accuracy perspective. Table 6 also highlights that even the relatively in-
termediate values in the experimental ranges considered for n and t tend to con-
sistently produce very high quality solutions. The specific experimentation on 
this particular problem indicates that the value for t needs to be somewhere in 
the range of 500 to 1000 iterations, while the value for n should be set between 
100 and 150 fireflies if calculating the true optimal solution is always required. 

5. Conclusion 

In this paper, the functional form of the osmotic dehydration responses for pa-
paya was established using an empirical response surface approach and the re-
sulting optimization formulation was shown to be a non-linear goal program-
ming problem. Subsequently, an evolutionary FA-directed algorithm was used to 
find the optimal solution to the goal programming model. The osmotic drying 
parameters determined by the FA were superior to the solutions found by all 
previous computational approaches. A sensitivity analysis of the osmotic dehy-
dration model demonstrated the relative impact on the FA of the key running- 
time parameters of the number of iterations and the number of fireflies. This 
sensitivity analysis revealed that for intermediate-to-high values of either of 
these two key parameters, the FA would always determine overall optimal solu-
tions, while lower values of either parameter would generate greater variability 
in solution quality. Since the running time complexity of the FA is polynomial in 
the number of fireflies but linear in the number of iterations, this experimenta-
tion would therefore suggest that it is more computationally practical to run the 
FA using a “reasonably small” number of fireflies together with a relatively larger 
number of iterations than the converse. Since the FA can clearly be adapted to 
solve a wide spectrum of problems beyond the perishable produce domain, the 
practicality of this computational approach and the subsequent sensitivity findings 
can clearly be extended into numerous other practical applications. Such “real 
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world” extensions will be the focus of future investigations. 
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