
Journal of Software Engineering and Applications, 2014, 7, 396-405
Published Online May 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.75036

How to cite this paper: Fujiwara, T. and Kimura, M. (2014) A New Analysis Concept in Applying Software Reliability Growth
Models and Tool Implementation: The SafeMan. Journal of Software Engineering and Applications, 7, 396-405.
http://dx.doi.org/10.4236/jsea.2014.75036

A New Analysis Concept in Applying
Software Reliability Growth Models
and Tool Implementation: The SafeMan
Takaji Fujiwara1, Mitsuhiro Kimura2
1SRATECH Laboratory Inc., Hyogo, Japan
2Department of Industrial and Systems Engineering, Faculty of Science and Engineering, Hosei University,
Tokyo, Japan
Email: fujiwara.takaji@nifty.com, kim@hosei.ac.jp

Received 20 February 2014; revised 18 March 2014; accepted 25 March 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In recent years, many software development organizations have been assessing and analyzing
their software product’s reliability/quality and judging whether the software product is releas-
able by using Software Reliability Growth Models (SRGMs) at the final stage of software develop-
ment. The usage of SRGMs originates in the advantage that various reliability analysis results
based on the SRGMs can be acquired easily. However, it is very difficult for general software pro-
ject managers to grasp the achievement level of reliability/quality based on its analysis results
because some sort of professional knowledge is required in order to understand the information
on the attainment progress of software product’s reliability/quality. Moreover, it is also difficult
for software project managers and inspectors who do not deeply comprehend the details of their
project to evaluate the degree of software reliability and quality, if they assess it without grasping
the live development situation and only see the documents submitted from their staff. In this pa-
per, we propose a new analysis concept for assessing the software product’s reliability/quality,
and illustrate the output results obtained by a tool, the SafeMan.

Keywords
Software Reliability Growth Model, Time Series Analysis, Software Reliability Tool, SafeMan

1. Introduction
In the highly informational society, software products have been playing an integral part and important role of

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.75036
http://dx.doi.org/10.4236/jsea.2014.75036
http://www.scirp.org/
mailto:fujiwara.takaji@nifty.com
mailto:kim@hosei.ac.jp
http://creativecommons.org/licenses/by/4.0/

T. Fujiwara, M. Kimura

397

the computer systems, information communication technology (ICT) systems, embedded systems, and so on.
Accordingly, since the occurrences of software failures due to the software product can cause severe conse-
quences, the reliability of the software product is a primary concern for both software developers and its users.

For that reason, the testing process which is located in the final stage of a waterfall-type software develop-
ment is an important activity for detecting and removing the latent faults and improving the reliability/quality of
the software product. However, because it is impossible to detect and remove all the faults latent in the software
product within a limited testing period, we need a quantitative method for assessing and analyzing the reliabil-
ity/quality during the testing phase of the development. As a method for solving this problem, many Software
Reliability Growth Models (abbreviated as SRGMs) [1] [2] which involve the testing- and operational-environ-
ment factors have been proposed so far. In particular, it is increasing the case where the project managers have
used the reliability assessment results derived by SRGMs in order to determine when to stop testing and release
the software product as an important management issue during the testing. Consequently, by visualizing these
reliability analysis results, many software tools (SORPS [3], SRET [4], SREPT [5], SafeMan [6], SRATS [7],
etc.) which enable project managers to easily understand the achievement level of the software reliability have
been developed until now. It is known that these tools have been applied in the actual software development
projects. Furthermore, Fujiwara et al. [8] have proposed the SafeMan tool which not only shows the analysis
results of the specified reliability assessment measures, but also displays the easy messages which an expert
analyzed based on the visualized results.

However, these tools provide only the software reliability/quality analysis results based on the inputted ana-
lytical data as taking a snapshot of the development. Upon using the conventional tools or analysis methods, it is
difficult to judge whether software reliability/quality is growing by the current testing-activities. It is also a hard
issue for a manager who does not grasp the details of a project to judge the project tendency.

In other words, using the software development tools which take only snapshots of the development does not
yield sufficient information on the software management. The users of the tools need to read more carefully the
reliability assessment results obtained from the tools by a view point of the tendency analysis like the time series
analysis. Grasping the tendency of the software reliability and quality along with the progress of the develop-
ment will really help the managers.

In this paper, we illustrate four kinds of graphs in order to grasp the tendency of the software development
process by using analysis results of past-records information as a method of solving these difficulties on soft-
ware management mentioned above. Actually we have implemented the structure which accumulates the analy-
sis results by drawing these trend-analysis graphs into the SafeMan tool. The SafeMan tool can provide the in-
formation on the attained software reliability in the software testing phase taken along our concept discussed in
this paper.

Hence we explain the fundamental functions on the SafeMan tool in Section 2. That is, we describe the
SRGMs and some assessable measures, and the outline of the functions supporting the project- and testing-
managers, which have been implemented in the SafeMan tool. In Section 3, we discuss the four graphs which
were obtained as the reliability analysis results by using the datasets in terms of software reliability, from the
point of view of how we can understand the development tendency by the graphs.

Finally, we also illustrate several examples of the processing sequence of the SafeMan tool, its data input
screen, and the output results (including tendency graphs) which have implemented the functions discussed in
Section 3.

2. The SafeMan Tool
In this section, we explain the fundamental functions of the SafeMan tool which has been developed for the
purpose of easy-to-use for the general project- and testing-managers.

2.1. Implemented SRGMs
First, we briefly show a mathematical background of SRGMs, which were implemented into the tool in order to
provide the reliability/quality assessment results with high accuracy for the software quality managers, based on
the fault data obtained during the testing phase. The implemented tool, the SafeMan is expected to play a role of
the specialized software development staff.

Let ()N t be the random variable denoting the cumulative number of faults detected up to testing time (0t ≥).

T. Fujiwara, M. Kimura

398

()H t is the expectation of ()N t . That is ()H t is called the mean value function representing the expected
cumulative number of faults detected up to testing time t. Then, an SRGM based on a nonhomogeneous Poisson
process (abbreviated as NHPP) [1] [2] is formulated by specifying the mean value function as:

() () () ()

() ()
0

Pr exp 0,1,2,
!

d

n

t

H t
N t n H t n

n

H t h x x

= = − =

= ∫

 (1)

where []Pr A means the probability of the event { }A and ()h t is called the intensity function of an NHPP,
which represents the instantaneous fault-detection rate at testing time t.

In the literature, a software reliability growth means the relationship between the testing time and the cumula-
tive number of faults detected by the testing. Therefore the reliability growth curve represents the time-depen-
dent behavior of the cumulative number of detected faults with the progress of the testing time. This property is
a baseline of the time series analysis of software reliability evaluation by the SafeMan. The SafeMan tool pro-
vides six NHPP models: two basic NHPP models [1] [2] and four extended NHPP models [2] [9]. Also the
SafeMan is implemented the Gompertz and Logistic curve models which are called deterministic regression
models. These models are not included in the NHPP models. Historically, these models have been widely ap-
plied to practical project data for the software quality/reliability assessment by many main-framers and software
industries in Japan [2]. Furthermore, these deterministic models can estimate the total number of faults latent in
the software system as the convergence value of the Gompertz and Logistic curve models by using the nonlinear
regression analysis. Although these two models do not consider any stochastic properties in the relationship be-
tween the testing time t and the cumulative number of detected faults, they belong to SRGMs.

The list of SRGMs and the reliability assessment measures implemented into the SafeMan tool is shown in
Figure 1. The round mark in Figure 1 represents the measure which can be assessed by each SRGM.

2.2. SafeMan’s Functions [8]
Next, we describe main two functions implemented in the SafeMan which support the general project- and test-
ing-managers, i.e., the automatic selection of the optimum SRGM, and the automatic derivation of testing-
management policies.

The SafeMan provides SRGMs which describe plural competing-model phenomena, in order to realize high
accurate prediction. For this reason, we are often confronted with the problem that we cannot determine the
suitable SRGM for reliability/quality assessment of the software product during the testing phase, based on the
project- and testing-manager’s skill. That is, although the special knowledge is needed when determining the

 Figure 1. List of the SRGMs and their assessment measures implemented into the SafeMan tool.

T. Fujiwara, M. Kimura

399

best-fit SRGM to the fault data obtained, few general project- and testing-managers usually have such knowl-
edge.

Thus, the general project- and testing-managers can obtain the selection skill of the best SRGM at the expert
level by using the SafeMan. For this purpose, SafeMan calculates the average sum of square-errors and the
Akaike Information Criterion [10] which are both widely-known as the goodness-of-fit criteria for determining
the optimum SRGM.

On the other functions, the NHPP models and deterministic models can help project- and testing-managers by
providing useful quantitative measures for the reliability/quality assessment of the software product. Although
we can derive easily the testing-management policy from the information on these assessment measures by
reading technical books, it is very rare case that quite the same analysis results are obtained in all assessment
measures. That is, in the actual situation, understanding the reliability/quality evaluation results is complicated
even if the managers use the software reliability tools. To overcome this issue, the SafeMan supports the func-
tion which displays analysis results with easy messages based on an expert person’s know-how in terms of the
appropriate testing-management policy selection.

3. Grasping the Development Process Tendency by Time Series Analysis
In this section, we describe methodologies for grasping and judging the time-dependent behavior of software
product’s reliability/quality based on the past analyzed records during the testing phase by a management group
who does not grasp the details of a project, or the inspection people (we use the term inspectors in the following)
who have to judge the assigned software product based on only the given documents from the supplier (e.g. soft-
ware venders, etc.).

This is the method that we can grasp the tendency when the analyst records information shown in the following
based on SRGMs as the past quantitative analysis results of reliability/quality performed during the testing.
• Estimated total number of faults
• Estimated software reliability
• Estimated number of detectable faults
• Estimated optimal release date based on two criteria

One who cannot grasp the project in detail is able to judge the testing-activities (as good or bad) performed up
to now by drawing graphs which recorded the above-mentioned analysis results for every analysis.

In the following, we explain four kinds of graphs in order to grasp the tendency of the achieved quality by
using the past analysis results records.

3.1. Time-Dependent Behavior of the Total Number of Faults
Figure 2 is a graph which shows the time-dependent behavior of the total number of faults [1] [2] obtained at
each analysis time point. The figure has the analysis-execution date on the horizontal axis and the total number
of detected and removed faults on the vertical one based on the analysis results obtained by the tool.

We can judge whether the reliability of the developed software reaches at the sufficient level and can end the
testing by seeing the fluctuating behavior of the estimated total number of detected faults, even if the project
members and the management group who do not grasp the details of the project. Recall that this is the tendency
analysis mentioned in the previous section.

Also, by analyzing this graph submitted from the supplier, the inspector can grasp the software product's reli-
ability/quality attainment level, and can judge whether receiving the software is possible or not. That is, at the
State 1 in Figure 2, we have to determine that the testing is still required, because the fluctuation of the esti-
mated total number of faults (width of increase and decrease) is large for every analysis. Therefore, the inspector
must judge that the software product should not be received from the supplier. On the other hand, at the State 2
in Figure 2, we can see that it is about the time when we need to judge whether we can stop the testing and also
the software product can be received from the supplier, because the behavior of the estimated total number of
faults based on the analysis results is stable on a certain value, without being influenced by the testing-activity.

Consequently, if the analysis results of the past records converged to a certain value on the graph, we can
consider that the testing-activity under execution is going to the good direction (i.e., the reliability/quality is
growing), and can suggest that the adequate testing has been performed.

T. Fujiwara, M. Kimura

400

 Figure 2. Time-dependent behavior of the estimated total number of faults.

3.2. Time-Dependent Behavior of the Software Reliability
Figure 3 shows the time-dependent behavior of the estimated software reliability which is the probability that
the software is operating according to the customer requirement without any failure occurrence by the testing for
the specified day [1]. Figure 3 has the analysis-execution date on the horizontal axis and the software reliability
based on the analysis results on the vertical axis. Even if the project members and the management group do not
comprehend the details of the project, they can know whether the software product is steadily operating by see-
ing the graph of the software reliability. Also, the inspector can see whether the software product is receivable
by analyzing this graph submitted from the supplier.

Hence by using such graphical illustrations generated by the software reliability tool, we can grasp that the
testing activity under execution is going to the good direction (i.e., the reliability/quality is growing), and we can
evaluate that the adequate testing has been performed.

3.3. Time-Dependent Behavior of the Number of Detectable Faults
Figure 4 shows the time-dependent behavior of the degree of increase and decrease of the number of detectable
faults a day by the software testing. In Figure 4, the horizontal axis represents the analysis-execution date and
the vertical one indicates the number of detectable faults based on the analysis results. Here, we explain the
number of detectable faults. In the testing phase, we execute many various test-cases in order to verify the im-
plemented functions based on the customer requirements. Then, there exists a set of the testing-paths in the
software to be influenced by executing test-cases, and the performance of these testing-paths in the software
product is represented as the testing-path coverage. Thus, the latent software faults covered by these test-
ing-paths are called the detectable faults. That is, we consider that one fault may be latent in each newly covered
testing-path by the testing a day. Then, the number of detectable faults increases, and it can be given by the in-
stantaneous testing-domain growth rate [2] which is one of the reliability assessment measures.

On the other hand, when the testing activity detects several software faults a day, the results can be shown by
the instantaneous fault-detection rate [1] [2] included in the reliability assessment measures. Then, the number
of detectable faults decreases because some of detectable faults were actually detected and removed. Thus, we
can judge whether the software reliability/quality has achieved the level at which the project members and the
management group who do not grasp the details of project can end the testing by considering the difference be-
tween the instantaneous fault-detection rate and the instantaneous testing-domain growth rate.

Also, by analyzing this graph (Figure 4) which was submitted from the supplier, the inspector can see the
software product’s reliability/quality attainment level, and can judge whether receiving of the software product
is possible. In Figure 4, we have to make our decision that some additional testing is still required when we are
at the State 1, because the variation of the number of detectable faults (width of increase and decrease) is large

T. Fujiwara, M. Kimura

401

 Figure 3. Time-dependent behavior of the estimated software reliability.

 Figure 4. Time-dependent behavior of number of detectable faults.

for every analysis. Therefore, the inspector should judge that the software product cannot be received from the
supplier. On the other hand, if we are at the State 2 in Figure 4, we find that it is the time when we can stop the
testing, and also we can receive the software product from the supplier, because the estimated number of de-
tectable faults based on the analysis results is close to zero and it is in the stable behavior.

Accordingly, if the analysis results of the past records can show the graphs converging to zero (the objective
value) we can consider that the testing-activity under execution is progressing to the good direction (i.e., the re-
liability/quality is growing), and such results suggest that the adequate testing process has been performed.

3.4. Time-Dependent Behavior of the Releasable Date
Also Figure 5 illustrates the time-dependent behavior of two kinds of predicted releasable dates, i.e., the
achievable date to the aim of the remaining fault rate (black solid line) and the optimal date minimizing the total
software cost [1] [2] (gray solid line). Figure 5 sets the analysis-execution date on the horizontal axis and the
releasable date based on the analysis results on the vertical axis. We explain the remaining fault rate. In the
software testing processes, everyone knows well the fact that it is impossible to remove all faults latent in the
software. Therefore, considering the characteristics of the customer requirements and the software product, we

T. Fujiwara, M. Kimura

402

 Figure 5. Time-dependent behavior of the estimated releasable date.

can set up the target value for the number of faults which should be detected by defining the allowable value of
remaining fault detection rate for the software. That is, the achievement date of the objective remaining fault rate
means the date that the total number of faults estimated by the analysis will reach below the specified allowable
value of the remaining fault rate. Therefore the date of minimizing the total software cost is the time that the pre-
dicted total life-cycle cost of the software based on the debugging and maintenance cost becomes the minimal
value [1] [2]. Hence we can estimate the date when to stop the testing and release the software product to the
customer or which we can receive the software product from the supplier, based on both assessment measures.

At the State 1 in Figure 5, we have to judge that the testing is still more required, because the releasable date
has large fluctuation (on the amplitude of the graph) according to the variation of the total number of faults in
the software product for every analysis. Therefore, the inspector should determine that the software product can-
not be received from the supplier. On the other hand, at the State 2 in Figure 5, we find that it is the time when
we should judge whether we can stop the testing, or the software product can be received from the supplier, be-
cause the releasable date goes to the stable behavior on a certain date without any large fluctuation.

Thus, when such sequential analysis results of the past records become stable, we can think that the test-
ing-activity under execution is proceeding to the good direction and the results can suggest us that the adequate
testing has been performed.

Note that when the convergence dates of both assessment measures differ, we need to adjust the values of cost
parameters included in the software cost model implemented in the software tool, so as to be the same conver-
gence behavior.

4. Drawing the Tendency Graphs in SafeMan
In this section, we discuss the requirement specification definitions for the implementation of the drawing func-
tion of four kinds of the tendency graphs discussed in Section 3 by slightly modifying the SafeMan tool. We il-
lustrate the data input screen, analysis results of the past-records for each analysis day, and four kinds of ten-
dency graphs based on these data in the implementation of the requirement specification definitions for the
SafeMan. The requirement specification definitions of the graph drawing functions for the SafeMan are listed as
follows:

1) To reuse the basic functions of the current version of the SafeMan
2) To specify the date which indicates the analysis result in data input screen
3) To be able to specify whether analysis results records or not
4) To output the reliability analysis results of the analysis day to the Excel sheet
5) To plot four kinds of graphs using the Excel’s graph drawing functions
The outline of the data processing sequence in the SafeMan based on these requirement specification defini-

tions above is shown in Figure 6. Figure 6 depicts the SafeMan data input screen implemented the above items

T. Fujiwara, M. Kimura

403

(2) and (3), and four kinds of graphs in order to analyze the tendency by using the output results of the reliability
estimation. Also Excel’s graph drawing function from the SafeMan which implements the requirement specifi-
cation definition of items (4) and (5) is illustrated in Figure 7.

In Figure 7, among the controls of the SafeMan window, a check button labeled Outputpast-records means
that the SafeMan validates the data with round mark “○” in the fault data list. When round mark is put on the

Figure 6. Procedure for obtaining tendency gra-
phs based on the analysis of the past records.

 Figure 7. Data input screen of the SafeMan tool.

T. Fujiwara, M. Kimura

404

analysis column in the fault data list like the figure, SafeMan performs the reliability analysis from the 1st day
of the testing to the day with the round mark. Then the SafeMan outputs the information obtained to the Excel as
the analysis results. This analysis is repeated and carried out by the number of times attached the round marks.
This analysis continues to the last inputted data, the graphs based on the analysis results are drawn and the data
processing on the SafeMan is completed (see Figure 8). Consequently, the SafeMan has the functions which
help the software development managers to investigate the tendency analysis by giving the time-dependent reli-
ability and quality analysis results of the four aspects.

5. Concluding Remarks
In this paper, we have discussed the visualization technology and the decision-making method of reliabil-
ity/quality of the software product as a new analysis concept along with several illustrations. In particular, we
have shown that the software management group who does not (or, cannot) pay attention to the details of the as-
signed software projects or the inspector who has to judge about receiving the software product based on the

Figure 8. Results of the accumulated past-records and their tendency graphs.

T. Fujiwara, M. Kimura

405

only submitted documents from the supplier, can observe the progress tendency (reaching to the aim or failing
the achievement) of the software development project by applying the new analysis methodology discussed in
Section 3.

Consequently, we have proposed four kinds of tendency evaluation methodologies represented in the software
product’s reliability/quality in order to make the correct decision with ease by the SafeMan. These graphs can
clearly indicate whether the current testing activities contribute to raising the software quality to the sufficient
level, by showing the time-dependent behavior of the past-records analysis results.

Furthermore, in order to simply draw four kinds of tendency graphs based on the past-records analysis results
of the software reliability/quality assessment which were mentioned above, we have additionally implemented
the existing SafeMan tool, and we have illustrated the output results.

For the future studies, we are going to verify the validity of applying this concept and the SafeMan tool to the
actual projects more and more. In the actual situations, there are many cases that we have to determine the opti-
mal release date of the software product without grasping the project-activities. Moreover, we need to consider-
the operability and the shortening of analysis time of the SafeMan tool, in order to apply the tool to many pro-
jects more widely.

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number 23510189.

References
[1] Pham, H. (2000) Software Reliability. Springer-Verlag, Singapore.
[2] Kimura, M. and Fujiwara, T. (2011) Software Reliability. JUSE Press, Tokyo.
[3] Ohba, M. (1984) Software Reliability Analysis Models. IBM Journal of Research and Development, 28, 428-443.

http://dx.doi.org/10.1147/rd.284.0428
[4] Yamada, S., Isozaki, R. and Osaki, S. (1989) A Software Reliability Evaluation Tool: SRET. Transaction on IEICE,

J72-D-1, 24-32.
[5] Ramani, S., Gokhale, S. and Trivedi, K.S. (1998) SREPT: Software Reliability Estimation and Prediction Tool. Per-

formance Evaluation, 39, 37-60.
[6] Fujiwara, T., Yamada, S. and Shiotani, K. (2000) A Software Testing-Management Tool for Reliability of Software

Development and Its Application. Proceedings of the 6th International Conference on Reliability and Quality in De-
sign, Orland, 175-179.

[7] Okamura, H., Ando, M. and Dohi, T. (2005) Development of a Software Reliability Assessment Tool on Spreadsheet
Software. Transaction on IEICE, J88-D-1, 205-214.

[8] Fujiwara, T. and Yamada, S. (2004) Testing-Management Policies by Using the Software Reliability Assessment Tool.
Proceedings of the 2nd International Conference on Project Management, Chiba, 403-408.

[9] Yamada, S. and Fujiwara, T. (2001) Testing-domain Dependent Software Reliability Growth Models and Their Com-
parisons of Goodness-of-Fit. International Journal of Reliability, Quality and Safety Engineering, 8, 205-218.
http://dx.doi.org/10.1142/S0218539301000475

[10] Akaike, H. (1976) What Is the Information Criterion AIC? Suri Kagaku, 14, 5-11.

http://dx.doi.org/10.1147/rd.284.0428
http://dx.doi.org/10.1142/S0218539301000475

	A New Analysis Concept in Applying Software Reliability Growth Models and Tool Implementation: The SafeMan
	Abstract
	Keywords
	1. Introduction
	2. The SafeMan Tool
	2.1. Implemented SRGMs
	2.2. SafeMan’s Functions [8]

	3. Grasping the Development Process Tendency by Time Series Analysis
	3.1. Time-Dependent Behavior of the Total Number of Faults
	3.2. Time-Dependent Behavior of the Software Reliability
	3.3. Time-Dependent Behavior of the Number of Detectable Faults
	3.4. Time-Dependent Behavior of the Releasable Date

	4. Drawing the Tendency Graphs in SafeMan
	5. Concluding Remarks
	Acknowledgements
	References

