
Journal of Software Engineering and Applications, 2014, 7, 371-386
Published Online May 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.75034

How to cite this paper: Nascimento, M.R., et al. (2014) An Application of Paraconsistent Annotated Logic for Design Soft-
ware Testing Strategies. Journal of Software Engineering and Applications, 7, 371-386.
http://dx.doi.org/10.4236/jsea.2014.75034

An Application of Paraconsistent Annotated
Logic for Design Software Testing Strategies
Marcos Ribeiro do Nascimento1, Luiz Alberto Vieira Dias1, João Inácio Da Silva Filho2
1Brazillian Aeronautics Institute of Technology—ITA, São José dos Campos, Brazil
2Santa Cecília University—UNISANTA, Santos, Brazil
Email: mribeiro@ita.br, vdias@ita.br, inacio@unisanta.br

Received 26 February 2014; revised 20 March 2014; accepted 28 March 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Nowadays, application model systems for decision-making based on non-classical logic such as
Paraconsistent Logic are used successfully in the treatment of uncertainties. The method present-
ed in this paper is based on the fundamental concepts of Paraconsistent Annotated Logic with an-
notation of 2 values (PAL2v). In this study, two algorithms based on PAL2v are presented gra-
dually, to extract the effects of the contradiction in signals of information from a database of un-
certain knowledge. The Paraconsistent Extractors Algorithms of Contradiction Effect-Para Extrctr is
applied to filters of networks of analyses (PANets) of signal information, where uncertain and
contradictory signals may be found. Software test case scenarios are subordinated to an applica-
tion model of Paraconsistent decision-making, which provides an analysis using Paraconsistent
Logic in the treatment of uncertainties for design software testing strategies. This quality-quantity
criterion to evaluate the software product quality is based on the characteristics of software test-
ability analysis. The Para consistent reasoning application model system presented in this case
study, reveals itself to be more efficient than the traditional methods because it has the potential
to offer an appropriate treatment to different originally contradicting source information.

Keywords
Paraconsistent Logic, Design Testing Strategies, Software Testability, Paraconsistent Decision
Making Model

1. Introduction
This paper is the result of studies carried out for the Brazilian National Water Agency, within the scope of the
Amazonian Integration and Cooperation Project for the Modernization of Hydrological Monitoring (in Portu-
guese, ICAMMH). The project was developed at the Brazilian Aeronautics Institute of Technology (ITA) [1].

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.75034
http://dx.doi.org/10.4236/jsea.2014.75034
http://www.scirp.org/
mailto:mribeiro@ita.br
mailto:vdias@ita.br
mailto:inacio@unisanta.br
http://creativecommons.org/licenses/by/4.0/

M. R. Nascimento et al.

372

The purpose of this paper is to present an application of Artificial Intelligence techniques using Paraconsistent
Logic in the treatment of uncertainties, for design software testing strategies, in terms that allow an analysis of a
quality-quantity criterion to evaluate the software product quality based on the characteristics of software test-
ability: ISO/IEC 25010:2011 [2] and heuristics of software testability by Bach [3].

During the software product development activity on the ICAMMH project, software product engineers used
the quality management core assets, according to the software product development plan and a description of the
particular software product to be built in Software Product Lines (SPL) [4] [5]. These planned activities carry
out actions to program measurement of software quality and evaluate the application software testing standards.
There is a large gap between the requirement that software quality measurement should be carried out and the
standards and practices on how to carry out the measurements of software quality. In this context of the
ICAMMH project, the uncertainty in decision making on the design software testing strategies, as regarding de-
fect and faults origins of the software product, is rarely captured explicitly, in order to provide continuous qual-
ity improvement of the software product engineering, during the development process of the software.

The problem to be addressed is how to create a quality-quantity criterion that can measure continuous impro-
vement actions during the process of software product development by SPL, in accordance to software quality
standards. The specific approach focuses on software product quality by software testability: sub characteristics
of the maintainability SQuaRE 25010:2011 [2] and heuristics of software testability of Bach [3].

Two research questions (RQ) were formulated:
RQ1. Is it possible to construct a Paraconsistent Analysis System Model in a way that facilitates the establish-

ment of test criteria and quality performance of tests based on the quality-quantity criteria to evaluate the soft-
ware product?

RQ2. Is it possible to develop an application with artificial intelligence tools to evaluate uncertainty in soft-
ware testability criteria: 1) the measurements are feasible enough to allow testers diagnose techniques and
methods; and 2) the practices and reachable test criteria of software product quality?

While RQ1 is addressed in the domain of Software Product Quality Engineering based on Paraconsistent
Analysis Model for Uncertainty Treatment in Design Testing Strategies on SPL, RQ2 is focused on the inter-
pretation results of Paraconsistent analysis from the quality-quantity characteristics of testability criteria corres-
ponding to the software product quality standards application mapped.

This research provides important tools, in order to develop an application of Paraconsistent Annotated Logic
(PAL) in designing software testing to act as powerful computational tools, dedicated to software testability
analysis, and based on quality-quantity criteria without contamination by contradictory information signs.

This paper is organized in five sessions: Section 2 presents the fundamental theories; Section 3, the method-
ology for designing testing software model analysis, with Paraconsistent Logic (PL); Section 4, an application of
the Paraconsistent Annotated Logic (PAL); Section 5, the conclusions reached.

2. Fundamentals Theories
2.1. Environment Software Testing for the ICAMMH Project
Eight software product lines were originally planned for the ICAMMH, but only one of them was actually
available at the time of this study. Thus, only the Software Product Line 2 (SPL2) was utilized in experimental
research. Requirements data and specifications design were collected from two different experiments and placed
within the following software testing artifacts: test plan, test procedures, test cases, and test scenarios, as in
IEEE Std. 829 [6]. This was done using functional and structural techniques, described in Perry [7], and defect
prevention analysis, as in Sharma et al. [8].

The Software Test (ST) team used the following black-box techniques in SPL2 in the functional test: 1)
Equivalence Class Partitioning; 2) Boundary Value Analysis, and 3) Cause Effect Graphing. This ST team pre-
pared 256 test cases for the 8 usecases developed for SPL2. To obtain the software testing results, Test Cases
(TC), as in [7], based on use case requirements, as in [9], they were manually performed for SPL2.

Different metrics were used to assess the SPL2, as seen in Table 1. In the first column, the indicators and
metrics, in the second column, the calculation formulas. The third column displays the values calculated for the
first Integration Test (IT) of SPL2. The Regression Testing (RT) results (1˚ RT, and 2˚ RT 3˚ RT) are shown in
subsequent columns. Table 1 shows the primary metrics: 1) testing coverage percent use case by the PUC indi-

M. R. Nascimento et al.

373

Table 1. Software Production Line 2—Derived Metrics and Indicators [Test Cases Have Found Defects—TCFD (*)].

Indicators and Metrics Formula 1˚ IT 1˚ RT 2˚ RT 3˚ RT
Testing Coverage Percent Use

Case (PUC)—Indicator (qty.) UC/total of UC 6/8 = 0.75
[75%]

8/8 = 1
[100%]

8/8 = 1
[100%]

8/8 = 1
[100%]

Defects Found by Software Test
(DFST)—measure of efficacy TCFD/total of TC 91/170 = 0.53

[53%]
66/235 = 0.28

[28%]
57/238 = 0.24

[24%]
60/256 = 0.23

[23%]

Defects Found by week
(DEW)—indicator TCFD/total of weeks 91/6 = 15.2 66/4 = 16.5 57/4 = 14.25 60/3 = 20

Effectiveness Defect Detection
(EDD)—indicator

TCFD (n − 1) RT
/TCFD (n) RT N/A 91/66 = 1.38 66/57 = 1.16 57/60 = 0.95

Effectiveness of Removal of
Defects (ERD)—indicator

Remove TC defects
No. RT/TCFD N/A 4/66 = 0.06

[6%]
24/57 = 0.42

[42%]
29/60 = 0.48

[48%]

Percentage of Test Coverage
(PTC)—metric efficiency

(qty.) TC exercised/
total of TC

95/170 = 0.56
[56%]

194/235 = 0.83
[83%]

199/238 = 0.84
[84%]

215/256 = 0.84
[84%]

Density Efficiency Software
Test (DEST)—indicator efficacy

TCFD/(qty.) TC
exercised

91/95 = 0.95
[95%]

66/194 = 0.34
[34%]

57/199 = 0.29
[29%]

60/215 = 0.28
[28%]

cator; 2) the efficiency in the detection of defects per week, calculated by the DEW indicator, which increased
with time; and 3) the percentage of effectiveness in detecting defects, calculated by the DEST indicator, which
decreased with time.

Table 1 also shows the secondary metrics: 1) the percentage of effectiveness in detection of defects, calcu-
lated by the DFTS measure of efficacy, decreased with time; and 2) the percentage of efficiency in the execution
of ST, calculated by PTC metric efficiency, which increased with time.

Also in Table 1, a comparison with RT (previous to the current one), it is observed that: 1) an efficient defect
detection, calculated by the EDD indicator, decreased with time, and that the percentage of effectiveness of re-
moval of defects, calculated by the ERD indicator, increased with time. The derived or secondary metrics pre-
sent in Table 1, should provide the attributes of software product quality, as well as mechanisms to control the
software process. The relationship between object-oriented design metrics and testability of classes uses on Ta-
ble 1 as reference study by [9] [10].

2.2. The Use of Reference Standards for Testability Software
The theoretical approach used in this experimental research in terms of building components for a Paraconsistent
quality-quantity analysis were based on the standards below.

The software product quality model SQuaRE 25010:2011 is composed of eight properties (Functional Suit-
ability, Reliability, Performance Efficiency, Operability, Security, Compatibility, Maintainability, Transferabil-
ity), which are further subdivided into sub-characteristics that can be measured internally or externally. Main-
tainability quality property refers to the product’s ability to be modifiable and changeable. Testability is one
such sub-characteristic; the capability of the software is determined by a set of internal attributes that can be
measured [2].

The ICAMMH Project also made use of the James Bach’s testability heuristics, to design internal facilitators
for the testability of the software in the form of a set of quality attributes to describe the testability sub-charac-
teristic, within the maintainability property of SQuaRE 25000:2011 standards. Khan and Mustafa [11] “extended
James Bach internal facilitators to 2 (two) new approaches: external and environmental facilitators”.

2.3. Paraconsistent Logic and the Treatment of Uncertainties
Paraconsistent Logic (PL) belongs to a non-classical logic category and its main feature is the revocation of the
principle of non-contradiction (see [12]-[15]). The pioneers of PL are J. Lukasiewicz and the Russian philoso-
pher N. A. Vasilév [11], who around 1910, simultaneously, but independently, suggested the possibility of the
existence of a logic that did not use the principle of non-contradiction.

The initial systems of PL contained all logical levels such as propositional and predicate calculi as well as the
Logic of Superior Order are due to N. C. A. da Costa (see [16]-[18]). PAL belongs to a family of PL and can be
represented through a lattice of four vertices. These four vertices represent extreme logical states of propositions.

M. R. Nascimento et al.

374

According to Da Costa et al. [19] [20], in PAL, the proposition P is accompanied with annotations; each annota-
tion belongs to a finite lattice and attributes a logic value to the correspondent logical proposition. It is consid-
ered that each evidence degree attributes a logic value to the proposition that belongs to a group of values com-
posed of the constants of annotation of the lattice {⊤, t, F, ⊥} for which the following order relationship is de-
fined: ⊥ < t, ⊥ < F, t < ⊤ and F < ⊤. PAL may be represented through a Hasse diagram in which the constants in
the vertices of a lattice will show extreme logical states to the propositions sentence, where: ⊤ = Inconsistent, t =
True, F = False and ⊥ = Paracompleteness. The PAL language, the semantics of a complete set of connectives
and axioms is found with details in Da Silva Filho et al. [21] and [22].

2.4. The Main Algorithms of the Paraconsistent Annotated Logic with Annotation of 2
Values—PAL2v

According to Da Silva Filho et al. [21] and [22] a representation of how the annotations, or evidences, express
the knowledge about a certain proposition P can be obtained through PAL. This is done through a lattice on the
real plane with pairs (µ, λ) which are the annotations seen in Figure 1. In this representation an operator ~ is
fixed, defined as follows: ~:|τ| → |τ| where τ = {(µ, λ)| µ, λ∈ [0, 1] ⊂ℜ}.

If P is a basic formula then: ~ [(µ, λ)] = (λ, µ), where µ, λ ∈ [0, 1] ⊂ℜ. The operator ~ stands for the “mean-
ing” of the logical symbol of negation of the system to be considered. The P(μ, λ), can be intuitively read: “It is
assumed that P’s belief degree (or favorable evidence) is μ and disbelief degree (or contrary evidence) is λ. Thus,
(1,0) intuitively indicates total belief, (0,1) indicates total disbelief, (1,1) indicates total inconsistency, and (0,0)
indicates total paracompleteness (indetermination)” [21] [22].

This Paraconsistent system for the treatment of uncertainties using the Paraconsistent algorithm can calculate
values that are representative of information signals. In a Paraconsistent analysis system for decision-making,
the inputs µ and λ are values contained in the closed interval between 0 and 1, which belong to the set of real
numbers. These two values come from two or more information sources, which search for favorable or contrary
evidences in respect to the same proposition P. Since they originate from different sources, these values may be
similar, thus representing consistency, or be different, representing a contradiction. The resulting Paraconsistent
system is called basic Paraconsistent Analysis Node (PAN), according to Da Silva Filho et al. [21] [22].

The projects that utilize PANs may carry out information treatment through Paraconsistent analysis network-
ing, without using signal adjustments, neither weight that may leave the processing dependent on external fac-
tors. With these results, a PAN may be connected to other PAN, forming a Paraconsistent Analysis Decision
Network (PANNet) to estimate values and perform analysis of information in different conditions.

The special case where it is known initially where exist many contradictions attributed to certain evidence of
Proposition A (Pa) should be considered. This weakens the evidence going on to another Proposition B (Pb). In
this case, a special configuration is used, where output represented by an interval of evidence φext of the Para-
consistent Analysis Node (PAN) controls the analysis carried out by another PAN. This configuration, where
three-dimensional analysis occurs, is called the Paraconsistent Cube Analyzer (PCA), according to Da Silva
Filho et al. [20] [21].

3. Methodology for Designing Testing Software Model Analysis
The topology of PANNet is arranged in order to treat uncertainties; it can be built with several interlinked
PAN-algorithms. Thus, in a basic configuration, the preliminary analysis in a PAN produces a value of real De-
gree Certainty DCR and a signaled interval of certainty φe(±), referring to a unique proposition. According to Da
Silva Filho et al. [23] [24] the Paraconsistent Algorithm Extractor of Contradiction effects (ParaExtrctr) is ap-
plied to connections of the PANNet. This configuration forms a Paraconsistent Analysis Network, which is ca-
pable of extracting the effects of the contradiction, gradually from the signals of information that come from the
uncertain knowledge database source. Figure 2 shows the representation of the algorithm extractor of contradic-
tion effects that uses a network of three PANs.

The Paraconsistent Analysis for Extraction of Contradiction effects (ParaExtrctr) algorithm is based on a to-
pology that enables PANNet to represent a range of situations, where the existing (φext) group of clusters of
similar semantic nature elements coming from several sources of information representing a modeling PAN
Kernels, according to Da Silva Filho et al. [23] [24].

ParaExtrctr—Extractor of Contradiction Effects Algorithm—Part (a), similar semantic nature

M. R. Nascimento et al.

375

Figure 1. Organization associated lattice of the paraconsistent annotated logic [22].

 Figure 2. The Paraconsistent algorithm extractor of contradiction effects (ParaExtrctr).

M. R. Nascimento et al.

376

1) Present n values degrees of evidence that compose the group under study

(), , , , degrees of evidence 0 1A B C nGµ µ µ µ µ µ= ∗ ≤ ≤ ∗ .

2) Select the largest value among the degrees of evidence the group under study

()max max , , , ,A A B C nµ µ µ µ µ=  .
3) Consider the largest value among the degrees of evidence the group under study in the favorable degree of

evidence max selAµ µ= .
4) Consider the smallest value among the degrees of evidence the group under study in the favorable degree

of evidence: ()min min , , , ,A A B C nµ µ µ µ µ=  .
5) Transform the smallest value among the degrees of evidence the group under study in the unfavorable de-

gree of evidence sel min1 Aλ µ= − .
6) Do the Paraconsistent analysis among the selected values.
µR1 = µsel ◊ λsel */ where ◊ is a Paraconsistent action of the PAN kernel */.
7) Increase the obtained value µR1 in the group under study, excluding the two values µmax e µmim from

this, selected previously.

() ()1 maxi mini, , , , , , ; where , ,R A B C nG i A Nµ µ µ µ µ µ µ µ= − = 

8) Return to item 2 until the Group under study has only 1 element resulting from the analyses,
Go to item 2 until ()ErGµ µ= .
Function PAN Kernel (µ, λ){
1) Enter with the input values
μ */favorable evidence Degree 0 ≤ μ ≤ 1
λ */unfavorable evidence Degree 0 ≤ λ ≤ 1
2) Calculate the normalized Contradiction Degree
µctr= (µ + λ)/2
3) Calculate the interval of evidence resulting
φeint = 1 − |2µctr − 1|
4) Calculate the Certainty Degree
Dc = μ – λ
5) Calcule the Contradiction Degree
Dct = µ− λ + 1
6) Calculate the distance d into Lattice
d = root ((1 − |Dc|)2 + Dct2))
7) Compute the output signal
If φeint< 0, 25 OR d > 1, then
do: S1 =0,5 e S2 = φe(±):
uncertainty go to item 11
Else: go to next step
8) Calculate the real Certainty Degree
If Dc > 0 then Gcr = (1 − d)
If Dc < 0 entãoGcr = (d − 1)
9) Calculate the real Evidence Degree
µer = (Gcr + 1)/2
10) Present the outputs
S1 = µer and S2 = φe(±)
11) End}
The new algorithm (ParaExtrctrPlus) is based on a topology that enables PANNet to represent a range of situa-

tions, where the existing (φext) group with possibility to represent also clusters, with different semantic nature
elements coming from several sources of information representing a modeling PCA Kernels, As exposed below.

ParaExtrctrPluss—Extractor of Contradiction Effects plus Algorithm—Part (b), different semantic nature:

M. R. Nascimento et al.

377

1) Present n values degrees of evidence that compose the group under study

(), , , , degrees of evidence 0 1A B C nGµ µ µ µ µ µ= ∗ ≤ ≤ ∗ .
2) Select the largest value among the degrees of evidence the group under study

()max max , , , ,A A B C nµ µ µ µ µ=  .
3) Consider the smallest value among the degrees of evidence the group under study in the favorable degree

of evidence: sel max Aµ µ= .
4) Consider the smallest value among the degrees of evidence the group under study in the favorable degree

of evidence: ()min min , , , ,A A B C nµ µ µ µ µ=  .
5) Transform the smallest value among the degrees of evidence the group under study in the unfavorable de-

gree of evidence.
If µminA = µsource then do λsel= λµminA else λsel =1 − µminA;
/* if there is more than one µminA = µsource , choose the largest λ corresponding to µminA */
6) Do the Paraconsistent analysis among the selected values
µR1 = µsel ◊ λsel; */ where ◊ is a Paraconsistent action of the PCA Kernel */
7) Increase the obtained value µR1 in the group under study, excluding from this the two values µmax e

µmim, selected previously () ()1 maxi mini, , , , , , ; where , ,R A B C nG i A Nµ µ µ µ µ µ µ µ= − =  .
8) Return to item 2 until the Group under study has only 1 element resulting from the analyses,
Go to item 2 until ()ErGµ µ= .
Function PCA Kernel (φext,µ, λ) {
1) Enter with the input values
μ */favorable evidence Degree 0 ≤ μ ≤ 1
λ */unfavorable evidence Degree 0 ≤ λ ≤ 1
φext */external interval Evidence*/
2) Verify initial conditions
If Iφext < 0, 25, then
do: S1 = 0.5e S2 = φext: uncertainty go to item 15
Else: go to next step
3) Calculate the max value of Evidence degreetending to max (true, false)
µEmaxt = (1 + φext)/2
µEmaxf = (1 − φext)/2
4) Calculate the Evidence degree internal results µeint = (µ− λ + 1)/2
5) Verify the conditions
If µeint >= µEmaxt, then do: Dc = φext, Dct = 1 − φext, and φext = φe (+) go to item 12;
If µeint >= µEmaxf then do: Dc = −φext, Dct = 1 − φext, and φext = φe(+) go to item 12; else next item.
6) Calculate the normalized Contradiction Degree µctr = (µ + λ)/2
7) Calculate the interval of Evidence resulting
φeint = 1 − |2µctr − 1|
8) Calculate the Certainty Degree
Dc = μ – λ
9) Calcule the Contradiction Degree
Dct = µ − λ + 1
10) Calculate the distance d into Lattice
d = root((1 − |Dc|)2 + Dct2))
11) Compute the output signal
if φeint< 0, 25 OR d > 1, then
do: S1 = 0,5 e S2 = φeint(±): uncertainty go to item 15
Else: go to next step
12) Calculate the real Certainty Degree
If Dc > 0 then Dcr = (1 − d)

M. R. Nascimento et al.

378

If Dc < 0 then Dcr = (d − 1)
13) Calculate the real Evidence Degree
µer = (Dcr + 1)/2
14) Present the outputs
S1 = µer and S2 = φe(±)
15) End}
Structural metrics are based on the properties of flow graph models of programs. The attention is focused on

control-flow and data-flow complexity. Linguistic complexity is ignored. Cyclomatic Complexity V(G) is
ameasure of the complexity of a module's decision structure. It is the number of linearly independent paths and
therefore, the minimum number of paths that should be tested. Invented by Thomas McCabe (1974) to measure
the complexity of a program’s conditional logic: counts the number of decisions in the program, under the as-
sumption that decisions are difficult for people and makes assumptions about decision-counting rules and linear
dependence of the total count to complexity. McCabe’s Cyclomatic complexity is defined as V(G) = e − n + 2p,
where:

e = number of links in the flow graph;
n = number of nodes in the flow graph; and
P = number of disconnected parts of the flow graph.
The ParaExtrctr and ParaExtrctrPlus algorithms are made using C programming language and both modules

PAN and PCA Kernel. Control flow graphs describe the logic structure of software modules. A module corre-
sponds to a single function or subroutine in typical languages, has a single entry and exit point, and is able to be
used as a design component via a call/return mechanism. Each flow graph consists of nodes and edges. The
nodes represent computational statements or expressions, and the edges represent transfer of control between
nodes. As seen Figure 3.

The complexity of several graphs considered together is equal to the sum of the individual complexities of those
graphs. The strategy of modularization ParaExtrctr and ParaExtrctrPlus algorithms aims to implement C language source
code programs for optimal number of cyclomatic complexity for each PAN and PCA Kernel function around values
lower than 10. As seen Figure 4 and Figure 5.

Practical Software Quality Issues where considered: 1) no program module should exceed a cyclomatic com-
plexity of 10; and 2) software refactoring are aimed at reducing the complexity of a program’s conditional logic.
Essentially, with cyclomatic complexity, higher numbers are “bad” and lower numbers are “good”. We use cyc-
lomatic complexity to get a sense of how hard any given code may be to test, maintain, or troubleshoot as well
as an indication of how likely the code will be to produce errors.

Figure 3. Strategies to Convert Code to Graph (Maccbe V(g)).

M. R. Nascimento et al.

379

Figure 4. McCabe’s Cyclomatic Analysis ParaExtrctr Algorithm.

Figure 5. McCabe’s Cyclomatic Analysis ParaExtrctrPlus Algorithm.

4. Application of the PAL2v for Design Testing Software and Discussion
Developers at ITA Project were also responsible for ensuring that the testability issues were addressed in the

M. R. Nascimento et al.

380

requirements and design phases of development to support test planning and test design. Testers interacted with
a team of designers to deal with the occurrence of testability problems, as well as the documentation of the de-
sign specifications used as the basis of test cases that would support integration testing and unit testing. The
master test plan was revisited and enhanced with new information as needed upon every release of every SPL.

The ITA Software Testing (ST) team consisted of four (4) members with the following responsibilities for
profile: senior test leader, usability test engineer, manual test engineer and automated test engineer. According
to Elfriede [25] the capabilities of the ST team may affect the success or failure of the testing effort. It is not
enough for a testing team to be technically proficient with the testing techniques and tools necessary to carry out
the actual tests. Depending on the complexity of the domain, a test team should also include members who have
a comprehensive understanding of the problem domain.

Using the above standards in SPL2, a treatment system of uncertainty for decision-making based on the
PAL2v, was applied to investigate how to treat degrees of evidence related to the use for designing testing tech-
niques based on software testability by quality-quantity indicators. Bach’s quality facilitator heuristics for soft-
ware testability were matched to the testability quantity indicators of SQuaRE 25010 to analyze the impact on
best practices and techniques the test scenarios analysis.

Considering two information sources, [A] and [R], that send the evidence concerning a certain Proposition Pn
to the analysis and decision-making system, as seen in Figure 6 for the 1st step—(primary sources of informa-
tion: accept or reject the acquisition data). The data: [A] —acceptance—degree of acceptance value of the pro-
position in the interval [0,10]; [R]—rejection—degree of rejection value of the proposition in the interval [0,10].

The degrees of evidence acquisition of the samples were obtained through mathematical equations, through
normalization from modelling evidence signals, by acceptance and rejection acquisition data, with the exposed
values in the degrees of evidence valued between 0 and 1 in the PAL2v lattice.

The degree of favorable evidence (μ), expressing the level of acceptance of a statement Pn and the degree of
unfavorable evidence (λ), expressing the level of non-acceptance, were defined by responses to each object
proposition [statements (P1…P7)]. The values were calculated respectively according to the following Relative
Strengh Index (RSI) formula in Figure 7, for the 2nd step it should begin with the sentence “RSI function PAL2v
modeling Paraconsistent proposition Pn”, resulting in a degree of individual evidence from each tester (3rd
step).

As seen Figure 8, in the 4th step, the Paraconsistent Extractor of Contradiction Effects (ParaExtrctr) Algo-
rithm is composed by connections among PANs. This configuration forms a Paraconsistent network capable to
extract the effects of the contradiction, in gradual way of the signals of information, from resulting degree of in-
dividual evidence of heuristic of software testability facilitator (µer).

The degree of evidence µerf is a single value corresponding to a tester group (I = 1, 2, 3, 4) opinion for each
Bach testability heuristics facilitator. Through successive Paraconsistent analyses, the effects of the contradic-
tions are extracted and presented. As seen Figure 8, in the 4th step and Table-A.

Thus, contradictions (μctr) in certain proposition analyses may affect the value of degree of certainty supplied
by the analysis of an Object Proposition (P1, …,P7). This PANNet has a process of normalization where each
PAN output, through to ParaExtrctr Algorithm, represents a Degree of Resultant Real Evidence value µerf ac-
companied by a Resultant Interval of Certainty value φeint , as seen Figure 8, in Table-A.

Three basic rules may be considered to make the combinations of the results in Paraconsistent Analysis net-
work:

1) Propositon analyzed in the PANs maybe logically combined through the Degrees of resultant Real Cer-
tainty originated from the analysis, and thus make Paraconsistent and thus make different interconnections in the
Paraconsistent Analysis Network;

2) The values of the Degrees of Resultant Real Certainty, as well as the intervals of Real certainty originated
from the PANs, referring to the different propositions, may be logical treated by conjunction (AND) and dis-
junction (OR) or algebraically by addition or subtraction of their values, according to the characteristics and to-
pology of the PANNet project;

3) The values of the Degrees of Resultant real certainty may be transformed, by normalization, into values
between o and 1, in the real number interval, and thus considered as Degrees of Evidence of other propositions
which are being analyzed by other different PANs. In this way, the interconnections among the PANs, will be
donethrough the analysis of the evidences.

M. R. Nascimento et al.

381

Figure 6. Bach’s testability heuristics associated to a SQuaRE 25010 with the acquisition data for the results of the degree of
acceptance or rejection for each proposition.

The relations between the resulting interval of certainty value φe and normalized degree of contradiction µctr

value show how the level of contradiction in the analysis of PANNet. When taken together, they will promote
evidence to make a decision that results in higher accuracy and reliability, as seen in Table 2.

It was verified from the characteristic line on the graph [φe versus µctr] from data in Table 2: that when the re-
sultant interval of evidence is maximum value φe = 1 and the normalized degree of contradiction value µctr = 0.5,
represents a null contradiction.

Maximum contradictions, represented by a value of null resultant Interval of evidence, occur in two values of
degree of contradiction µctr: 1) when the normalized degree of contradiction is equal to zero, indicating maxi-
mum contradiction by indetermination (⊥), and 2) when the normalized degree of contradiction is maximum,
and indicating maximum contradiction by inconsistency (⊤).

In this situation there will be two conditions: 1) if the unfavorable evidence λ is greater than the favorable
evidence μ, the resultant interval of evidence φe may present values lower than 0.5 and greater or equal to zero,

M. R. Nascimento et al.

382

Figure 7. The RSI oscillator function modelling degree of evidence the PAL2v lattice1.

Table 2. Contradiction Analysis—Lattice PAL2v.

Resultant Interval of Evidence (φe) Normalized degree of Contradiction (µctr) Analysis

0.00 0.000 Indetermination ⊥
0.25 0.125 boundary limit ⊥
0.50 0.250 Data valid
0.75 0.375 Data valid
1.00 0.500 Null contradiction
0.75 0.625 Data valid
0.50 0.750 Data valid
0.25 0.875 boundary limit ⊤
0.00 1.000 Inconsistency ⊤

and 2) if the favorable evidence μ is greater than the unfavorable evidence λ the resultant interval of evidence φe
may present values greater than 0.5 and lower or equal to zero.

The Table 3 shows the characteristics found of the resultant interval of evidence φe related with the values of

1This formula was designed by Welles Wilder [1978], the RSI (Relative Strength Index) is an oscillator that allows to compare the average
magnitude of gains from the average of the losses on a scale interval.

M. R. Nascimento et al.

383

Figure 8. Diagram of ParaExtrctr and of ParaExtrctrPlus algorithms from the acquisition data referring of heuristics of
software testability.

resultant degree of real evidence μerf.

In the characteristic segment line on the graph [φe versus μerf] from data in Table 3 enables to verify that the
resultant interval of evidence φe, represents the permitted value for variation of resultant degree of real evidence
μerf, in situation of the normalized degree of contradiction value µctr .

The resultant interval of evidence φe impacts on the maximum of the output degree of evidence tending to
logical state True or False, as seen in Figure 9.

In the end of the analysis, the ParaExtrctr algorithm presents as result a real evidence degree values µerf repre-
sentative of the evidence degree group, was validated in agreement, the interval of contradiction analysis, output
values from 4th step, according to Table 2: between boundary limit indetermination (⊥) and boundary limit in-
consistency or paracompleteness (⊤).

When viewing Table-A of results for each proposition Pn of heuristics of software testability in the 4th step, in
Figure 8, the small value μerf = 0.38, refers to the operability facilitator. This indicates a potential deficiency in
the training of the technical staff of software testing, compromising the quality of the software product through
poor implementation of best practices for testing and lack of operational experience.
Another of Bach’s facilitators that showed medium results was controllability, with the value μerf = 0.508. This
means there were problems in the process of operating a system or software components under specified condi-
tions of testing coverage. Some strategies that apply in test case scenarios with black box techniques: Equiva-
lence Class Partitioning, Boundary Value Analysis, and State Transition Table, have shown to be inconsistent
and partly failing.

M. R. Nascimento et al.

384

Table 3. Characteristics resultant degree evidence—PAL2v Lattice.

Resultant Interval of Evidence (φe) Resultant degree evidence(µerf) Analysis

0.00 0.000 False F
0.25 0.125 boundary limit F
0.50 0.250 Data valid
0.75 0.375 Data valid
1.00 0.500 Indetermination ⊥
0.75 0.625 Data valid
0.50 0.750 Data valid
0.25 0.875 boundary limit t
0.00 1.000 True t

Figure 9. Location Logical states [F, t] base on variation of the degree of evi-
dence.

The stability facilitator, in Figure 8, showed better numbers, it had a high value of μerf = 0.602 and null con-

tradiction. This facilitator showed a detection of defects with a satisfactory level in each release of the Software
Product Line (SPL). It represents the changes in Test Cases (TC) and testing techniques employed by the soft-
ware test team to find bugs which were assimilated incrementally with efficiency.

The 5th step is “go to the Paraconsistent analysis with the global evidence degree (filter) pattern”, uses the
ParaExtrctrPlus algorithm in order to homogenize different facilitators, which is key to achieving an overall
proposition concerning an object: P0—“It is possible to matched quantity testability indicators of SQuaRE
25010 with the quality facilitators heuristics of software testability by James Bach, to analyze the impact of de-
sign testability using best practices and techniques on test scenarios”.

The ParaExtrctrPlus algorithm is a network for treatment of uncertainties, which can be built with several inter-
linked PCA-algorithms. The hypothesis of extraction of the effects of the contradiction from several non-homo-
geneous sources has the principle that: 1) if the first treated signals are the most contradictory, the impact each
propagation of resultant Interval of Evidence must be analyzed, subsequently to another PCA kernel; and 2)
gradually filters inconsistencies to treat the effects of contradiction in information from each resultant real de-
gree evidence through the PANNet to obtain the influence on global final results.

In the 5th step, the ParaExtrctrPlus algorithms to produce the global resultant real degree of evidence µefr is
equal to 0.537, where µctr = 0.511 and φe is positive near to value 1, representing a tendency of null contradiction.
As seen in Table B, Figure 8.

The extraction process reduces the effects of the inconsistencies and it presents as answer a closer representa-
tive value of the reality, through the signals of contradiction by evidence of their ranges to reduce the partial
contradiction µerf between the different Bach's testability facilitators.

In each analysis carried out the PAN interlinks of PANNet, PCA or PAN Kernel, the Interval of certainty is

M. R. Nascimento et al.

385

available, besides the Resultant Degree of Evidence according to Table 3. The two values will allow an identi-
fication of the condition for analysis of uncertainty of each proposition in the PAN Nettopology. With the value
of Interval of Certainty, there exists an indication of where the system may react. Whether reduce of strengthen
the evidences with the objective of diminishing the conflicts and increasing of Degree of Certainty.

The level of demand for the system makes the decision favorable; in other words, the final result µefr is “true”
and satisfactory for the global proposition object P0. The quality-quantity mapping [modelling] standards of
Bach’s testability model [3] and SQuaRE 25010 [2], provided an integrated view of complementary mechanisms
to improve best practices, methods and techniques results on the diagnostic analysis for designing testability of
software adopted by ICAMMH project Test Team.

5. Conclusions
This paper described the design characteristics of the PANNet topology carrying out different connections,
which provided result as a real evidence degree representative on PAL2v lattice. The results demonstrate the
feasibility of the quality-quantity process model for measure software testability.

The ParaExtrctr algorithms presented are capable of extracting contradiction effects from groups of evidence
signals regarding quality-quantity propositions of testability through basic concepts of Paraconsistent Annotated
Logic for two values (PAL2v).

The modelling through PANNet topology combining PAN and PCA kernels of ParaExtrctr algorithms have
provided safe information about propositions with a higher or lower degree of contradiction. With this informa-
tion the system is able to make more reliable decisions, besides having the values to act on the input signal con-
trol, weakening or strengthening evidences, in order to reduce contradiction effects.

The ParaExtrctr and the ParaExtrctrPlus algorithms have proposed new structures and different configurations
of Paraconsistent analyses networks that were designed for treatment of uncertainties for designing software
testing strategies. In that context the new approach aims to improve quality assurance for the development of
software products.

Testability is a key factor in the quality of the software product, to propose new approaches to verifying and
validating the quality for design strategies for software, during the development cycle.

This paper demonstrated an effective improvement in testability analysis and software because with the use of
PAL2v algorithms, it presents a new way to treat the effects of gradually contradiction in information, also pro-
vides monitoring conditions, and adjustments in steering of the process.

The results obtained in this paper bring contributions to build robust Paraconsistent Specialists Systems, to act
as powerful computational tools dedicated to software testability analysis without contamination by contradic-
tory information signals.

Acknowledgements
The Authors would like to thank the Brazilian Aeronautics Institute of Technology (ITA), for its scientific de-
velopment incentives by using Research & Development Projects at ITA; the Brazilian National Water Agency
(ANA), for the opportunity of participating in its Project; the Finance Agency for Studies and Projects (FINEP);
and also the Casimiro Montenegro Filho Foundation (FCMF) for its available infrastructure.

References
[1] da Silva, G.B., Romano, B.L., Campos, H.C., Vieira R.G., da Cunha A.M. and Vieira Dias, L.A. (2009) Integrating

Amazonic Heterogeneous Hydrometeorological Databases. Information Technology: New Generations, Third Interna-
tional Conference, 119-124.

[2] ISO/IEC 25010 (2011) Systems and Software Engineering—Systems and Software Quality Requirements and Evalua-
tion (SQuaRE)-System and Software Quality Models.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733

[3] Bach, J. (2003) Heuristics of Software Testability. http://www.satisfice.com/tools/testable.pdf
[4] Clements, P.C. and Northrop, L. (2001) Software Product Lines: Practices and Patterns. SEI Series in Software Engi-

neering, Addison-Wesley.
[5] Northrop, L.M., Clements, P.C., Bachmann, F., Bergey, J., Chastek, G., Cohen, S., Donohoe, P., Jones, L., Krut, R.,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=35733
http://www.satisfice.com/tools/testable.pdf

M. R. Nascimento et al.

386

Little, R., McGregor, J. and O’Brien, L. (2009) A Framework for Software Product Line Practice, Version 5.0.
[6] IEEE Std 829 (1998) IEEE Standard for Software and System Test Documentation. 2008. Institute of Electrical and

Electronics Engineers. Revision of IEEE Std 829.
[7] Perry, W. (2006) Effective Methods for Software Testing. 3rd Edition, Wiley, New York.
[8] Sharma, A., Kumar, V. and Pachori, S. (2012) Defect Prevention Technique used in Test Case for Quality Improve-

ment. International Journal of Computer Applications, 43, 17-21.
[9] Badri, M. and Toure, F. (2012) Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Ef-

fort of Classes. Journal of Software Engineering and Applications, 5, 513-526.
http://dx.doi.org/10.4236/jsea.2012.57060

[10] Rosenberg, D. and Sthephens, M. (2007) Use Case Driven Object Modeling with UML: Theory and Practice.
Springer-Verlag, New York, 50-51.

[11] Khan, R.A. and Mustafa, K. (2009) Software Testability. Department of Computer Science, New Delhi.
http://developeriq.in/articles/2009/jan/02/software-testability/

[12] Arruda, A.I. (1980) A survey of Paraconsistent Logic, In: Arruda, A.I., Chuaqui, R. and Da Costa, N.C.A., Eds., Stud-
ies in Logic and the Foundations of Mathematics (Vol. 99), Elsevier, 1-41.

[13] Blair, H.A. and Subrahmanian, V.S. (1988) Paraconsistent Foundations for Logic Programming. Journal of NonCla-
ssical Logic, 5, 45-73.

[14] Subrahmanian, V.S. (1987) On the Semantics of Quantitative Logic Programming. Proceedings of 4th IEEE Sympo-
sium on Logic Programming, September, San Francisco, 173-182.

[15] Da Costa, N.C.A. (1974) On the Theory of Inconsistent Formal Systems. Notre Dame Journal of Formal Logic, 15,
497-510. http://dx.doi.org/10.1305/ndjfl/1093891487

[16] Da Costa N. C. A. and Marconi D. (1989) An Overview of Paraconsistent Logic in the 80’s. The Journal of Non-Clas-
sical Logic, 6, 5-31.

[17] Da Costa, N.C.A., Subrahmanian, V.S. and Vago, C. (1991) The Paraconsistent Logic PT. Zeitschrift fur Mathema-
tischeLogik und Grundlagen der Mathematik, 37, 139-148. http://dx.doi.org/10.1002/malq.19910370903

[18] Subrahmanian, V.S. (1990) Mechanical Proof Procedures for Many Valued Lattice-Based Logic Programming. Jour-
nal of Non-Classical Logic, 7, 7-41.

[19] Da Costa, N.C.A., Abe, J.M. and Subrahmanian, V.S. (1991) Remarks on Annotated Logic. Zeitschrift fur Mathema-
tische Logik und Grundlagen der Mathematik, 37, 561-570.

[20] Da Costa, N.C.A., Da Silva Filho, J.I., Abe, J.M., Murolo, F.F. and Soares, C.F. (1999) Lógica Paraconsistente Aplica-
da. Editora, Atlas.

[21] Da Silva Filho, J.I., Abe, J.M. and Lambert-Torres, G. (2009) Inteligência Artificial com as Redes de Análises
Paraconsistentes Teoria e Aplicações. LTC, Editora, 328 p.

[22] Da Silva Filho, J.I., Abe, J.M. and Lambert-Torres, G. (2010) Uncertainty Treatment Using Paraconsistent Logic— In-
troducing Paraconsistent Artificial Neural Networks (Vol. 21). IOS Press, Amsterdam, 328 p.

[23] Da Silva Filho, J.I., Lambert-Torres, G., Ferrara, L.F.P., Mário, M.C., Dos Santos, M.R., Onuki, A.S., Camargo, J.M.
and Rocco, A. (2011) “Paraconsistent Algorithm Extractor of Contradiction Effects―ParaExtrctr. Journal Software
Engineering & Applications, 4, 579-584. http://dx.doi.org/10.4236/jsea.2011.410067

[24] Da Silva Filho, J.I., Onuki, A.S., Ferrara, L.F.P., Mário, M.C., Camargo, J.M., Garcia, D.V., Dos Santos, M.R. and
Rocco, A. (2012) Electric Power System Operation Decision Support by Expert System Built with Paraconsistent An-
notated Logic, Advances in Expert Systems. InTech. http://dx.doi.org/10.5772/51379

[25] Elfriede, D. (2002) Effective Software Testing: 50 Ways to Improve Your Software Testing. Addison-Wesley Long-
man Publishing Co., Inc., Boston.

http://dx.doi.org/10.4236/jsea.2012.57060
http://developeriq.in/articles/2009/jan/02/software-testability/
http://dx.doi.org/10.1305/ndjfl/1093891487
http://dx.doi.org/10.1002/malq.19910370903
http://dx.doi.org/10.4236/jsea.2011.410067
http://dx.doi.org/10.5772/51379

	An Application of Paraconsistent Annotated Logic for Design Software Testing Strategies
	Abstract
	Keywords
	1. Introduction
	2. Fundamentals Theories
	2.1. Environment Software Testing for the ICAMMH Project
	2.2. The Use of Reference Standards for Testability Software
	2.3. Paraconsistent Logic and the Treatment of Uncertainties
	2.4. The Main Algorithms of the Paraconsistent Annotated Logic with Annotation of 2 Values—PAL2v

	3. Methodology for Designing Testing Software Model Analysis
	4. Application of the PAL2v for Design Testing Software and Discussion
	5. Conclusions
	Acknowledgements
	References

