
Journal of Software Engineering and Applications, 2013, 6, 27-35
http://dx.doi.org/10.4236/jsea.2013.610A004 Published Online October 2013 (http://www.scirp.org/journal/jsea)

27

Automatic Generation of Test Cases in Regression Testing
for Lustre/SCADE Programs

Trinh Cong Duy1, Nguyen Thanh Binh1, Ioannis Parissis2

1The University of Danang, University of Science and Technology, Da Nang, Vietnam; 2Grenoble INP LCIS, University of Grenoble,
Valence, France.
Email: Tcduy@dut.udn.vn, ntbinh@dut.udn.vn, ioannis.parissis@grenoble-inp.fr

Received July 24th, 2013; revised August 23rd, 2013; accepted August 31st, 2013

Copyright © 2013 Trinh Cong Duy et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Lustre is a formal synchronous declarative language widely used for modeling and specifying safety critical applica-
tions in the fields of avionics, transportation, and energy production. In such applications, the testing activity to ensure
correctness of the system plays a crucial role. During the development process, Lustre programs (or SCADE) are often
upgraded, so regression test should be performed to detect bugs. However, regression test is generally costly, because
the number of test cases is usually very large. In this paper, we present the solution to automatically generate test cases
in regression testing of Lustre/SCADE programs. We apply this solution to regression testing for case study U-turn
System.

Keywords: Regession Testing; Test Case; Lustre; SCADE; Model Checking

1. Introduction

Lustre [1] is a declarative, data-flow language, which is
devoted to the specification of synchronous and realtime
applications. It ensures efficient code generation and
provides formal specification and verification facilities. It
is based on the synchronous approach which demands
that the software reacts to its inputs instantaneously. In
practice, it means that the software reaction is suffi-
ciently fast so that every change in the external environ-
ment is taken into account. These characteristics make it
possible to efficiently design and model synchronous sys-
tems.

A graphical tool dedicated to the development of criti-
cal embedded systems and often used by industries and
professionals is SCADE (Safety Critical Application De-
velopment Environment) [2]. It is an environment based
on the Lustre language, which is used for the hierarchical
definition of the system components and the automatic
code generation. From the SCADE functional specifica-
tions, C code is automatically generated, though this trans-
formation is not standardized. This graphical modeling
environment is used mainly in the aerospace field (Air-
bus, DO-178B), however it is also used in the domains of
transportation, automotive and energy.

Software maintenance is an activity which includes

enhancements, error corrections, optimization and dele-
tion of existing features. These modifications may cause
the system to work incorrectly. Therefore, regression
testing becomes necessary. Regression testing is a type of
software testing that seeks to uncover new software bugs,
or regressions, existing functional and non-functional
areas of a system after changes, such as enhancements,
patches or configuration changes, which have been made
to them. The intent of regression testing is to ensure that
a change among those mentioned above has not intro-
duced new faults [3]. One of the main reasons for re-
gression testing is to determine whether a change in
one part of the software affects other parts of the soft-
ware [4].

Common methods of regression testing include rerun-
ning previously-completed tests and checking whether
program behavior has changed and whether previously-
fixed faults have reemerged. Regression testing can be
used to test a system efficiently by systematically select-
ing the appropriate minimum set of tests needed to ade-
quately cover a particular change.

In this paper, we present the solutions of automatic
generation of test cases in regression testing for Lustre/
SCADE programs. Our idea is to determine the minimum
number of test cases, which can detect all possible errors.
We propose the use of model checking techniques for

Copyright © 2013 SciRes. JSEA

Automatic Generation of Test Cases in Regression Testing for Lustre/SCADE Programs 28

automatically generating test cases. We also define the
correlation between requirement specification and test
cases. When there is a change in the requirements speci-
fication, we identify which test cases are removed, re-
used or created. Therefore, the minimum set of test cases
is designed to reduce operating costs for regression test-
ing of the new version.

In this paper, Section 2 describes an overview of the
Lustre/SCADE environment and testing Lustre/SCADE
programs using model checking technique. In Section 3,
we propose the solution of automatic generation of test
cases in regression testing for Lustre/SCADE programs.
Section 4, we will apply this approach to the U-turn sec-
tion management system. Finally, the conclusion is pre-
sented.

2. Using Model Checker for Testing
Lustre/Scade Programs

2.1. The Lustre Language and SCADE
Environment

A Lustre program is structured into nodes; a node is a set
of equations which define its outputs as a function of its
inputs. Each variable can be defined only once within a
node and the order of equations is of no matter. Specifi-
cally, when an expression E is assigned to a variable X, X
= E, it indicates that the respective sequences of values
are identical throughout the program execution; at any
cycle, X and E have the same value. Once a node is de-
fined, it can be used inside other nodes like any other
operators.

The operators supported by Lustre are the common
arithmetic and logical operators (+, −, *, /, and, or, not)
as well as two specific temporal operators: the prece-
dence (pre) and the initialization (→). The pre operator
introduces to the flow a delay of one time unit and it is
used to refer to the previous execution cycle. The → op-
erator—also called followed by (fby)—allows the flow
initialization and it is used to refer to the first execution
cycle. Let X = (x0, x1, x2, x3,…) and (e0, e1, e2, e3,…)
be two Lustre expressions. Then pre(X) denotes the se-
quence (nil, x0, x1, x2, x3…), where nil is an undefined
value, while X→E denotes the sequence (x0, e1, e2, e3,…)
[5].

Lustre does not support loops (operators such as for
and while) nor recursive calls. Consequently, the execu-
tion time of a Lustre program can be statically computed
and the satisfaction of the hypothesis of synchrony can
be checked.
 when is used to sample an expression on a slower

clock. Let E be an expression and B a boolean ex-
pression with the same clock. Then, X = E when B is
an expression whose clock is defined by B and its
values are the same as those of E’s only when B is

true. That means that the resulting fiow X has not the
same clock as E or, alternatively, when B is false, X is
not defined at all.

 current operates on expressions with different clocks
and is used to project an expression on the immedi-
ately faster clock. Let E be an expression with the
clock defined by the boolean fiow B which is not the
basic clock. Then, Y = current (E) has the same clock
as B and its value is the value of E at the last time that
B was true. Note that until B is true for the first time,
the value of Y will be nil.

A simple Lustre program is given in Figure 1. This
program receives a signal set and returns a boolean level
that must be true during delay seconds after each recep-
tion of set. The seconds are provided by a boolean input
second, that is true whenever a second elapses. The pro-
gram reuses the node STABLE, calling it at a suitable
clock, by filtering its input parameters.

SCADE (Safety Critical Application Development En-
vironment) is a graphical environment commercialized
by Esterel Technologies [6]. It is based on the synchro-
nous language Lustre. So, we are often referred to as Lus-
tre/SCADE. Figure 2 shows the relationship between
language Lustre and the environment SCADE. Lustre/
SCADE usually used to build the applications of reactive
system [7].

Figure 1. Example of a Lustre program.

Figure 2. Ex: performance Lustre programs with SCADE.

Copyright © 2013 SciRes. JSEA

Automatic Generation of Test Cases in Regression Testing for Lustre/SCADE Programs 29

2.2. Specification of a Software in Lustre
Program

The main application area of synchronous programming
is safety-critical software. For such software, three kinds
of specification are needed:
 The functional specification of the software is a Lustre

node computing the software outputs from the soft-
ware inputs. This node is deterministic: a given input
sequence will always cause the software to issue the
same output sequence.

 The software environment specification is a set of in-
variant properties providing a nondeterministic de-
scription of the valid software inputs.

 The safety properties are invariant temporal logic for-
mulae stating that some dangerous behaviors will ne-
ver occur.

We have some useful nontrivial temporal operators
which can be expressed as Lustre nodes. Consider the
following property:

“Any occurrence of a critical situation must be fol-
lowed by an alarm within five second delay.”

Such a property relates to three events: the critical
situation occurrence, the alarm, and the deadline. The
latter can be provided externally, and it can also be easily
expressed in Lustre. A general pattern for this property is
the following:

“Any occurrence of event A is followed by an occur-
rence of event B before the next occurrence of event C.”

However, this formulation is not directly translatable
into Lustre, since it refers to what happens in the future
following an A occurrence, while Lustre only allows ref-
erences to the past with respect to the current instant.
That is why it is first translated into the equivalent past
expression:

“Anytime C occurs, either A has never occurred pre-
viously, or B has occurred since the last occurrence of A.”

We define a node, taking three Boolean input parame-
ters A, B, C, and returning a Boolean output X such that
X is always true if and only if the property holds:
node Always_from_to_(A, B, C : bool)
 returns(ok : bool);
let
 ok = Once_since(C, B) or Always_since(A, B);
tel

The node Once_since(A, B) (resp. Always_since(A, B))
returns a true value if and only if its first input has been
once (resp. continuously) true since the last time its sec-
ond input was true:
node Once_since_(A, B : bool)
 returns(ok : bool);
let
 ok = if B then A else(true → (A or pre (ok)));
tel
node Always_since_(A, B : bool)

 returns(ok : bool);
let
 ok = if Never(B) then true
 else if B then A else A and pre (ok);
tel

The node Never (A) returns a true value if and only if
A has never been true in the past:
node Never(A : bool)
 returns(ok : bool);
let
 ok = not A → (not A and pre(ok));
tel

2.3. Testing Lustre/SCADE Programs with
Model Checker

Model checkers are formal verification tools that evalu-
ate a model to determine if it satisfies a given set of pro-
perties [8]. A model checker will consider every possi-
ble combination of inputs and state, making the verifica-
tion equivalent to exhaustive testing of the model. If a
property is not true, the model checker produces a coun-
terexample showing how the property can be falsified.

Model checking techniques require two inputs: model
and property. Properties are specified with temporal logic.
Lustre language can be considered as a subset of a tem-
poral logic, we can use Lustre for define both model and
properties. The use of a programming language to ex-
press both programs and their properties is interesting,
since all the structuring facilities of the language become
available for readability and expressiveness.

The idea of testing with model checkers is to interpret
counter examples as test cases. A suitable test case exe-
cution framework can extract from this the test data, and
also the expected results (i.e., test oracle). A model checker
can be used to find test cases by formulating a test crite-
rion as a verification condition for the model checker.
For example, we may want to test a transition (guarded
with condition C) between states A and B in the formal
model. We can formulate a condition describing a test
case, testing this transition the sequence of inputs must
take the model to state A; in state A, C must be true, and
the next state must be B [9].

A test purpose describes the desired characteristics of a
test case that should be created. For example, it could
describe the final state of the test case, or a sequence of
states that should be traversed. The test purpose is speci-
fied in temporal logic and then converted to a never-
claim by negation; this asserts that the test purpose never
becomes true. The counterexample illustrates how the
never-claim is violated, and thus shows how the original
test purpose is fulfilled. These never-claims are called
trap properties, and for each item that should be covered
one trap property is generated, in Figure 3 we create test
cases with model checker uses trap property.

Copyright © 2013 SciRes. JSEA

Automatic Generation of Test Cases in Regression Testing for Lustre/SCADE Programs 30

Figure 3. Creating test cases with model checker.

In many cases, testing with model checkers is applied
to reactive systems, which read input values from sensors
and set output values accordingly. The system reacts to
inputs by setting output values, such that a logical step in
a counterexample can be mapped to an execution cycle
of the system under test. In the reactive system scenario,
counterexamples can directly be interpreted as test cases
[10]. Because test cases are always finite, it is necessary
to distinguish between traces with or without loopback
when mapping a trace to a test case. In this paper, we use
this technique to test for reactive application Lustre/
SCADE.

One of its main advantages is that it can be used as a
temporal logic to express software invariant properties.
The satisfaction of the latter can be proven by model
checking. In this work, we used LESAR tool.

Given a program P and a safety property S, LESAR
checks that S is true in all states of program P under
some assumptions (expressed by an assertion A). The
problem thus reduces to proving that the only boolean
output of P is always true during any execution of the
program which permanently satisfies the assertion A. The
verification is performed on a finite state abstraction of
the program. Any numerical computation is deliberately
ignored, and boolean expressions depending on numeri-
cal variables (e.g., comparisons) are considered nonde-
terministic. LESAR takes a verification program as input.
It is written in Lustre. It has the same inputs than the
original program and only one boolean output. This out-
put is equal to the safety property to be proved. The as-
sert operator allows to restrict the verification to the in-
puts satisfying the environment constraints [11].

3. Generation of Test Cases for Lustre/
SCADE Programs

3.1. Problem Statement

The Lustre/SCADE applications usually require very
high quality and rigorous testing activities before they
are deployed to use. In this section of the paper, we pre-

sent the solutions for generating test cases in regression
testing of Lustre/SCADE programs. In particular, the
model checking technique will be used for automatically
generating test cases. We also define the correlation be-
tween requirement specification and test cases. When
there is a change in the requirements specification, we
can identify which test cases are removed, re-used and
new test cases. Since then, the minimum set of test cases
is designed to reduce operating costs for regression test-
ing of the new version.

During the development process, the system is often
updated, regression test should be performed to detect
bugs. However, in the regression testing process, if we
perform all the test cases in the old version and generate
the new test cases, the operation is really very expensive.
So, we need to optimize the number of test cases for im-
plementing a regression testing. The following figure
shows the process of developing the test suite for regres-
sion testing in the new version.

In Figure 4, we can see: in the first version, we do not
use the regression testing but the model checking for
verifying application model to generate test cases. In this
version, the selection of test cases has not been applied,
all test cases are created to be done. From the second ver-
sion, the regression test will be applied. We need apply
the technique of selection and automatic generation of
test cases in regression testing, for eliminating unneces-
sary test cases to reduce costs, we call this technique is
TSTG (Technique of selection and automatic generation
of test cases). The details of this technique will be pre-
sented in Sections 3.2 and 3.3.

Example: We illustrate the use of Lustre as a language
for expressing functional and safety features and envi-
ronment invariant properties on a subway device. This
device is an automatic “U-turn” section management sys-
tem (called UMS), allowing trains, at each terminus of
the subway line, to switch from one track to the other and
go back to the opposite direction [12].

The U-turn section (Figure 5) is composed of three
tracks A, B, C and a switch S. Assuming the entering
track is A and the exiting track is C, trains switching
from A to C must first wait for S to connect A with B,

Figure 4. Evolution of the system and regression test.

Copyright © 2013 SciRes. JSEA

Automatic Generation of Test Cases in Regression Testing for Lustre/SCADE Programs 31

Figure 5. The UMS system and its environment.

then transit on B and wait again for S to connect B with
C before going back on C. Since UMS must both drive
the switch and manage train movement in order to avoid
accidents into the section, its behavior is typically reac-
tive: upon receipt of information about the U-section
configuration (i.e. switch status and train position inside
the section), it should deliver positioning requests to the
switch and access grants to trains. These four kinds of
events can be modeled by the following signals.
 ack_AB and ack_BC are emitted by the switch to

indicate whether it actually connects A with B or B
with C. When none of these signals is active (i.e. when
the actual connection is changing), trains must not take
the switch.

 on_A, on_B and on_C are emitted by three sensors,
one on each track of the section. They are active as
long as there is a train on their respective track.

 do_AB and do_BC, emitted by UMS, are the requests
for the switch to connect A with B or B with C.

 grant_access and grant_exit, also emitted by UMS,
are grants for trains to move along the section (i.e.
traffic lights). The first will allow trains to access the
section only if it is empty and the switch connects A
and B.

The second will allow trains to exit B only if the switch
connects B with C.

3.2. Requirements of the Process Control in
Version 1

We formally express here some safety properties of the
UMS system (variables empty section and only_on_B are
assumed to be defined as in the above node, UMS):
The access is granted to a train only if the section is Empty
(R1):
 Implies (grant_access, empty_section

The switch positioning requests, do_AB and do_BC
should never be simultaneously active (R2):
 not (do_AB and do_BC)

The switch must always connect A to B (resp. B to C)
from the instant when a train is allowed to enter (resp. to
exit) the section until it has arrived on track B (resp. it

has actually left it):
 Always_from_to (ack_AB, grant_access, only_on
_B) (R3)

And
 Always_from_to (ack_BC, grant_exit, empty_sec-
tion) (R4)

Assumptions: With the requirement of this version, we
have the test suite with 4 test cases {T1, T2, T3, T4} for
requirements {R1, R2, R3, R4}.

3.3. Requirements of the Process Control in
Version 2

In version 2 of U-turn system, there is one update in re-
quirement (R1): The access is granted to a train when the
section is empty or the train is only on C (R1’) and other
requirements do not change, in comparison with previous
versions.

Implies(grant_access, empty_section or only_on_C)
We can see that the requirements R2, R3, R4 do not

change in version 2, so will be have some test cases not
affected when the updated version. Normally, when test-
ing version 2, we often have to run all the test cases cre-
ated for versions 1 and the new test cases in version 2.
Hence, requires a lot of costs. The problem here is that
we need to define a set of test cases which will be im-
plemented in regression testing for version 2, and it
should be a least. We will propose technical solution to
solve this problem in the next sections and present em-
pirical results in Part 4.

3.4. Test Case Life Cycle in Regression Testing

In regression testing, identifying test case needed for
executing is very important, since, we don’t need to
re-execute the old test cases for old requirements in the
previous version (the requirements have not been im-
pacted by the evolution). In this work, we introduce the
concept of the test cases life cycle in regression testing.
Each test case will be created until deleted (removed) in
regression testing must meet the requirements: when
there is a change in software versions, if a test case has
been used in the older versions, but not affected by the
upgrade process, then it will be removed. The test case is
affected by the upgrade will be updated to match the new
version. The test cases for new requirements in the new
version will be created. This content is described in Fig-
ure 6.

3.5. Generation of Test Cases in Regression Test

In regression testing, the main issue is to create a set of
test cases for the new version. Here, we have two ver-
sions, a new version M' and the previous version M
(Figure 7). The basic idea in the construction of the set
of test cases is as follows: We compare the current ver-

Copyright © 2013 SciRes. JSEA

Automatic Generation of Test Cases in Regression Testing for Lustre/SCADE Programs

Copyright © 2013 SciRes. JSEA

32

sion (M') with the previous version (M) of the system to
determine: The new requirements, the requirements need
to be changed, the requirements are not affected and the
requirements are removed in the new version (in M'). We
present a method for automatic identification of test
cases when the requirements are affected by the process
of changing the system version. The test cases included
in the old version, but not affected by the evolutionary
process, will be eliminated in the new version. Only the
test cases of the requirements are affected by change, in

the new version, they will be kept and the new test cases
are generated.

After determining the requirements affected by the
evolution of the system, in Figure 8, we use model
checker for automatic generation of test cases, and use
this technique for determined the relationship between
requirements and test cases, when there is an update in
requirements, some test cases will be removed or updated,
or newly created. We will build a collection of regression
test cases for new version.

Figure 6. Test case life cycle in regression testing.

Figure 7. Process to determine the status of the test cases.

Automatic Generation of Test Cases in Regression Testing for Lustre/SCADE Programs 33

Figure 8. Generation of trap propertives (test cases) for regression testing.

4. Generation of Test Cases for the UMS

Program

In this section, we have applied this approach to the ex-
ample U-turn section management system. The UMS
systems are described in detail in the example in Section
3.1. The UMS program controls the U-turn section of a
sub-way and written by language Lustre. A U-turn section
allows trains to switch from one track to another, and to
go back in the opposite direction [13]. The above speci-
fications are formally expressed by the following Lustre
node in Figure 9.

Here, we have two versions of requirement for the
UMS system. In version 1, all the test cases need to be
executed. When there is a change from version 1 to ver-
sion 2, in the version 2, we will include regression testing
techniques. The most important thing is to build a set of
test cases will be executed.

4.1. Generation of Test Cases for Version 1

We will use model checking techniques to generate test
cases for version 1. We will use the Lesar tool for veri-
fying UMS program based on the safety properties.

4.2. Safety Properties of the Process-Control
Software

With requirements in Section 2.1, we have the set of safe-
ty properties required from our U-turn management sys-
tem:
no_collision = implies (grant_access, empty_section);
exclusive_req = not (do_AB and do_BC);
no_derail_AB =
always_from_t o(ack_AB, grant_access,only_on_B);
no_derail_BC =
always_from_to(ack_BC, grant_exit,empty_section);

As mentioned before, this system must always avoid
the occurrence of the two dangerous situations. The
global property to prove is expressed by the following

Figure 9. The Lustre program for the UMS system.

Lustre equation:
property =no_collision
and exclusive_req
and no_derail_AB
and no_derail_BC.

4.3. Environment Constraints

The following Lustre expressions are invariant properties
of the U-turn section:

The switch cannot simultaneously connect the track B
to both tracks A and C:
not (ack_AB and ack_BC)

Once in a given position, the switch remains stable
unless it is requested to move to the opposite position:
 Always_from_to(ack_AB, ack_AB, do_BC)

And
 Always_from_to(ack_BC, ack_BC, do_AB)

With those environment constraints, we can model the
environment for the UMS system in Lustre source code
in Figure 10 (ASSERTIONS section) [14].

To generate test cases for this version, we need to take
two steps: applying model checking and generating test
cases

Step 1. Using Lesar tool for model checking UMS
prgram

Step 2. Generating test cases from counter-examples.

Copyright © 2013 SciRes. JSEA

Automatic Generation of Test Cases in Regression Testing for Lustre/SCADE Programs 34

Figure 10. The verification program with Lesar.

The main idea is: generation test cases using counter-
examples in model checking. We need to define some
trap properties in model checking.

In requirements R1: the access is granted to a train
only if the section is Empty.
empty_section = not (on_A or on_B or on_C);

And
Implies (grant_access, empty_section).
To test this property, we need to check:
If the access is granted, then the section is empty (i.e.,

we need to set the system to a state where the access is
granted and then observe the value of on_A, on_B and
on_C). The trap property here is: grant_access.

If one signal among on_A, on_B or on_C is true, then
grant access is false. So trap properties could be (they
correspond to all the possible positions of the train in the
section):

TRAP1: trap_property = on_A and not_on_B and not
on_C;
or TRAP2: trap_property =not on_A and on_B
 and not on_C;
or TRAP3: trap_property =not on_A and not_on_B
 and on_C;

or TRAP4: trap_property =on_A and on_B
 and not on_C;
or TRAP5: trap_property = on_A and on_B
 and on_C;

With the trap properties, we can create test cases with
model checker using Lesar tool and Figure 11 is an ex-
ample:

In here, we have 05 trap properties {TRAP1, TRAP2,
TRAP3, TRAP4, TRAP5} for requirement R1. So, with
R1, we have 05 test cases {T1_1, T1_2, T1_3, T1_4,
T1_5}. With the requirements in version 1, we have the
test suite in Table 1.

4.4. Test Case Generation in Regression Testing
for the UMS

In version 2 of the UMS system, we have only one up-
date in requirement (R1): The access is granted to a train
when the section empty or the train only on C (R1’):

Implies (grant_access, empty_section
 or only_on_C)

When changing from version 1 to version 2, we need
to define a set of test cases will be implemented in re-
gression testing for version 2.

We can see, requirements R2, R3, R4 do not change in
version 2, so the test case:
{T2_1, T2_2, T2_3, T2_4,T2_...},
{T3_1, T3_2, T3_3, T3_4,T3_...},
{T4_1, T4_2, T4_3, T4_4,T4_...}.
are not affected when have updated, only requirement R1
has updated. Applying TSTG technique (in Section 2),
we will remove all test cases for requirements R2, R3, R4
and update test cases for requirement R1.

We have status of test suite for version 2 in Table 2.
Here, we need to update test cases for R1’ in version 2.

To test this property, we need to check: If the access is
granted, then the section is empty or the train in the sec-
tion only_on_C. The same with version 1, the trap prop-
erty here is: grant_access. If one signal among on_A,

Figure 11. Test counterexample result with model checker.

Table 1. The test suite for version 1 of the UMS.

ID Req Test Cases

1 R1 {T1_1, T1_2, T1_3, T1_4, T1_5}

2 R2 {T2_1, T2_2, T2_3, T2_4, T2_...}

3 R3 {T3_1, T3_2, T3_3, T3_4, T3_...}

4 R4 {T4_1, T4_2, T4_3, T4_4, T4_...}

Copyright © 2013 SciRes. JSEA

Automatic Generation of Test Cases in Regression Testing for Lustre/SCADE Programs

Copyright © 2013 SciRes. JSEA

35

Table 2. Status of test suite in version 2 of the UMS.

ID Test cases Status

1 {T1_1, T1_2, T1_3, T1_4, T1_...} Update

2 {T2_1, T2_2, T2_3, T2_4, T2_...} Remove

3 {T3_1, T3_2, T3_3, T3_4, T3_...} Remove

4 {T4_1, T4_2, T4_3, T4_4, T4_...} Remove

on_B is true (we don’t need to check signal among on_C)
then grant access is false. Based on the trap properties in
version 1, we have: The trap property TRAP3 of R1: not
on_A and not_on_B and on_C is not useful for R1’ and
regardless to the value of on_C. Therefore, we will re-
move TRAP3 in R1’ and update other trap properties. So
trap properties for R1’ could be:
TRAP1’:
 trap_property = on_A and not_on_B;
or TRAP2’:
 trap_property = not on_A and on_B;
or TRAP’4 = TRAP’5:
 trap_property = on_A and on_B;

So, in version 2, the set of test cases will be imple-
mented for regression testing is:
 {T’1_1, T’1_2, T’1_4}.

The general idea of using model checking in software
testing is not new; the ability to construct counter exam-
ples by a model checker has been proposed as a way of
deriving test cases. However, in this work, we have ap-
plied model checking to generate test cases for regression
testing and applied to Lustre/SCADE programs. We also
define the correlation between requirement specification
and test cases. When there is a change in the require-
ments specification, we identify which test cases are re-
moved, reused or created. Therefore, the minimum set of
test cases is designed to reduce operating costs for re-
gression testing of the new version.

5. Conclusion and Future Work

In this paper, we present the solution to automatically
generating test cases in regression testing of Lustre/
SCADE programs. In this solution, we propose the use of
model checking techniques for automatically generating
test cases. We also define the correlation between re-
quirement specification and test cases. Since, the mini-
mum set of test cases is designed to reduce operating
costs for regression testing of the new version. Finally,
we apply this solution in regression testing for the case
study U-turn System.

The case study used in this paper is a fairly simple ap-
plication. To demonstrate scalability of the method and
applicability to more realistic, complicated software sys-
tems, we plan to use larger specifications taken from real
life examples. We intend to implement tool for automatic

create trap properties from specification and from model
of Lustre/SCADE programs.

REFERENCES
[1] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, “The

Synchronous Data Flow Programming Language Lustre,”
Proceedings of the IEEE, Vol. 79, No. 9, 1991, pp. 1305-
1320. http://dx.doi.org/10.1109/5.97300

[2] Esterel Technologies Web Site, Editor of the SCADE
Suite, Based on the Lustre Language, 2013.
http://www.esterel-technologies.com/products/scade-sys-
tem

[3] G. Myers, “The Art of Software Testing,” Wiley, Hobo-
ken, 2004.

[4] R. Savenkov, “How to Become a Software Tester. Roman
Savenkov Consulting,” 2008, p. 386.

[5] B. Seljimi and I. Parissis, “Automatic Generation of Test
Data Generators for Synchronous Programs: Lutess v2,”
DOSTA ’07: Workshop on Domain Specific Approaches
to Software Test Automation, ACM, New York, 2007, pp.
8-12.

[6] Esterel Technologies Web Site, 2013.
http://www.esterel-technologies.com/products/scade-system/
scade-system-design

[7] A. Benveniste and G. Berry, “The Synchronous Approach
to Reactive and Realtime Systems,” Proceedings of the
IEEE, Vol. 79, No. 9, 1991, pp. 1270-1282.

[8] E. Clarke, O. Grumberg and D. Peled, “Model Checking,”
The MIT Press, Cambridge, Massachusetts, 2001.

[9] J.-J. Wang, B. Zhang and Y. Chen, “Test Case Set Gen-
eration Method on MC/DC Based on Binary Tree,” 5th
International Conference on Machine Vision (ICMV
2012): Computer Vision, Image Analysis and Processing,
13 March 2013.

[10] G. Fraser, F. Wotawa and P. E. Ammann, “Testing with
Model Checkers: A Survey,” Journal Software Testing,
Verification & Reliability, Vol. 19, No. 3, 2009, pp. 215-
261.

[11] N. Halbwachs, “Lustre Program Verification: The Tool
Lesar, Synchronous Programming of Reactive Systems,”
The Springer International Series in Engineering and
Computer Science, 1993, pp. 139-147.

[12] N. Halbwachs, D. Pilaud, F. Ouabdesselam and A.-C.
Glory, “Specifying, Programming and Verifying Real-
Time Systems, Using a Synchronous Declarative Language,”
Workshop on Automatic Verification Methods for Finite
State Systems, LNCS 407, Grenoble, 12-14 June 1989.

[13] F. Ouabdesselam and I. Parissis, “Testing Techniques for
Data-Flow Synchronous Programs,” Proceedings of the
Second International Workshop on Automated and Algo-
rithmic Debugging, Saint-Malo, 22-24 May 1995.

[14] N. Halbwachs, F. Lagnier and C. Ratel, “Programming
and Verifying Real-Time Systems by Means of the Syn-
chronous Data-Flow Language Lustre,” IEEE Transac-
tions on Software Engineering, Vol. 18, No. 9, 1992, pp.
785-793. http://dx.doi.org/10.1109/32.159839

http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1109/32.159839

