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ABSTRACT 
This paper presents, without altering the AADL meta-model, a formal description of static and behavioral aspects of the 
AADL thread component. This active and concurrent applicative component of AADL poses many challenges to its 
formalization and analysis including instantaneous and/or delayed communications, concurrent tasks and time- depen-
dent features, and the need to analyze correctness. This formalization, based on real-time object-oriented theories, al-
lows not only a precise description of the semantics of threads composition with respect to their timing requirements but 
also makes possible the formal verification of behavioral properties.  
 

1. Introduction  
The problem of ensuring as early as possible the cor-
rectness of a software architecture (SA) is of great im-
portance in the development life-cycle of software prod-
ucts. Recently, model checking, that is completely auto-
matic, allows developers to perform exhaustive verifica-
tion of the SA (as for e.g. [1]). In this paper, we will use 
this technique to assess whether an SA specification 
noted in AADL language satisfies desired architectural 
properties. 

The architecture description language AADL (Archi-
tecture Analysis and Design Language) [2] is a formal 
notation for describing the architectural plan of real time 
embedded system at various abstraction levels. It offers 
the capacity to assembly both information concerning the 
application structure and its deployment.  

However, AADL is focused on the architectural as-
pects of the system components and their connections, 
but doesn’t deal directly with their behavioral aspects. 
Thus, the formal reasoning on AADL architecture or its 
formal analysis poses a set of challenges, including: 1) 
Modeling concurrent and distributed components of 
AADL architecture, 2) Modeling components communi-
cation with transmission delays, 3) Modeling 
time-dependent behaviors, and 4) Analyzing behavior 
properties with respect of AADL declared constraints. 

Several works are being done in literature tempting to 
formalize AADL architectural description while trans-

forming it to other formal models. These models are pro-
vided on the basis of some well known formalisms such 
as, timed automaton, timed Petri nets (TPN), real time 
process algebra (ACSR) or timed abstract state machine 
(TASM), that come with some convenient tools (TINA 
[5], CADP [6], etc.). Others more practical works are 
also raised; a translation from VTS (Visual Timed event 
Scenarios) to Time Petri Nets in [9] enables the mod-
el-checking of properties expressed in VTS over AADL 
models using TPN-based tools. Nevertheless, most of 
these contributions have focused on detecting deadlocks 
states or on concurrent access control to shared data, they 
have been interested by formalization of only some 
AADL concepts. 

This paper shows how we can met all the cited chal-
lenges by extending the semantic framework ABAReL 
annex proposed in [2] and based on rewriting logic. Our 
extension consists in defining the behavior specification 
of the fundamental concurrent AADL execution unit 
Thread as a real-time rewrite theory ℜT = (ΣT, ET, LT, RT). 
The membership equational theory (ΣT, ET) describes all 
declared elements in the AADL thread description (flows, 
properties, etc.). The labeled rewrite rules (LT, RT), in-
stantaneous and tick ones, describe the thread behavior 
according to its configurations evolution, taking into 
account its local states and those of its connection ports, 
as well as its declared timing requirements. In addition, 
proof of generic and crucial architectural properties (such 
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as safety and liveness) is successfully achieved via the 
RT-Maude model-checker.  

Real-Time Maude [4] extends the rewriting logic tool 
Maude to support formal specification and analysis of 
object based real-time systems which are suitable for 
modeling AADL architectural system. The high-per- 
formance RT-Maude tool provides a range of analysis 
techniques, including time-bounded linear temporal logic 
model checking, being used in our study. 

The remainder of this paper is organized as follows. 
Section 2 introduces basic concepts of both Real-Time 
Maude language and AADL notations. In section 3, we 
show how we enrich ABAReL annex to formal specify, 
simulate and further analyze AADL architecture with 
several communicating threads. A case study is given in 
section 4 to illustrate and validate the feasibility of our 
approach. Finally, we conclude by a synthesis of 
achieved work and related prospects to its continuation. 

2. Basic Concepts  
2.1. RT-Maude Overview  
Rewriting Logic [10] has many operational environments 
implementing its theoretical concepts, the most known is 
the Maude system [11]. The objective of this section is to 
present essential concepts of RT-Maude [4], an extension 
of Maude language appropriate to model and analyze 
object oriented real time systems.  

A RT-Maude module implements real-time rewrite 
theory ℜ  which is a quadruplet of the form [Σ, E, (L, 
R), (L’, R’)], where (Σ, E) is a membership equational 
logic theory, the signature Σ and conditional equations E 
describe system states as an algebraic data type. It must 
include a special sort Time modeling a time domain 
(dense or discrete). L are labels of the conditional instan-
taneous rewrite rules R. Each rewrite rule is noted crl [l]: 
[t] → [t'] if cond and models the possible instantaneous 
local transition between states of the concurrent real-time 
system. [t], [t'] and cond are equivalence classes of al-
gebraic terms belonging to the set TΣ,E(X). L’ is another 
labels set for tick rewrite rules R’ written with a particu-
lar syntax crl [l’] : {t} => {t`} in time D if cond. They 
model the advance of a time D in the system of state t if a 
condition cond is checked. D of sort Time denotes the 
duration of the rewrite. {_} is a free constructor of sort 
GlobalSystem. 

The syntax of RT-Maude modules supports ob-
ject-oriented concepts as objects, messages, classes, and 
multiple class inheritance. A real-time system state in 
this case is modeled by a multiset of objects and juxta-
posed messages, usually called a configuration, it is a 
term of the built-in sort Configuration. Concurrent inte-
ractions between the objects are governed by rewrite 

rules. An object is an instance of class. It is possible to 
declare subclasses and profit from the heritance concept. 
The messages are declared using the key word msg. The 
dynamic behavior of concurrent object systems is axi-
omatized by specifying each of its concurrent transition 
patterns as a rewrite rule.  

RT-Maude offers a variety of analysis tools. Among 
them the linear temporal logic Maude model checker 
used in our case study, it checks whether each behavior 
“up to a certain time,” as explained previously, satisfies a 
temporal logic formula. Entries of this tool are the sys-
tem behaviour specification (as RT-Maude modules) and 
the properties that we want to state and prove about this 
system. The output result is a positive answer if the 
property is satisfied, and one counterexample should the 
opposite occurs.  

2.2. Overview of the AADL Language  
AADL (Architecture Analysis and Design Language) is 
devoted to real time embedded systems description [2]. It 
describes software applications, their execution plat-
forms and how components are composed and interact to 
form complete system architectures. It also describes 
component functional interfaces, component connections 
and how software components are allocated to hardware 
ones.  

The abstract declaration of AADL component contains 
component type and one or more implementations. The 
component type declaration specifies functional interface 
in terms of features, flow, and properties. A component 
implementation specifies its internal structure in terms of 
subcomponents, connections between the subcomponents 
features, flows across a sequence of subcomponents, 
modes to represent operational states, and properties.  

AADL offers thread component like schedulable units 
for the concurrent execution, processes to represent 
spaces of virtual addresses, and systems to support the 
hierarchical organization of both threads and processes. 
AADL also allows the execution platform (or hardware 
components) modelling in terms of processors (support-
ing the execution of threads), memory for the data and 
code storage, and bus to represent the physical intercon-
nection. AADL properties are the key concept of this 
language. They describe through its own notations, some 
constraints on the architectural elements, components, 
subcomponents, interface elements, connections, etc.  
For each component, one can associate properties and 
give them values.   

In order to integrate the academic research results in 
the industrial development process, AADL has some 
recent tools developed within the European project 
framework ASSERT (Automated proof-based System 
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Software Engineering for Real-Time systems) [13]. 
However, the AADL standard uses a restricted formal 
model based on operational mode and its corresponding 
transitions rules to express the commutation between 
system execution configurations representing the behav-
iour of a system.  

We are mainly interested in this paper by giving a 
formal setting for the AADL component thread, in order 
to define both its structure and behaviour and also to give 
a mathematical semantic for its execution model. 

3. The Real-Time Maude Specification of 
AADL Threads  

Traditionally the AADL standard defines simplified au-
tomata based semantics for threads (figure 1). A thread 
can be stopped, inactive, or in activity. An active thread 
can be waiting for dispatch, computing (Compute state), 
or blocked on resource access. Only active threads ex-
ecute their instructions. The standard gives also the pos-
sibility of specifying the implementation conditions of 
the threads by the declaration of some properties (dead-
line, dispatch protocol, period, etc).   

The complex task of a thread carried out at the Com-
pute state (figure 1), consists in data (and/or events) re-
ceipt, computation and signals data (and/or event) send. 
Particularly, the hierarchical Compute state of this 
automaton is composed of others substates (figure 2). 
However, this execution semantics of AADL thread does 
not appear at the architecture description level. Only 
possible modes and their execution properties are de-
clared. Our work aims to extend the behavioral annex 
(ABAReL for AADL Behavioral Annex based on Re-
writing Logic) to define behavioral aspects of an AADL 
threads composition without altering the AADL me-
ta-model. 
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Figure 1. The state-transition model of AADL thread. 

3.1. Modeling AADL Thread 
We associate to an AADL thread component T, a formal 
mathematical model, represented by a Real-Time rewrite 
theory RT = (ΣT, ET, LT, RT), where (ΣT, ET) is a member 
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Figure 2. Compute state of a Thread. 

 
ship equational theory describing the thread static struc-
ture. The ΣT signature specifies the sorts (and subsorts) 
set and mainly the operators set necessary to describe 
each clause of thread description: features, properties, 
modes, type and implementation. Operators considered in 
ΣT may freeze the rewriting under their specified argu-
ments. The instantaneous and tick rewrite rules RT (la-
beled by LT set elements) describe the behavior of thread 
dynamic configurations, involving, at each stage, local 
state of a thread and the state of each one of its connec-
tions ports.  

As RT-Maude language implements real time rewrite 
theories, we use it to build the appropriate RT-Maude 
executable modules. We define a set of generic rules 
(table 1) mapping each architectural element involved in 
an AADL architecture description to RT-Maude con-
cepts. As shown in Table 1, an AADL architecture de-
scription is mapped to RT-Maude module which may 
contain many threads declaration (thread class). Thus, 
formal analysis of behavioral properties with respect of 
AADL thread declared constraints is defined very natu-
rally.  
 
Table 1. Mapping AADL architectural elements to RT- 
Maude object-oriented concepts. 

AADL Architectural  
Element RT-Maude Object-Oriented Concepts 

AADL Architecture  Real-Time  object-oriented rewrite 
theory  

Thread component Thread class                                           

Component Interface 

PortState  sort  for  IPort   and   
OPort attributes, File  sort for  Ac-
cessData, InBufferPort and OutBuffer-
Port  attributes                                                 

Thread State  ThreadState  sort                                   
Thread Configuration   Conditional rewrite rules                       

Thread Interaction Message Transmission between objects 
(instances of  thread  class)                                           

Flow Latency in a 
Thread Message transmission time                      

Thread Implementation  ThreadImpl class (subclass of    class 
Thread)                                                          

Thread  execution 
properties  

Time sort for Period and Execution-time 
attributes                                               
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In this more abstract level of formalization, thread type is 
modeled by the Thread class (figure 3), whose attributes 
are respectively: 1) the functional interfaces IPort and 
OPort, 2) data subcomponent, represented as a buffer, 
related to each connection port InBufferPort, OutBuffer-
Port and  3) TState to specify its state. The PortState 
sort represents the functional interfaces states of a thread. 
Its internal structure (or its implementation) is specified 
by the ThreadImpl class (figure 3) having the attributes: 
1) Sstate specify substate of the “Compute” composite 
state, 2) Time (predefined sort) specify both temporal 
execution properties (Period and Execution-Time) and  
the Clock-P and Clock-C clocks for the warning of the 
thread period and execution time. It is obvious that the 
ThreadImpl class is declared as a subclass of the Thread 
class and profits from the inheritance concept.  
 
class Thread | IPort : PortState, OPort : PortState, 
TState : ThreadState, InBufferPort : File,  AccessData : 
File, OutBufferPort : File,  MaxPreempt : Nat, MaxData : 
Nat, NBS : Set . 
class ThreadImpl |  Substate : Sstate, Period : 
Time,Execution-time : Time, Clock-P : Time, Clock-C : 
Time . 

subclass ThreadImpl < Thread .  
subsort Sstate < ThreadState . 

Figure 3. RT-Maude specification of AADL thread。 
 
We define the passage of data (and/or event) flow 
through a threads connection as a messages transmission 
between a thread and its neighbors (threads). Message 
transmission time is taken into account by the DlyMsg 
sort modeling the flow latency time.  

3.2. Defining AADL Architecture in RT Maude  
Since in AADL architecture description of a system, the 
thread is never alone, we have to model thread behaviour 
inside a larger configuration containing some intercon-
nected threads with the passage of data flow (the mes-
sage transmission). Besides, the thread temporal execu-
tion properties (Period and Compute-Execution-Time) 
have also to be considered. Indeed, we first define with 
constructor operators, the thread states (wait or compute), 
the thread substates (Ready, Running, Awaiting-Resource, 
Complete and noSub) and the port states (waitIn, waitOut, 
receive and send). Then, the behaviour formalization 
aspect starts with the specification of the visible changes 
of the thread states, associated to its connection ports and 
materialized by the rewrite rules Data-Receive and 
Data-send (see figure4). The Data-Receive rule prepares 
thread for a new execution period, after receiving a 
message. It changes the thread state from wait to 
compute and its substate from noSub to Ready initializ-
ing the clocks by the values, specified in the execution 

properties. The Data-Send rule putts the thread in its 
initial state after a period elapse and an execution time. It 
transforms the thread state from compute to wait and its 
substate from Complete to noSub and then, generates the 
message with the thread execution result for the trans-
mission.  
 
rl[Data-Receive]:(from T1 to T2 transfer DT) < T2: 
ThreadImpl | IPort: waitIn, TState : wait, Substate: 
noSub , Clock-P: 0, Clock-C: 0, Period: R, Execu-
tion-time: R', InBufferPort: L2 >                
=>  < T2 : ThreadImpl | IPort: receive, TState: 
compute , Substate: Ready, Period: R,Execution-time: 
R', Clock-P: R, Clock-C: R', MaxData: 0, MaxPreempt: 
0, InBufferPort:  DT;  L2 >. 

rl[Data-Send]: < T1: ThreadImpl | OPort: waitOut, 
TState: compute, Substate: Complete, OutBufferPort: 
L; DT, NBS:(T2 & R), Clock-P: R1, Clock-C: R2, 
MaxPreempt: N, MaxData: N1 >             
=>  < T1: ThreadImpl |  OPort: waitOut, TState: wait , 
Substate: noSub, OutBufferPort: L , NBS: T2 & R , 
Clock-P: 0, Clock-C: 0, MaxPreempt: 0, MaxData: 0 > 
dly(from T1 to T2 transfer DT, R). 

Figure 4. Specification of AADL connection and interac- 
tion. 
 
 In this formalization, we take into account the substate 
of the thread in its active hierarchical state compute. We 
define these substates and their corresponding transitions 
(see figure 2) and also the corresponding declared prop-
erties. The first rewrite rule, in figure 5, changes the 
thread substate from Ready to Running and prepares the 
received data treatment. The rewrite rule finish considers 
the particular case, where the thread doesn’t have an out 
port (OPort = NoPort). It gives the thread in its initial 
state after elapse of the period time. The conditional re-
write rules resume, preempt, block-on-Release-Resource, 
Unblock-on-Release-Resource, recover and complete-rec 
define the transitions between substates of the compute 
state. The function mte is used to calculate the maximal 
time elapse of a thread configuration, before a significant 
action is taken (about the minimum values of the two 
clocks).  Moreover, the function delta models the effect 
of passage of a time R on the thread by decreasing one or 
both of its clocks according to the time elapsed. These 
two functions are used in the tick rule in order to 
calculate and apply the time elapse on the thread 
configuration (figure 6). The nonexec attribute of the tick 
rule indicates that this rule advances time when no other 
rule is executable. The delta operation modifies only the 
attributes of sort time. The equations calculate the delta 
operation effect on thread configuration and on the mes-
sages transmission. The mte operation evaluation con-
siders a thread (if it is at compute state) with its clocks 
initialized by the execution properties values. Then, it 
considers the distribution of the mte operation on the 
configuration. 
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Crl [init] : < Imp : ThreadImpl |InBufferPort: L, 
AccessData: EmptyFile, Substate: Ready, Clock-C: R'> 
=>  < Imp: ThreadImpl | InBufferPort: Queu(L), 
AccessData: Head(L), Substate: Running,  Clock-C: R' > 
if (R' > 0) . 

crl [complete-Rec] : < Imp: ThreadImpl | IPort : 
receive , TState :  compute, Substate: subS , 
AccessData: Temp2 , OutBufferPort: L,  OPort: waitOut, 
Clock-P: R, Clock-C : R' >   

=>  < Imp: ThreadImpl | IPort: waitIn , TState: compute,  
AccessData: EmptyFile , OutBufferPort: Temp2 ; L , 
Substate: Complete,  OPort : waitOut , Clock-P : R, 
Clock-C : R' >  if (R == 0) . 

rl[finish]: <Imp : ThreadImpl | IPort: receive, TState: 
compute, Substate: Complete , OPort: NoPort, Clock-P: 
R, Clock-C: R', MaxPreempt: N, MaxData: N1 > =>  < Imp: 
ThreadImpl | IPort: waitIn, TState: wait, Substate: 
noSub, OPort: NoPort, Clock-P: 0, Clock-C: 0, 
MaxPreempt: 0,  MaxData : 0  > . 

Figure 5. Specification of AADL thread Behaviour. 
 
 
 
Tick rule 
 

crl [tick] : {C:Configuration}   
=>   {delta(C:Configuration, R)} in time R 
if (R <= mte(C:Configuration)) /\(not 
agerEnabled(C:Configuration)) [nonexec] .  

 
 

delta 
operation 

eq delta(< Imp : ThreadImpl | Substate : 
Running, Clock-P : R , Clock-C : R' >, R'') 
=  < Imp : ThreadImpl | Substate : Running, 
Clock-P : R monus R'' , Clock-C : R' monus 
R'' > .  

 
mte 

operation 

ceq mte(NeC NeC') = min(mte(NeC), 
mte(NeC')) if (NeC =/= none)  /\ (NeC'  =/=  
none) .  

Figure 6. The elapsed time on thread configuration. 

4. Formal Analysis of Thread Properties  
The concurrent execution of several threads and the ef-
fect of interactions between them are defined by this 
ABAReL annex extension of AADL. This section will 
explain how, under appropriate assumptions, we can 
model check in RT-Maude behaviour properties AADL 
architectural system specified as an object-oriented 
real-time module. 

 
ops GPS  TGPS TSCREEN : -> Oid [ctor] . 
op initState : -> GlobalSystem . 
 
eq initState = {(from GPS to TGPS transfer data1 ) < TGPS: 
ThreadImpl |IPort : waitIn, TState : wait, Substate : 
noSub , OPort : waitOut, InBufferPort : EmptyFile, 
AccessData : EmptyFile, OutBufferPort : EmptyFile, 
Period : 20,  Execution-time : 10, Clock-P : 0, Clock-C : 
0, MaxData : 0, MaxPreempt : 0 , NBS : (TSCREEN & 4) > 
 
 < TSCREEN : ThreadImpl | IPort : waitIn, TState : wait, 
Substate: noSub, OPort: NoPort, InBufferPort : 
EmptyFile, AccessData : EmptyFile, OutBufferPort : 
EmptyFile , Period : 15, Execution-time : 7, Clock-P: 
0, Clock-C: 0, MaxData : 0, MaxPreempt: 0 , NBS : EmptySet 
>}. 

Figure 7. The GPS example in RT-Maude. 

We will deal here with properties such as reachability, 
safety and liveness through the modeling of a GPS sys-
tem as case study. 

We consider an AADL architectural description mod-
eling a GPS system example. This system should display 
the current position information for the user. It is com-
posed of one sensor GPS and two threads: TGPS and 
TScreen. The GPS sensor captures information parame-
ters from satellite and sends them to thread TGPS. TGPS 
reads these parameters, converts them into an internal 
representation, and sends the result to thread TScreen. 
This one displays the recent position received periodi-
cally. The AADL specification gives only static descrip-
tion of components and their connections including, for 
each thread description, the specification of implementa-
tion conditions. This is done by the properties declaration, 
such as: Dispatch-Protocol, Period and Compute-Ex- 
ecution-Time and their various values. 

Giving AADL description, we can exploit the ex-
tended ABAReL annex to formalize the behavior of each 
declared thread TGPS or TScreen and their possible 
connection. For this case, we associate an RT-Maude 
module to each  thread, specifying its static and dy-
namic aspects. In order to provide the global system be-
havior specification, we extend the obtained modules by 
additional information defining communication between 
connected threads (TGPS and TScreen). A code portion 
of this global RT-Maude module is shown in figure 7. 
Each thread name is declared as an object identifier. In-
itstate operator gives for each thread its initial configura-
tion thanks to the equation clause. Each thread in com-
pute state must have the following substates:  Ready, 
Running and Awaiting-Resource. In this case, we can 
check for instance the following properties. (P1) The 
final state (Complete substate) of the thread execution 
process can be reached in time. (P2) 

The thread in execution (compute state) is never (i) 
preempted infinitely, (ii) waiting resource infinitely. (P3) 
The thread will be eventually executed (running subs-
tate), respecting the execution time declared in Com-
pute-Execution-Time property. The core module MOD-
EL-CHECK-AADL-PROP (figure 8) imports the predefined 
module TIMED-MODEL-CHECKER and the module 
AADL-SPEC to be analyzed. The specification of the 
previous properties is made through the atomic proposi-
tions: CompleteStateTGPS (P1), CompleteStateT-
SCREEN (P2) and RunningState (P3). The check, for 
instance, of the property (P1) by the LTL model-checker 
of RT-Maude is launched by this command: (mcinitS-
tate1|=t(<>completeStateTGPS)/\(<> CompleteSta-

teTSCREEN)  in time <= 70 .) 
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(tomod MODEL-CHECK-AADL-PROP is 
 including TIMED-MODEL-CHECKER . 
 protecting AADL-SPEC . 
 ops RunningState  CompleteStateTGPS  
      CompleteStateTSCREEN : -> Prop [ctor]. 
 var REST : Configuration . 
 var Imp : Oid . vars R R' R'' : Time . 
 eq {REST <TGPS:ThreadImpl|Substate: Complete>}      
    |= CompleteStateTGPS = true .  
 eq {REST  < TSCREEN : ThreadImpl | Substate :      
    Complete >} |=  CompleteStateTSCREEN =     
    true.  
 eq {REST < Imp : ThreadImpl| TState : compute, 
Substate : Running   >} |= RunningState = true.  
endtom) 

Figure 8. The MODEL-CHECK-AADL-PROP RT-Maude 
module. 

A direct and naive execution of this command returns 
a counterexample indicating that the property (P1) is not 
satisfied. To overcome this incorrect behavior, we asso-
ciate a time interval to the preempt transition, so it can be 
executed no more that a given time. The second suc-
cessful solution is to add priorities to some rewrite rules 
execution. The screen shot of figure 9 shows that the 
property (P1) is then evaluated to true in this case. In a 
similar way, we check the property (P2) and (P3). 
 

 
 

Figure 9. Model-check AADL properties. 

5. Conclusion 
The proposed extension of behavioral annex ABAReL 
based on object-oriented real-time rewrite theories is a 
suitable semantic framework for AADL thread behavior 
description. In this paper, we have exploited this formal 
setting to define and analyze semantic execution model 
of AADL architectural system, composed of intercon-
nected threads and juxtaposed messages under timing 
requirements. Concurrent interactions between the ob-
jects are governed by ordinary rewrite rules correspond-
ing to instantaneous transitions and by “tick” rewrite 
rules describing the time elapse. We showed how this 
formalism supports the verification of thread temporal 
execution properties via the LTL model checker tool of 
RT-Maude system. In future, we will exploit the pro-

posed approach to analyze others properties of the 
AADL standard, related to space and time partitioning. 
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