Pharmacophore Model Generation of thrombin Inhibitors

Xing Wang¹, Yanling Zhang¹, Yuhong Xiang², Zhenzhen Ren¹, Yanjiang Qiao¹*

¹School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China; ²Department of Chemistry, Capital Normal University, Beijing 100048, China.

Email: yjqiao@263.net
Received 2012

ABSTRACT

Thrombin, an important factor of clotting system, take part in a variety of physiological actions, such as blood clotting, anticoagulation, thrombosis and fibrinolysis. Inhibiting thrombin is a pivotal and effective step for the prophylaxis of venous and arterial thrombosis, as well as prevent myocardial infarction for high-risk patients. In this study, a three dimensional pharmacophore model was generated for the molecules which are responsible for vasodilation activities targeting thrombin. Ten compounds with known thrombin-inhibiting activity values were selected as training set to generate the hypothesis using GALAHAD program in SYBYL 7.0 software. The best hypothesis comprises five pharmacophore features: four hydrophobic groups and one positively charged group. It has been further validated towards a test set including known activity compounds obtained from Binding Database, the values of effectively active hit A% and comprehensive evaluation index CAI are respectively 63.33% and 2.34, the pharmacophore was proven to be successful in discriminating active and inactive inhibitors. Furthermore, the pharmacophore model was used as a 3D query to screen TCMD (Version 2009) database and 6 hit compounds of higher predicted activity were the reported cardiovascular activities, which may be useful for further study.

Keywords: Cardiovascular Disease; Thrombin; Pharmacophore; Virtual Screening

1. Introduction

Thrombin, a "trypsin-like" serine protease protein, is an important factor of clotting system. It take part in a variety of physiological actions, such as blood clotting, anticoagulation, thrombosis and fibrinolysis [1-3]. Moreover, previous studies have demonstrated that thrombin is one of the key factors for cancer developing, such as PAR1, an important type of thrombin, mediates the enhancement effects of thrombin in angiogenesis, invasion and metastasis, growth of cancer [4-6]. These facts have raised great interests to find an effective, safe, and orally available thrombin inhibitors, such as hirudin [7], dabigatran [8], rivaroxaban and apixaban [9], which could be useful anticoagulant drugs for the prophylaxis of venous and arterial thrombosis, as well as prevent myocardial infarction for high-risk patients [10].

In this paper, we have developed a pharmacophore model whose purpose is to identify the critical pharmacophoric features necessary for potent thrombin inhibitors. Further, hypothesis was evaluated by a test set with known activity compounds, the effectively active hit A% and comprehensive evaluation index CAI were used to assess the model. Finally, the pharmacophore model was used as a 3D query to screen TCMD (Version 2009) database, 52 compounds were hit and the 6 hit compounds of higher predicted activity were the reported cardiovascular activities, which may be useful for further study.

2. Materials and Methods

2.1. Compounds and biological data

Compounds 1~30, which can inhibit thrombin, were taken from the literatures [11-13] and served as the database in the pharmacophore modeling. The structures and inhibitory activities are listed in Figure 1. The chemical structures were drawn in ISIS-Draw software and saved in SYBYL mol2 format, then all the 2D structures were converted to 3D structures in SYBYL 7.0 software.

Compound 1

Compound 2

Compound 3

Copyright © 2012 SciRes.
3. Results and Discussion

3.1. Generation of pharmacophore hypotheses

GALAHAD models were derived by using ten active ligands as a training set [compounds 4-6, 8, 9, 15, 17, 18, 25, 28], 20 pharmacophore models were derived by using the training set after GALAHAD run. All the 20 models were evaluated successively by the test database constructed previously. Table 3 shows the predictable results of the test database for models with all the eleven ligands with contribution to the consensus feature.
In order to intuitively understand the meaning of indicators used to evaluate the performance of the models, the schematic diagram was listed (Figure 2) and the parameter values for each pharmacophore model generated were listed in Table 1. \(D \) is for the total number of compounds in test database and \(A \) represents the number of active compounds. \(H_t \) is the total number of hit compounds from test database and \(H_a \) represents the number of active hit compounds from test database, \(A\% \) represents the ability to identify active compounds from test database, \(Y\% \) represents the proportion of active compounds in the hit compounds. \(N \), the index of effective identification, is used to evaluate the ability of the models to identify active compounds from the non-active compounds. \(CAI \), a comprehensive evaluation index, is used to identify the best pharmacophore model. Higher value of \(CAI \) is considered to be the better model. In this study, MODEL_016, with the highest value of \(CAI \) was considered to be the best model.

<table>
<thead>
<tr>
<th>Model</th>
<th>(H_t)</th>
<th>(H_a)</th>
<th>(A%)</th>
<th>(Y%)</th>
<th>(N)</th>
<th>(CAI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODEL_01</td>
<td>12</td>
<td>12</td>
<td>40.00</td>
<td>100.00</td>
<td>3.70</td>
<td>1.48</td>
</tr>
<tr>
<td>MODEL_02</td>
<td>17</td>
<td>17</td>
<td>56.67</td>
<td>100.00</td>
<td>3.70</td>
<td>2.10</td>
</tr>
<tr>
<td>MODEL_03</td>
<td>14</td>
<td>14</td>
<td>46.67</td>
<td>100.00</td>
<td>3.70</td>
<td>1.73</td>
</tr>
<tr>
<td>MODEL_04</td>
<td>19</td>
<td>19</td>
<td>63.33</td>
<td>100.00</td>
<td>3.70</td>
<td>2.34</td>
</tr>
<tr>
<td>MODEL_05</td>
<td>9</td>
<td>9</td>
<td>30.00</td>
<td>100.00</td>
<td>3.70</td>
<td>1.11</td>
</tr>
<tr>
<td>MODEL_06</td>
<td>29</td>
<td>21</td>
<td>70.00</td>
<td>72.41</td>
<td>2.68</td>
<td>1.88</td>
</tr>
<tr>
<td>MODEL_07</td>
<td>17</td>
<td>17</td>
<td>56.67</td>
<td>100.00</td>
<td>3.70</td>
<td>2.10</td>
</tr>
<tr>
<td>MODEL_08</td>
<td>16</td>
<td>16</td>
<td>53.33</td>
<td>100.00</td>
<td>3.70</td>
<td>1.97</td>
</tr>
<tr>
<td>MODEL_09</td>
<td>6</td>
<td>6</td>
<td>20.00</td>
<td>100.00</td>
<td>3.70</td>
<td>0.74</td>
</tr>
<tr>
<td>MODEL_10</td>
<td>19</td>
<td>19</td>
<td>63.33</td>
<td>100.00</td>
<td>3.70</td>
<td>2.34</td>
</tr>
<tr>
<td>MODEL_11</td>
<td>17</td>
<td>17</td>
<td>56.67</td>
<td>100.00</td>
<td>3.70</td>
<td>2.10</td>
</tr>
<tr>
<td>MODEL_12</td>
<td>19</td>
<td>19</td>
<td>63.33</td>
<td>100.00</td>
<td>3.70</td>
<td>2.34</td>
</tr>
<tr>
<td>MODEL_13</td>
<td>19</td>
<td>19</td>
<td>63.33</td>
<td>100.00</td>
<td>3.70</td>
<td>2.34</td>
</tr>
<tr>
<td>MODEL_14</td>
<td>19</td>
<td>19</td>
<td>63.33</td>
<td>100.00</td>
<td>3.70</td>
<td>2.34</td>
</tr>
<tr>
<td>MODEL_15</td>
<td>14</td>
<td>14</td>
<td>46.67</td>
<td>100.00</td>
<td>3.70</td>
<td>1.73</td>
</tr>
<tr>
<td>MODEL_16</td>
<td>19</td>
<td>19</td>
<td>63.33</td>
<td>100.00</td>
<td>3.70</td>
<td>2.34</td>
</tr>
<tr>
<td>MODEL_17</td>
<td>11</td>
<td>11</td>
<td>36.67</td>
<td>100.00</td>
<td>3.70</td>
<td>1.36</td>
</tr>
<tr>
<td>MODEL_18</td>
<td>17</td>
<td>17</td>
<td>56.67</td>
<td>100.00</td>
<td>3.70</td>
<td>2.10</td>
</tr>
<tr>
<td>MODEL_19</td>
<td>14</td>
<td>14</td>
<td>46.67</td>
<td>100.00</td>
<td>3.70</td>
<td>1.73</td>
</tr>
<tr>
<td>MODEL_20</td>
<td>13</td>
<td>13</td>
<td>43.33</td>
<td>100.00</td>
<td>3.70</td>
<td>1.60</td>
</tr>
</tbody>
</table>

MODEL_016 is displayed in Figure 3, cyan and red spheres indicate hydrophobes group and positively charged group, respectively. MODEL_016 includes five pharmacophore features: four hydrophobes groups and one positively charged group.

\[
A\% = \frac{H_a}{A} \times 100\%
\]
\[
Y\% = \frac{H_a}{H_t} \times 100\%
\]
\[
N = \frac{H_a}{H_t} / \frac{A}{D}
\]
\[
CAI = N \times A\%
\]
hydrophobes group and one positively charged charged group. The external validation shows that the values of effectively active hit A% and comprehensive evaluation index CAI are respectively 63.33% and 2.34, which can prove that the pharmacophore model is reliable and available. The virtual screen results of TCMD (Version 2009) database shows that the pharmacophore model has the ability of determining vasoactive compound related to thrombin, and the validation experiments needs to be further studied.

5. Acknowledgements

This work is financially supported by the Foundation of National Natural Science Foundation of China (No. 81173522) and National Key Technology R&D Program (No. 2008BAI51B01) in Beijing University of Chinese Medicine.

REFERENCES

