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ABSTRACT 

As a result from the demanding of process safety, reliability and environmental constraints, a called of fault detection 
and diagnosis system become more and more important. In this article some basic aspects of TSK (Takigi Sugeno Kang) 
neuro-fuzzy techniques for the prognosis and diagnosis of manufacturing systems are presented. In particular, a 
neuro-fuzzy model that can be used for the identification and the simulation of faults prognosis models is described. 
The presented model is motivated by a cooperative neuro-fuzzy approach based on a vectorized recurrent neural net-
work architecture. The neuro-fuzzy architecture maps the residuals into two classes: a one of fixed direction residuals 
and another one of faults belonging to rotary kiln. 
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1. Introduction 

Failure may cause large amount of loss. Therefore, fault 
diagnosis and prognosis system is very important for safe 
operation and preventing rescue. Recent progress in the 
field of diagnostics of manufacturing systems (MS) 
drives is a result of broadly conceived basic research 
carried out over many years. 

According to [1], there is no single method that could 
accommodate the entire system fault. Thus, the combina-
tion of ANN and fuzzy logic is considerably practical be-
cause it combined both of the advantages and makes the 
entire system more robust. ANN can operate simultane-
ously on qualitative and quantitative data and very useful 
when no  mathematical model of the system is available 
whereas fuzzy logic has an ability to mimic the sensing, 
generalizing, processing, operating and learning ability of 
human operator [2]. In order to achieve this goal we or-
ganize this article into three parts. The first part presents 
principal architectures of TSK Temporal Neuro-Fuzzy 
systems operation and their applications. The second part 
is dedicated to the workshop of clinker of cement factory. 
Lastly, in the third part we propose a Neuro-Fuzzy sys-
tem for system of production diagnosis.  

2. Temporal Neuro-Fuzzy Systems 

Fuzzy neural network (FNN) approach has become a 
powerful tool for solving real-world problems in the area 

of forecasting, identification, control, image recognition 
and others that are associated with high level of uncer-
tainty [2]. 

The Neuro-fuzzy model combines, in a single frame-
work, both numerical and symbolic knowledge about the 
process. Automatic linguistic rule extraction is a useful 
aspect of NF especially when little or no prior knowledge 
about the process is available [1,3]. For example, a NF 
model of a non-linear dynamical system can be identified 
from the empirical data. 

This model can give us some insight about the on 
linearity and dynamical properties of the system. 

The most common NF systems are based on two types 
of fuzzy models TSK [4,5] combined with NN learning 
algorithms. TSK models use local linear models in the 
consequents, which are easier to interpret and can be 
used for control and fault diagnosis [6]. Mamdani models 
use fuzzy sets as consequents and therefore give a more 
qualitative description. Many Neuro-fuzzy structures 
have been successfully applied to a wide range of appli-
cations from industrial processes to financial systems, 
because of the ease of rule base design, linguistic model-
ing, and application to complex and uncertain systems, 
inherent non-linear nature, learning abilities, parallel 
processing and fault-tolerance abilities. However, suc-
cessful implementation depends heavily on prior knowl-
edge of the system and the empirical data [7]. 

Neuro-fuzzy networks by intrinsic nature can handle 
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limited number of inputs. When the system to be identi-
fied is complex and has large number of inputs, the fuzzy 
rule base becomes large. 

NF models usually identified from empirical data are 
not very transparent. Transparency accounts a more 
meaningful description of the process i.e. less rules with 
appropriate membership functions. In ANFIS [2] a fixed 
structure with grid partition is used. Antecedent and con-
sequent parameters are identified by a combination of 
least squares estimate and gradient based method, called 
hybrid learning rule. This method is fast and easy to im-
plement for low dimension input spaces. It is more prone 
to lose the transparency and the local model accuracy 
because of the use of error back propagation that is a 
global and not locally nonlinear optimization procedure. 
One possible method to overcome this problem can be to 
find the antecedents & rules separately e.g. clustering 
and constrain the antecedents, and then apply optimiza-
tion. 

Hierarchical NF networks can be used to overcome the 
dimensionality problem by decomposing the system into 
a series of MISO and/or SISO systems called hierarchical 
systems [6]. The local rules use subsets of input spaces 
and are activated by higher level rules [7]. 

The criteria on which to build a NF model are based 
on the requirements for faults diagnosis and the system 
characteristics. The function of the NF model in the FDI 
scheme is also important i.e. Preprocessing data, Identi-
fication (Residual generation) or classification (Decision 
Making/Fault Isolation). 

For example a NF model with high approximation ca-
pability and disturbance rejection is needed for identifi-
cation so that the residuals are more accurate. 

Whereas in the classification stage, a NF network with 
more transparency is required. 

The following characteristics of NF models are im-
portant: 

Approximation/Generalisation capabilities; 
Transparency: Reasoning/use of prior knowledge/rules; 
Training Speed/Processing speed; 
Complexity; 
Transformability: To be able to convert in other forms 

of NF models in order to provide different levels of 
transparency and approximation power. 

Adaptive learning. 
Two most important characteristics are the generalis-

ing and reasoning capabilities. Depending on the applica-
tion requirement, usually a compromise is made between 
the above two. 

In order to implement this type of Neuro-Fuzzy Sys-
tems for Fault Diagnosis and Prognosis and exploited to 
diagnose of dedicated production system we have to 
propose data-processing software NEFDIAG (Neuro- 
Fuzzy Diagnosis). 

The Takagi-Sugeno type fuzzy rules are discussed in 
detail in Subsection A. In Subsection B, the network 
structure of FENN is presented. 

2.1. Temporal Fuzzy Rules 

Recently, more and more attention has paid to the Ta-
kagi-Sugeno type rules [8] in studies of fuzzy neural 
networks. This significant inference rule provides an 
analytic way of analyzing the stability of fuzzy control 
systems. If we combine the Takagi-Sugeno controllers 
together with the controlled system and use state-space 
equations to describe the whole system [9], we can get 
another type of rules to describe nonlinear systems as 
below: 

Rule r: 
11 is is N

r r
x n xX T AND AND X T ANDIF   

11 is is M

r r
u MU T AND AND U T U  

r rX A X B U THEN
T

 

where n 1 2 X x x x   is the inner is the inner 
state vector of the nonlinear system; 

 1 2

T

nU u u u    is the input vector to the sys-
tem, and N, M are the dimensions; 

1 1
,r r

x uT T  are linguistic terms (fuzzy sets) defining the 
conditions for xi and uj respectively, according to Rule r;  

 
*

r r
ij N N

A a  is a matrix of  and  N N

 
*

r r
ij N M

B b  of N M   

When considered in discrete time, such as modeling 
using a digital computer, we often use the discrete state- 
space equations instead of the continuous version. Con-
cretely, the fuzzy rules become: 

Rule r:    
11 is is N

r r
x n xX T AND AND X T A Dt tIF  N  

  
11 is is M

r r
u MU t tT AND AND U T U  

     1 r rX A Xt t B U THEN
T

t  

where n     1 2X x t x t x t     is the discrete 
sample of state vector at discrete time t. In following 
discussion we shall use the latter form of rules.  

In both forms, the output of the system is always de-
fined as:   

    orY CX Y t CX t            (1) 

where C= (cij)Px Xis a matrix of P × N, and P is the dimen-
sion of output vector Y. 

The fuzzy inference procedure is specified as below. 
First, we use multiplication as operation AND to get the 
firing strength of Rule r:  

   1 1r r
xi xi

N M

r ii iT T if x t t 
 

                 (2) 

where r
xiT

 .and r
xiT

  are the membership functions of  

and
i

r

i

r
x uT T  respectively? After normalization of the fir-
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ing strengths, we get (assuming R is the total number of 
rules) 

1,
,

R

r r rr n r
S f h f


  S            (3) 

where S is the summation of firing strengths of all the 
rules, and hr is the normalized firing strength of Rule r. 
When the defuzzification is employed, we have 

     
   

   

       
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 

 



  r



  (4) 

of the state-space vector from layer 3 are all at layer 1 
(the Input Layer). They represent the linguistic variables 
known as uj and xi in the fuzzy rules. Nodes at layer 2 act 
as the membership functions, translating the linguistic 
variables from layer 1 into their membership degrees. 
Since there may exist several terms for one linguistic 
variable, one node in layer 1 may have links to several 
nodes in layer 2, which is accordingly named as the term 
nodes. The number of nodes in the Rule Layer (layer 3) 
and the one of the fuzzy rules are the same—each node 
represents one fuzzy rule and calculates the firing 
strength of the rule using membership degrees from layer 
2. The connections between layer 2 and layer 3 corre-
spond with the antecedent of each fuzzy rule. Layer 4, as 
the Normalization Layer, simply does the normalization 
of the firing strengths. Then with the normalized firing 
strengths hr, rules are combined at layer 5, the Parameter 
Layer, where A and B become available. In the Linear 
System Layer, the 6th layer, current state vector X(t) and 
input vector U(t) are used to get the next state X(t + 1), 
which is also fed back to the context nodes for fuzzy in-
ference at time (t + 1). The last layer is the Output Layer, 
multiplying X(t + 1) with C to get Y(t + 1) and outputting 
it. 

where   1 1
,

R Rr r
r rr r

A h A B h B
 

    

Using Equation (4), the system state transient equation, 
we can calculate the next state of system by current state 
and input. 

2.2. The Structure of Temporal Neuro-Fuzzy  
System  

The main idea of this model is to combine simple feed 
forward fussy systems to arbitrary hierarchical models. 

Next we shall describe the feed forward procedure of 
TNFS by giving the detailed node functions of each layer, 
taking one node per layer as example. We shall use nota-
tions like  to denote the ith input to the node in layer 
k, and o[k] the output of the node in layer k. Another is-
sue to mention here is the initial values of the context  

 k
iu

The structure of recurrent Neuro-fuzzy systems is pre-
sented in Figure 1. 

In this network, input nodes which accept the envi-
ronment inputs and context nodes which copy the value  

 

 

Figure 1. The structure of a simple TNFS.   
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nodes. Since TNFS is a recurrent network, the initial 
values are essential to the temporal output of the network. 
Usually they are preset to 0, as zero-state, but non-zero 
initial state is also needed for some particular case. 

Layer 1. There is only one input to each node at layer 
2. The Gaussian function is adopted here as the mem-
bership function: 

 

  
 
1 2

2 21

r

r

u c

s
o e



                   (5) 

where cr and sr give the center (mean) and width (varia-
tion) of the corresponding u[1] linguistic term of input 
u[2] in Rule r. 

Layer 2. This layer has several nodes, one for figuring 
matrix A and the other for B. Though we can use many 
nodes to represent the components of A and B separately, 
it is more convenient to use matrices. So with a little 
specialty, its weights of links from layer 4 are matrices Ar 
(to node for A) and Br (to node for B). It is also fully 
connected with the previous layer. The functions of nodes 
for A and B are respectively. 

   2 2[2] [2]

1

for   , for   
R

r
r

r 1

R
r

r
r

A o u A B o u


  B

    (6) 

Layer 3. The Linear System Layer has only one node, 
which has all the outputs of layer 1 and layer 2 connected 
to it as inputs. Using matrix form of inputs and output, 
we have  

3. Prognostics Process 

The first step in building a prognostics system, as pub-
lished in the ISO standard, is the identification of the set 
of failure modes (FM), their influence factors on each 
other and the detection measures (descriptors) that allow 
to track the evolution of the degradation. The interna-
tional standard IEC 60812 [10] has presented a procedure 
named “Procedure for failure mode and effects analysis 
(FMECA)”, which helps the identification of all the fail-
ure modes for a specific system, by the analysis of its 
subsystem s and components. Also, the FMECA method 
classifies the FMs using risk priority numbers (RPN) that 
are calculated with three failure mode parameters: oc-
currence (Occ), detection (Det) and severity (Sev). So, 
the FMECA [11] allows the definition of the appropriate 
detection method and measures to be used in the diag-
nostics as well as in the prognostics of the failure modes. 

The network structure is build in three steps:  
Step 1. The determination of fuzzy subsets for every 

input variable. The initial values of the centres and vari-
ances characterising the membership functions of the 
first layer down, can be arbitrarily established (equidis-
tant on the domain of definition of the linguistic variable) 

or applying a clustering algorithm of the type Fuzzy 
C-Means. 

Step 2. Obtain the minimal dimension of the rule base. 
The extraction of most significant rule that determines 

the number of the nodes in the second layer. 
Step 3. Optimization of the parameters of rules deter-

mined at Step 2. The objective is to alternate the pa-
rameter values (c,w) of the network in order to improve 
the rule base minimizing the quadratic criteria of per-
formance, 

4. Experimental Results 

To test the quality of the model, several actions were 
generated, and fixed goals were defined. The goals were 
defined in a way that the results were understood without 
ambiguity by human knowledge, the Figure 2 illustrate 
the fuzzy base rules with 3 parametres to classify the 
defaults modes 

In order to illustrate the learning effect of the proposed 
immune based FNN (IM-FNN), we use One of the most 
important types of systems present in the process indus-
try is workshop of SCIMAT clinker. A fault in a work-
shop of SCIMAT clinker may lead to a halt in production 
for long periods of time. Apart from these economic con-
siderations faults may also have security implications. A 
fault in an actuator may endanger human lives, as in the 
case of a fault in an elevator’s emergency brakes or in the 
stems position control system of a nuclear power plant 
[9,12]. The design and performance testing of fault di-
agnosis systems for industrial process often requires a 
simulation model since the actual system is not available 
to generate normal and faulty operational. 

In Figure 3 the detection of fault mode in the rotary 
kiln is observed with the classification after training the 
neuro-fuzzy system. 

Data needed for design and testing, due to the eco-
nomic and security reasons that they would imply. Accord- 
 

 

Figure 2. The generated rules base.   
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Figure 3. Detection of fault mode. 

 

 

Figure 4. The failure mode of rotary kiln.     
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ing to this Figure 4 we can say the prediction of a faults 
is a complex problem and need the correction of inverse 
problem. 

5. Conclusion  

The successful of implementing neuron-fuzzy is heavily 
depends on prior knowledge of the system and the train-
ing data. In the intrinsic nature, the neuro-fuzzy only can 
handle a limited number of inputs and can usually be 
identified in a not very transparent way from the empiri-
cal data [2]. The transparency is the determination of the 
process with a less amount of fuzzy rules with appropri-
ate membership function. For the complex system, a 
large architecture is needed to represent a model. 
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