
Journal of Software Engineering and Applications, 2011, 4, 626-638
doi:10.4236/jsea.2011.411074 Published Online November 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

Extending Extreme Programming User Stories to
Meet ISO 9001 Formality Requirements

Malik Qasaimeh, Alain Abran

École de Technologie Supérieure, University of Québec, Montréal, Canada.
Email: malik.qasaimeh.1@ens.etsmtl.ca, alain.abran@etsmtl.ca

Received August 26th, 2011; revised September 30th, 2011; accepted November 9th, 2011.

ABSTRACT

For software organizations needing ISO 9001 certification, including those that have adopted agile methodologies, it is
important that their software life cycle processes be able to manage the requirements imposed by this certification
standard. However, the user stories in the XP agile methodology do not provide auditors with enough evidence that
certain steps and activities have been performed in compliance with ISO 9001. This paper proposes an extension to the
user story, based on four sub processes related to the CMMI-DEV model: 1) identification of the source of the user sto-
ry; 2) categorization of the non functional requirements; 3) identification of the user story relationships; and 4) priori-
tization of the user stories. These sub processes are aligned with the XP release planning phase, and enhance the ability
of user stories to accumulate the information that is mandatory for achieving ISO 9001 certification.

Keywords: Extreme Programming, ISO 90001, Agile Process Improvement, Certification Process

1. Introduction

ISO 9001 was originally designed for the manufacturing
sector; however, this standard is now being used in many
other sectors as well, including health care and software.
The development of software has become important to
industry, and the ISO has developed and released a gui-
dance document, ISO 90003, to provide a roadmap for
software development organizations wishing to become
ISO 9001 certified.

Those organizations wishing to do so must be audited
to show evidence that they have met the ISO 9001 requi-
rements. The advantages for software organizations of
obtaining a certification such as ISO 9001 were investi-
gated in [1], with an assessment of the efficiency of Thai
software organizations that are both ISO 9001: 2000 and
TQS (Thai Quality Software) certified. To obtain the re-
quired data they needed from software producers and
developers, these authors carried out a field survey thr-
ough interviews and a questionnaire to assess an organi-
zation’s process efficiency based on four criteria: finan-
cial health, customer satisfaction, internal business proc-
ess quality, and the level of learning and growth. The
interviews were conducted among 56 organizations pro-
ducing and developing software (23 organizations with
ISO 9001:2000 certification and 33 organizations with

TQS certification).
The efficiencies of the organizations having ISO 9001:

2000 and TQS certification were compared, and the fol-
lowing observations were made:
 The efficiency of ISO certified organizations is

higher than that of TQS certified organizations, in
terms of product quality and customer satisfaction.

 ISO certified organizations place greater focus on
customer satisfaction than TQS certified organiza-
tions.

 The level of learning and growth in both kinds of
organizations is in the middle of the comparison
scale, which implies that innovation is considered
effectively by the organizations studied.

The advantages of ISO 9001 certification are well un-
derstood by software organizations. Recently, however,
the market penetration of the documentation-light agile
software processes (e.g. extreme programming-XP) has
been increasing [2,3]. “Agile development processes have
a different perspective compared to traditional develop-
ment processes which follow a more linear or waterfall
model for performing tasks. One of the differences is that
a detailed requirements specification may be missing
during a large part of the project or even the whole pro-
ject duration. Some other differences include the use of
stories as a source for requirements. Stories include many

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 627

details and may be more ambiguous than the convention-
al requirements specification. A story may also be coar-
ser grained than the traditional requirements specifica-
tion” [4].

The authors of [5,6] have investigated the capability of
XP to implement the software processes related to the re-
quirements of ISO 9001 and to the guidelines in ISO
90003 based on the ISO 12207 terminology. They obser-
ved the following:
 The main means for documenting user require-

ments in XP is the user story technique. However,
the user story provides fewer details than what is
specified by ISO 9001 and ISO 90003. For exam- ple,
the user story technique records a high-level descrip-
tion of user requirements. However, it does not re-
cord the details of face-to-face communica- tions
with the user during the iterative planning process,
not does it take into account the system requirements
or any of the technical details need- ed during de-
velopment. Also, it is not clear how XP can trace the
software artifacts back to the customer requirements.

 User stories are mainly written in natural langua- ge,
and they provide no formal specifications. Ra- ther,
they are evaluated by prototypes and by on- site cus-
tomers. Formal evaluations, such as model valida-
tions, are not supported by XP.

ISO 9001 demands of (software) organizations that a
rigorous demonstration of their software processes be im-
plemented and a set of guidelines followed at various
levels of abstraction. What these organizations need to
show, in other words, is that their software processes
have been designed and implemented in a way that al-
lows for a level of configuration and operation that com-
plies with ISO 9001 requirements.

This paper proposes four sub processes (activities)
aligned with the XP release planning phase. These sub
processes are: 1) identification of the user story resource;
2) identification of a non functional requirements cate-
gory; 3) identification of user story relationships; and 4)
identification of user story priorities. The aim of these
sub processes is to modify the structure of traditional
user stories in order to provide the ISO 9001 auditor of
XP with sufficient evidence that the data they require
have been collected, and to provide traceability for the
requirements throughout the earliest phases of XP (i.e.
the release planning phase).

This paper is organized as follows. Section 2 clarifies
the main terms and definitions that will be used in this
paper. Section 3 presents the methodology and the objec-
tives of the paper. Section 4 describes in detail each of
the proposed sub processes. Section 5 describes the main
structure of the extended user story based on the pro-

posed sub processes. Section 6 discusses the potential be-
nefits of this work from the ISO 9001 viewpoint.

2. Terminology

This section presents the definitions of the terms that will
be used in this paper.

2.1. System

A system is defined by ISO 15288:2008 as a combination
of interacting elements organized to achieve one or more
stated purposes. An element is a discrete part of the sys-
tem that can be implemented to fulfill specified require-
ments, and can be hardware, software, data, humans, or
processes (e.g. processes for providing a service to users).
In this context, the system is viewed as a collection of
interacting elements organized to accomplish a specific
function, or set of functions, within a specific environ-
ment.

2.2. System Feature and System Function from
the XP Viewpoint

The differences between a system feature and a system
function are poorly defined in the literature. In XP, a user
story is designed to specify a goal from the user view-
point and to specify a feature from the system viewpoint.
As a result, user stories often represent user needs, which
will ultimately include both essential and nice-to-have
features. The collection of those features will be integr-
ated later in the process life cycle into system elements to
provide a function to the system. Every XP iteration pro-
vides the system with functionality, based on the collec-
tion of features originally implemented based on the user
stories. For example, Add User, Grant Privilege to User,
Delete User, and List Users are system features that can
be represented at the requirements level by means of a
user story. The result of implementing user stories is a
system function, such as a “user administration system”.
Figure 1 illustrates the concepts of feature, function, and
system from the XP perspective.

3. Methodology and Objectives

The CMMI for development, version 1.2 (CMMI-DEV,
v1.2), includes some process areas for identifying and
managing software requirements, and contains useful
guidelines and best practices for specifying them. In the
context of this paper, three different CMMI process areas
(i.e. requirement development, requirement management,
and risk management) have been analyzed to derive a set
of sub processes that could be aligned with the explora-
tion phase of XP release planning—see Figure 2.

The objectives of these sub processes can be summa-
rized as follows:

Copyright © 2011 SciRes. JSEA

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements

Copyright © 2011 SciRes. JSEA

628

Figure 1. Relationship between system features and system functions in XP.

Figure 2. Methodology for deriving the XP sub-processes.

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 629

 Provide the basic metadata for managing the in-

formation gathered during XP release planning.
 Set a standard for the information and the data

gathered during XP release planning; this will al-
low a relationship to be defined between user sto-
ries.

 Provide structured user stories that can present
more information concerning dependencies be-
tween user stories and other artifacts of the XP
development life cycle.

 Provide standardization across XP processes to
support user story management. Standardizing us-
er story cards, for example, will help raise the vi-
sibility of the process of capturing both functional
and non functional requirements.

 Provide more information about stakeholders and
the source of user stories; this will allow better
decisions to be made, development times to be
reduced, customer satisfaction to be improved,
and the basic information for supporting XP tra-
ceability to be provided.

Table 1 shows each process area and the process goals
that have been investigated, as well as the related derived
XP sub processes.

4. Proposed Sub Processes

4.1. Identify the Source of the User Story

The requirements engineering process focuses on stake-
holder needs. The goal is to identify all the people, orga-
nizations, and other systems that have a direct or indirect
impact on the user stories elicited. “Much software has

Table 1. CMMI-DEV.

CMMI Process
Areas

Investigated
Process Goal Derived XP Sub processes

Requirement
development

(RD)

Elicit needs
Develop customer

requirements
Establish a definition of
required functionality

Analyze requirements to
achieve balance

Nonfunctional requirements
categorization

User story prioritization

Requirement
management

(REQM)

Understand requirements
Obtain commitment to

requirements
Manage changes to

requirements

Identify source of user
stories

User story relationships

Risk
management

(RM)

Determine risk sources
and categories
Identify risks

Evaluate, categorize, and
prioritize risks

Identify source of user
stories

Identify user story relation-
ships

Prioritize user stories

proved unsatisfactory because it has stressed the requ-
irements of one group of stakeholders at the expense of
those of others. Hence, software is delivered which is dif-
ficult to use or which subverts the cultural or political str-
uctures of the customer organization.

The software engineer needs to identify, represent, and
manage the “viewpoints” of many different types of sta-
keholders [7]. Software development teams should un-
derstand the sources that directly or indirectly influence
the creation of user stories, in order to be able to trace
each story back to its original source in the case of an
improvement or change request. Therefore, the <<ST-
ORY CONTRIBUTOR>> is defined as individuals, in-
cluding the customers or clients who pay for the system,
the developers who design, construct, and maintain the
system, and the users who interact with the system to get
their work done, as well as other systems or organiza-
tions that need to collaborate with the system. The sche-
ma proposed by [8] has been used to identify the <<ST-
ORY CONTRIBUTOR>> from the ISO 9001 perspec-
tive. The author of [8] suggests a list (provided below) of
candidate stakeholders who may contribute to the pro-
gress of any software project, i.e. people who:
 manage, introduce, operate, or maintain the system

after its deployment;
 are involved in developing the system, including ar-

chitects, developers, testers, quality engineers, or
project managers;

 are responsible for the business or process that the
system supports;

 have a financial interest (for example, they paid for it
or are responsible for selling it) Asemicolon;

 constrain the system as regulators (for example,
through the laws and international software standards
such as ISO 9001 that may impact the system.

Usually, the <<STORY CONTRIBUTOR>> varies ac-
cording to the nature of the system being developed; for
example, the system may be intended to provide special
services inside the organization, such as a payroll system
or documentation management system, or perhaps the
system is related to public services, such as air traffic
control. ISO 9001 requires these <<STORY CONTRI-
BUTORS>> to be clearly identified and categorized.
Therefore, to improve the accuracy of the user story, it
has been proposed that its source, i.e. the <<STORY
CONTRIBUTOR>>, belong to one or more contributor
types—see Figure 3—which have been developed based
on [1,8] and ISO 9001:

- Customer side contributors,
- Development side contributors, and
- Government side contributors.

<<STORY CONTRIBUTORS>> are assumed to pro-
vide the features of their system that could affect the

Copyright © 2011 SciRes. JSEA

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 630

Figure 3. User story sources—the various types of contribu-
tors.

various levels of the system, such as the process level,
the product level, and the project level. While this list is
not exhaustive, it does provide guidance to help in iden-
tifying the source of the user stories—see Figure 3.

4.1.1. Customer Side Contributors
Software users: Those with a direct interest in the func-
tions provided by the proposed new system or services.
Software users are valuable sources of knowledge of the
features that the system is designed to implement. They
can provide insights into how the system should operate.

Investors: Those responsible for providing the required
funding for the proposed system, including the organiza-
tions responsible for developing the system or an exter-
nal party wishing to invest in the system. These con-
tributors may have their own features that they consider
would better implement the system’s user stories. Usu-
ally, features provided by investors are related to system
efficiency and to the performance of the system. The
investors play an important role in balancing, and scop-
ing, costs and perceived benefits.

Software buyers: Those who purchase large and com-
plex software, public software, for example, such as air
traffic control system or online banking system, and who
could be different from the users of the software. System
features from these contributors are derived from their
own expectations on how to better support user needs.

4.1.2. Development Side Contributors
Project managers: Those responsible for managing the
technical aspects of the project (e.g. the development
process) and its non technical aspects (e.g. budget and
development time). Requirements and constraints from
project managers are focused as much on bringing disci-

pline to the delivery schedule as to moving the project on
to successful completion within the specified budget.
Requirements from project managers are usually related
to regulating the workflow of the project and focus less
on system features.

Maintenance and service staff: Those whose main re-
sponsibility is to keep the system operating after it has
been delivered to the system users. Requirements from
these contributors are focused on a set of controls de-
signed to better maintain the system later.

Developers and the quality assurance team: Those
whose main responsibility is to design, implement, and
test the system, and to verify that all the system user sto-
ries from all the story contributors have been imple-
mented efficiently. They focus on the overview at the
application level, rather than at the component level or
individual programming task level. Therefore, they may
contribute stories to the system concerning controls and
indicators for monitoring and measuring the various
characteristics and sub characteristics of system quality.

4.1.3. Government Side Contributors
Regulatory authorities and standards bodies: To ensure
the compliance of organizations with codes of practice,
government regulations, etc., such as Sarbanes-Oxley
(SOX), the Food and Drug Ad- ministration (FDA), and
the Health Insurance Portability and Accountability Act
(HIPAA). It is the responsibility of every organization to
develop its own business processes to address them, and
the Guide to the Software Engineering Body of Knowl-
edge (SWEBOK Guide) recognizes that a software de-
velopment process might be a part of such a business
process [7]. The SWEBOK Guide also points out that
there is broad acceptance that software development
success is highly dependent on the software requirement
activities. Therefore, user stories should be able to cap-
ture and manage the requirements (functional and non
functional) of government side contributors. At the busi-
ness process level, organizations react to the regulatory
authorities and standards bodies by developing what are
called internal controls (i.e. policies and procedures).
“Software is often required to support a business process,
the selection of which may be conditioned by the struc-
ture, culture, and internal politics of the organization” [7].
An organizational policy can be described as a formal
statement that guides and steers production methodolo-
gies, and so every organization must ensure that their
policies comply with the rules of the authority that gov-
erns it. An organizational procedure is a series of steps
required to implement the organization’s policies. It is
essential, therefore, that software developers an- alyze
the applicable rules for implementing the organization’s
internal controls. From the software engineering perspec-
tive, these internal controls are translated into application
support software and control support software—see Fig-

Copyright © 2011 SciRes. JSEA

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements

Copyright © 2011 SciRes. JSEA

631

ure 4.
 Application support software is software that pro-

vides a specific set of user-level functions, such as a
reporting system or an employment management
system.

 Control support software is software that auto- mates
the organizational policies and procedures, or pro-
vides technical services to the organization.

Control support software includes control components,
which can be classified as follows:
 Application level control component: a control ele-

ment implemented and integrated into the sys- tem
for a specific automated service; for example, ser-
vices to ensure that all goods shipped are in- voiced.

 Process level control component: a control ele- ment
implemented and integrated into the system to sup-
port the overall business process; it includes ade-
quate security functionality to prevent unauthorized
access to secure applications.

 Technical level control component: a control ele-
ment implemented to support the organization at the
operational level; for example, implement the or-
ganization’s internal policies or procedures, or to
ensure that policies and procedures are imple-
mented by the operational system and business
processes.

To this end, user stories should capture the sources of
the requirements from the government side contributors
for the regulatory authorities and standards bodies, in or-
der to ensure that a software system is capable of meet-

ing government and business requirements, and to pro-
vide the ISO 9001 certifying authority with evidence that
data from those sources have been collected.

4.2. Categories of Non Functional Requirements

The goal of this section is to provide formal evidence
that the non functional requirements have been gathered
from the user stories and categorized based on their resp-
ective groups (a related work on the formal specification
of non functional requirements can be found in [9,10]).

During XP release planning, the <<STORY CON-
TRIBUTOR>> informally states the non functional re-
quirements that need to be considered for each user story.
Every <<STORY CONTRIBUTOR>> sees the problem
from a different perspective. As users often do not know
which quality attributes they would like to see included,
they can express their non functional requirements orally
[11]. Developers must therefore be able to understand
and categorize those non functional requirements and
map them to the corresponding quality attribute(s) in or-
der to comprehend the entire problem domain. To enhan-
ce the ability of user stories to capture non functional re-
quirements during the early phases of XP, a semi struc-
tured format is proposed for defining them. This allows
developers to identify the category to which the non func-
tional requirements of each user story belong, as well as
to provide a flexible format for both the functional and
non functional requirements. The set of quality attributes
is represented in the format {Q1,Q2,...Qn}, and the sub
quality attributes associated with the non functional

Figure 4. Government side contributors.

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 632

requirements required by a user story in the format
{SQ1,SQ2,...SQn}. Also, there are many quality models
that address the quality attributes and non functional re-
quirements of software systems, such as the European
Cooperation on Space Standardization (ECSS), Boehm,
McCall, and ISO 9126 models. The ISO 9126 quality
model refers to six quality characteristics, subdivided
into twenty-seven quality sub characteristics for the in-
ternal and external quality of a software product —see
Table 2.

AS a <<STORY CONTRIBUTOR>>, I want the sys-
tem to <<DO REQUIREMENTS>>

AND incorporate <<NON FUNCTIONAL CAPA-
BILITIES>>, which belong to

Quality characteristics {Q1, Q2...,Qn} AND
Sub quality characteristics {SQ1, SQ2,...SQm} re-

spectively
Each story is primarily associated with a <<NON

Table 2. ISO 9126 quality characteristics.

Characteristics Sub characteristics

Functionality

Suitability
Accuracy

Interoperability
Compliance

Security
Functional Compliance

Reliability

Maturity
Recoverability

Fault Tolerance
Reliability Compliance

Usability

Learnability
Understandability

Operability
Attractiveness

Usability Compliance

Efficiency

Time behavior
Attractiveness

Resource behavior
Efficiency Compliance

Maintainability

Stability
Analyzability
Changeability

Testability
Maintainability Compliance

Portability

Installability
Co-Existence
Replaceability
Adaptability

Portability Compliance

FUNCTIONAL CAPABILITY>> entity that represents the
category of non functional requirement intended for each
story. The purpose of a <<NON FUNCTIONAL CAPA-
BILITY>> entity is to keep the user story as lightweight
as possible, but at the same time to provide evidence for
an ISO 9001 auditor that non functional requirements
have been obtained during the early phases of XP. The
<<NON FUNCTIONAL CAPABILITY>> category co-
uld represent one or more quality characteristics and sub
quality characteristics belonging to the non functional
requirements stipulated by the <<STORY CONTRI-
BUTOR>>. Table 3 shows examples of non functional
capability categories.

4.3. Identify the User Story Relationships

Based on the description of system features and system
functionality in section 2, we next define the relation-
ships between dependent user stories. For example, a
user story “j” that depends on another user story “i” is
called dependent, and is denoted <US,j>. Such a pair of
dependent user stories will be read as follows: <US,j>
depends on <US,i>. The dependencies between user sto-
ries are then classified into four categories: logical de-
pendencies, data dependencies, temporal dependencies,
and resource dependencies.

This classification is based on the user story features
that require implementation.
 A logical dependency occurs when the feature im-

plemented by a user story X cannot be executed be-
fore the feature implemented by user story Y, be-
cause they are logically dependent. This can be the
case if user story X provides services or interfaces to
user story Y. For example, in an employment man-
agement system, the employee will not be granted
access to perform restricted operations unless he has

Table 3. Examples of non functional capability categories.

Example
<<NON FUNCTIONAL

CAPABILITY>>

The customer must place an order
within two minutes of registering.

Performance

The customer must be able to access
their account 24 hours a day, 7 days a

week.
Availability

“Update Customer” will be available to
users during 98% of normal working

hours.
Reliability

Up to 200 new sites per year may start
to use “Update Customer”.

Scalability

Copyright © 2011 SciRes. JSEA

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 633

been approved as a legitimate employee. This can be
read as follows: <US,j> logically depends on <US,i>.
This relation can be represented as in Figure 5.

 A data dependency occurs if the feature implemented
by user story X cannot be executed before the feature
implemented by user story Y, because they are
data-dependent. This can be the case if user story X
provides input data for user story Y. For example,
sorting the entries in the database should be per-
formed after this entry has been stored. This can be
read as follows: <US,j> data depend on <US,i>. This
relation can be represented as in Figure 6.

 A temporal dependency occurs if the feature imple-
mented by user story X cannot be executed before
the feature implemented by user story Y, because
they are time-dependent. In this case, feature x
specifies the time frame for an event to occur, for a
process to be completed, or a condition to hold true,
for example, in order for feature y to start processing.
Temporal dependencies can be found in designing
the user stories of a real-time system, where the sys-
tem features must execute respecting strict response
time constraints. This can be read as follows: <US,j>
depends temporally on <US,i>. This relation can be
represented as in Figure 7.

 A resource dependency occurs if the feature imple-
mented by user story X cannot be executed before
the feature implemented by user story Y, because
they are resource-dependent. In this case, the system
consists of several concurrent threads (i.e. features)
which are competing for limited resources (i.e.
hardware resources or software resources). User sto-
ries should be analyzed first, so that precautions can
be taken to ensure fairness. This can be read as fol-
lows: <US,j> resource depends on <US,i>. This rela-
tion can be represented as in Figure 8.

4.4. Prioritizing the User Stories

Prioritization is the process of making a choice among
multiple options [12]. It is also considered an important

Figure 5. Logical dependency.

Figure 6. Data dependency.

Figure 7. Temporal dependency.

Figure 8. Resource dependency.

activity in requirements engineering, as it helps develop-
ers analyze requirements in order to rank them according
to their importance from the perspective of the require-
ments analyzer or the stakeholder who is involved in the
requirements elicitation activity [13].

Requirement prioritization processes can be catego-
rized into methods-based solutions and negotiation-based
solutions. Methods-based solutions are aimed at assign-
ing quantitative values to the requirements, such as the
binary priority list methods in [14], while negotia-
tion-based solutions focus on resolving conflicts by bro-
kering an agreement between stakeholders on ranking
requirements using a method selection framework de-
signed for the purpose, such as the Negotiation Constel-
lations in [15].

In XP, user stories are usually prioritized before each
iteration during the exploration phase of release planning,
specifically in the Planning Game activity, in which the
on-site customer classifies the user stories into three
groups: “those without which the system will not func-
tion,” “those that are less essential, but provide signifi-
cant business value,” and “those [it] would be nice to
have” [16]. This XP activity can be considered as a type
of negotiation-based solution that is less formal from the
ISO 9001 perspective and which normally provides evi-
dence that criteria have been met by the on-site customer
on sorting the user stories into their corresponding cate-
gories. Therefore, we propose that the AHP (Analytic
Hierarchy Process) be integrated into the XP Planning
Game, for the following reasons:
 The AHP combines the advantages of both the

methods-based solutions and the negotiation-based
solutions, in that the developers, along with any
<<STORY CONTRIBUTORS>>, can set the criteria
for ranking the user stories into “important” and
“less important” stories, based on qualitative and
quantitative analysis [17].

 The AHP provides formal evidence that the user sto-
ries have been evaluated using criteria which have

Copyright © 2011 SciRes. JSEA

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 634

been determined to support the priority given by the
<<STORY CONTRIBUTOR>> to the various alter-
natives (such as time, costs, risks, etc.).

 The result of the AHP is highly correlated to the cri-
teria and to the <<STORY CONTRIBUTOR>>
viewpoint of what is “important” and “less impor-
tant”. Therefore, developers should establish criteria
that balance the goals of the project from different
business value perspectives.

Figure 9 depicts the procedure for prioritizing the user
stories in XP using the AHP method.

4.4.1. Selection of User Stories for Prioritization
The AHP process begins by defining a set of alternatives
from which a decision maker wants to choose (e.g. selec-
tion of faculty members, assessment of financial man-
agement models, etc.) [18]. There is a variety of methods
available for generating those alternatives, such as a
brainstorming session, a literature review, or the outcome
of a specific process, such as release planning in XP,
where the developers, in consultation with the customer,
come up with a set of user stories that need to be imple-
mented in subsequent iterations.

At the beginning of each iteration of the exploration
phase in XP release planning, the developer gets together
with the customer for a planning meeting. In that meeting,
they go over the features the customer wants to imple-
ment in that iteration, breaking each feature down into
individual engineering tasks. In this step, the developers
are required to determine the set of user stories that need
to become input for AHP prioritization.

4.4.2. Building up Criteria for Comparison Purposes
The AHP allows developers to model the user story rank-
ing as a hierarchical structure, as shown in Figure 10.

Figure 9. Procedure for prioritizing the user stories in XP
using the AHP method.

Figure 10. AHP diagram for user story selection.

Using AHP, the definition of criteria is based on the

decision maker’s viewpoint of what is important from his
perspective in evaluating and prioritizing the alternatives.
In the context of this paper, each <<STORY CON-
TRIBUTOR>> can generate his own criteria for ranking
the set of user stories. Therefore, the customer side con-
tributors, the development side contributors, and the
government side contributors can all generate criteria that
can be used to consider different aspects of user story
evaluation, such as financial benefits, strategic benefits,
competitors, the ability to adhere to standards or regula-
tions, the ability to sell, etc. Next, we give some exam-
ples of criteria for developing user stories that consider
cost, time, and risk:
 Cost is often expressed in terms of the number of

hours spent developing the software. It is deter-
mined by considering the criticality of the requi-
rements and the quality required [19].

 Cost is often calculated in terms of hours, which is
directly related to time. Time is in turn influenced
by factors such as degree of parallelism in devel-
opment, training needs, the need to develop sup-
port infrastructure, the need to meet industry stan-
dards, etc. [19].

 There is a degree of risk in every project. Risk
management is a process for planning ways to
handle the risks that may cause difficulties in de-
velopment. Among the risks that may be encoun-
tered are those related to performance, risks, and
scheduling, for example. Calculating the risk per
requirement enables engineers to forecast the po-
tential risk at project level [19].

4.4.3. Pair-Wise Matrix Generation Using the AHP
Style

Using the AHP pairwise comparison process, weights or
priorities are assigned to a set of human judgments based
on the AHP scale in Table 4. While it is difficult to jus-

Copyright © 2011 SciRes. JSEA

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 635

tify weights that are arbitrarily assigned, it is relatively
easy to justify judgments and the basis for those judg-
ments [17].

The concept of pairwise comparison for prioritizing
user stories works as follows: developers begin by com-
puting the priority of their criteria, which are cost, time,
and risk in this context. The first step is to generate a
pairwise matrix by comparing these three criteria, ac-
cording to the scale in Table 4.

Assume that the following relationships have been de-
termined for these criteria:
 Cost is much more important than Time (degree of

importance: 5).
 Cost is moderately more important than Risk (de-

gree of importance: 3).
 Risk is very much more important than Time (de-

gree of importance: 7).
Then, the following pairwise matrix will be generated

—see Table 5.
Suppose the developers intended to rank three differ-

ent user stories: <US1>, < US2>, and < US3>. The
pair-wise matrix for each criterion should be generated as
in Tables 6, 7 and 8.

Table 4. AHP scale.

Intensity of importance Definition

1 Equally important

3 One moderately more important than the other

5 Much more important

7 Very much more important

9 Extremely important

Table 5. Pairwise matrix for the selected criteria.

 Cost Time Risk

Cost 1 5 3

Time 1/5 1 1/7
A criteria =

Risk 1/3 7 1

Table 6. Pairwise matrix for the cost criterion.

 US1 US2 US3

US1 1 3 5

US2 1/3 1 1/7
A cost =

US3 1/5 7 1

Table 7. Pairwise matrix for the time criterion.

 US1 US2 US3

US1 1 9 3

US2 1/9 1 1/5
A time =

US3 1/3 5 1

Table 8. Pairwise matrix for the risk criterion.

 US1 US2 US3

US1 1 3 5

US2 1/3 1 1/3
A risk =

US3 1/5 3 1

4.4.4. Eigenvalue Computation
The AHP obtains the weight vector (priority vector) by
calculating the eigenvector for the largest eigenvalue of
matrix A. This can be obtained using Formula (1).

 Aw = w (1)
By solving (1) for A criteria, A cost, A time, and A

risk, the priority hierarchy will be generated as in Figure
11.

US1priority, US2 priority, and US3 priority can be obtained as
of Figure 12.

Figure 11. A priority hierarchy.

Figure 12. Calculation of user stories priority.

Copyright © 2011 SciRes. JSEA

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements

Copyright © 2011 SciRes. JSEA

636

5. Extended User Story for XP

This paper has introduced an extension to the user story
to help XP software developers in specifying important
information for the ISO 9001 requirements that should be
gathered in the earlier phases of software process devel-
opment. The main content of the extended user story will
be as follows—see Figure 13.
 Requirements: Identification of the user’s functio-

nal requirements.
 User story sources: Identification of user story sour-

ces: <<customer side contributor>>, <<development
side contributor>>, and/or <<government side con-
tributor>>.

 Non functional capability: Identification of the non
functional category that represents one or more qual-
ity attributes and sub quality attributes belonging to
the non functional requirements needed by the
<<STORY CONTRIBUTOR>>.

 Story relationships: Dependencies between the user
stories are identified and classified into logical depen-
dencies, data dependencies, temporal dependencies,
and resource dependencies.

 Priority ranking: The priority of each user story is

calculated based on the AHP method. The <<ST-
ORY CONTRIBUTOR>> can generate a priority list
for user stories based on predefined criteria.

6. Discussion

The main contribution of this paper is the proposed sub
process, aligned with XP release planning, for deriving
the extended user story. The following comments illus-
trate the advantages of the proposed extended user story
from the ISO 9001 perspective:
 Formality: ISO 9001 auditors need documented

evidence at every phase of the development process
to clarify that processes are compliant with ISO 9001.
The extended user story that we propose here will
provide formal evidence that the sources of each user
story have been identified. It will also provide formal
evidence that each user story has been prioritized
from the <<STORY CONTRIBUTOR>> viewpoint.
This can be supported by showing documented evi-
dence that every <<STORY CONTRIBUTOR>>
generated comparison criteria and pairwise matrices,
as well as documented evidence of the final numerical
values of the priorities assigned for each user story.

Figure 13. Extended user story.

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 637

 Change management: The extended user story can

also provide support for better XP change manage-
ment. For example, the identification of user story
relationships and dependencies will im- prove the
developer’s ability to specify the impact of change
requests on the system. Developers will be able to
understand what types of dependencies exist between
user stories: a change in <US,i> will generate a
change in <US,j>, based on the kind of relationship
that has been identified.

 Process visibility: The visible process has been
characterized as the ability to define contact points
between customers and organizations, wh- ere cus-
tomers are allowed, or even required, to interact with
the process activities [20]. The the- ory of visibility
claims that organizations can im- prove their com-
petitive advantage by deliberately managing the de-
gree of visibility of their processes. Also, XP sup-
ports process visibility by mandating that on-site
customers participate dur- ing the XP life cycle. The
proposed sub processes allow for process visibility
from the development perspective by allowing the
developers to trace back every user story to its
source and allowing the development team to rank
user stories from the <<STORY CONTRIBUTOR>>
viewpoint. This will enhance process visibility for
both customers and developers.

 Traceability: The implementation of traceability
requires software developers to identify the deliver-
ables and artifacts of the software life cycle and pro-
vide information about the relationships between
those deliverables at an early stage of the software
project. This can be accomplished once the system
has been divided into modules and the information
flow (interaction) between these modules has been
determined. The extended user story can support
traceability by providing early information about the
interaction of user stories based on the defined rela-
tionships of user stories (i.e. logical dependencies,
data dependencies, temporal dependencies, and re-
source dependencies). Moreover, for large software
systems that include multiple interrelated software
modules, the developers can build a dependency
graph that identifies the various types of interactions
between the user stories.

 Accountability: Software project managers are re-
sponsible for ensuring that the software life cycle has
been executed in conformity with ISO 9001, even
before the software organization is audited by exter-
nal ISO 9001 auditors. The proposed sub processes
will allow software project managers to ensure that
the software development activities are being per-

formed in conformity with ISO 9001. For example,
at any time in the software life cycle, the project
manager can identify the source of user stories by
referring to their <<STORY CONTRIBUTOR>>
category. Moreover, the software project managers
can find documented evidence about the non func-
tional requirements that have been gathered during
the software life cycle. The pair-wise matrices and
the relationship of user stories can also provide do-
cumented evidence for software project managers as
to how the user stories interact in the system and the
priority ranking for each user story.

REFERENCES
[1] B. Makdee and P. Praneetpolgrang, “Roadmap in the

Development of a Quality Model for Thai Software,” 3rd
International Conference on Information and Communi-
cations Technology, Cairo, 2005, pp. 829-836.
doi:10.1109/ITICT.2005.1609669

[2] L. Vijayasarathy and D. Turk, “Agile Software Develop-
ment: A Survey of Early Adopters,” Journal of Informa-
tion Technology Management, Vol. 19, No. 2, 2008, pp.
1-8.

[3] C. Schindler, “Agile Software Development Methods and
Practices in Austrian IT—Industry Results of an Empiri-
cal Study,” International Conference on Computational
Intelligence for Modeling, Control and Automation, Vi-
enna, Austria, 2008, pp. 321-326.
doi:10.1109/CIMCA.2008.100

[4] A. Espinoza and J. Garbajosa, “Study to Support Agile
Methods More Effectively through Traceability,” Com-
puter Science Innovations in Systems and Software Engi-
neering, Vol. 7, No. 1, 2011, pp. 53-69.
doi:10.1007/s11334-011-0144-5

[5] M. Qasaimeh and A. Abran, “Investigation of the Capa-
bility of XP to Support the Requirements of ISO 9001
Software Process Certification,” Eighth ACIS Interna-
tional Conference on Software Engineering Research
Management and Applications, Montreal, Canada, 2010,
pp. 239-247. doi:10.1109/SERA.2010.38

[6] G. Wright, “Achieving ISO 9001 Certification for an XP
Company,” Lecture Notes in Computer Science, Extreme
Programming and Agile Methods, Agile Universe 2003,
New Orleans, August 2003, pp. 43-50.

[7] A. Abran, P. Bourque, R. Dupuis, J. Moore and L. Tripp,
“Guide to the Software Engineering Body of Knowl-
edge,” IEEE Computer Society Press, 2004, pp. 1-228.

[8] M. Glinz and R. Wieringa, “Stakeholders in Require-
ments Engineering,” IEEE Software, Vol. 24, No. 2, 2007,
pp.18-21. doi:10.1109/MS.2007.42

[9] A. Abran, K. T. Al-Sarayreh and J. Cuadrado-Gallego,
“Measurement Model of Software Requirements Derived
from System Maintainability Requirements,” 20nd Inter-
national Conference on Software Engineering and Kn-
owledge Engineering, San Francisco, 1-3 July 2010, pp.

Copyright © 2011 SciRes. JSEA

http://dx.doi.org/10.1109/ITICT.2005.1609669
http://dx.doi.org/10.1109/CIMCA.2008.100
http://dx.doi.org/10.1007/s11334-011-0144-5
http://dx.doi.org/10.1109/SERA.2010.38
http://dx.doi.org/10.1109/MS.2007.42

Extending Extreme Programming User Stories to Meet ISO 9001 Formality Requirements 638

153-158.

[10] K. T. Al-Sarayreh and A. Abran, “A Generic Model for
the Specification of Software Interface Requirements and
Measurement of their Functional Size,” 8th ACIS Interna-
tional Conference on Software Engineering Research
Management and Applications, Montreal, 2010, pp. 217-
222. doi:10.1109/SERA.2010.35

[11] H. Tracy, B. Sarah, V. June and W. David, “The Impact
of Staff Turnover on Software Projects: The Importance
of Understanding What Makes Software Practitioners
Tick,” ACM Conference on Computer Personnel Doc-
toral Consortium and Research, New York, USA, 2008,
pp. 30-39.

[12] L. Karlsson, P. Berander, B. Regnell and C. Wohlin,
“Requirements Prioritization: An Experiment on Exhaus-
tive Pair-Wise Comparison Versus Planning Game Parti-
tioning,” Empirical Assessment in Software Engineering
Conference, Keele, 2008, pp. 122-131.

[13] L. Lehtola, M. Kauppinen and S. Kujala, “Requirements
Prioritization Challenges in Practice,” Springer-Verlag,
Berlin Heidelberg, 2004, pp. 497-508.

[14] Th. Bebensee, I. Weerd and S. Brinkkemper, “Binary
Priority List for Prioritizing Software Requirements,”
Proceedings of the 6th International Working, Confer-

ence on Requirements Engineering: Foundation for Soft-
ware Quality, 2010.

[15] S. Fricker and P. Grünbacher, “Negotiation Constellations:
Method Selection Framework for Requirements Negotia-
tion,” International. Working Conference on Require-
ments Engineering: Foundation for Software Quality,
2008.

[16] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta,
“Agile Software Development Methods: Review and
Analysis,” Espoo, Finland: Technical Research Centre of
Finland, VTT Publications, 2000, pp. 461-478.

[17] E. Forman and M. A. Selly, “Decision by Objectives,”
George Washington University, 1996.

[18] J. Grandzol, “Improving the Faculty Selection Process in
Higher Education: A Case for the Analytic Hierarchy,”
Process Association for Institutional Research, Vol. 6,
No. 1, 2005, pp. 1-13.

[19] P. Berander and A. Andrews, “Requirements Prioritiza-
tion in Engineering and Managing Software Require-
ments,” Springer Verlag, Berlin, 2005, pp. 69-94.

[20] H.-G Yang and B.Vandenbosch, “Visibility as the Basis
of a Framework for Identifying Strategic Information
Systems,” Journal of Information Technology Manage-
ment, Vol. 9, No. 2, 1998, pp. 31-42.

Copyright © 2011 SciRes. JSEA

http://dx.doi.org/10.1109/SERA.2010.35

