
Journal of Software Engineering and Applications, 2011, 4, 417-425
doi:10.4236/jsea.2011.47048 Published Online July 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

417

Employing Two “Sandwich Delay” Mechanisms to
Enhance Predictability of Embedded Systems
Which Use Time-Triggered Co-operative
Architectures

Mouaaz Nahas

Department of Electrical Engineering, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, KSA.
Email: mmnahas@uqu.edu.sa
Received June 1st, 2011; revised June 29th, 2011; accepted July 6th, 2011.

ABSTRACT

In many real-time resource-constrained embedded systems, highly-predictable system behavior is a key design re-
quirement. The “time-triggered co-operative” (TTC) scheduling algorithm provides a good match for a wide range of
low-cost embedded applications. As a consequence of the resource, timing, and power constraints, the implementation
of such algorithm is often far from trivial. Thus, basic implementation of TTC algorithm can result in excessive levels of
task jitter which may jeopardize the predictability of many time-critical applications using this algorithm. This paper
discusses the main sources of jitter in earlier TTC implementations and develops two alternative implementations –
based on the employment of “sandwich delay” (SD) mechanisms – to reduce task jitter in TTC system significantly. In
addition to jitter levels at task release times, we also assess the CPU, memory and power requirements involved in
practical implementations of the proposed schedulers. The paper concludes that the TTC scheduler implementation
using “multiple timer interrupt” (MTI) technique achieves better performance in terms of timing behavior and resource
utilization as opposed to the other implementation which is based on a simple SD mechanism. Use of MTI technique is
also found to provide a simple solution to “task overrun” problem which may degrade the performance of many TTC
systems.

Keywords: Time-Triggered, Co-Operative, Cyclic Executive, Jitter, Sandwich Delay, Multiple Timer Interrupts, Task

Overrun

1. Introduction

Embedded systems are often implemented as a collec-
tion of communicating tasks [1]. The various possible
system architectures can then be characterized according
to these tasks. For example, if the tasks are invoked as a
response to aperiodic events, the system architecture is
described as “event-triggered” [2,3]. Alternatively, if the
tasks are invoked periodically under the control of timer,
the system architecture is described as “time-triggered”
[3,4]. Since highly-predictable system behavior is an
important design requirement for many embedded sys-
tems, time-triggered software architectures have become
the subject of considerable attention (e.g. see [4]). In
particular, it has been widely accepted that time-triggered
architectures are a good match for many safety-critical
applications, since they help to improve the overall safety
and reliability [5-10]. In contrast with the event-triggered,

time-triggered systems are easy to validate, verify, test,
and certify because the times related to tasks are de-
terministic [11,12].

Moreover, embedded systems can also be character-
ized according to the natures of their tasks. For example,
if the tasks – once invoked – can pre-empt (interrupt)
other tasks, then the system is described as “pre-emptive”.
If, instead, tasks cannot be interrupted, the system is de-
scribed as “non pre-emptive” or “co-operative”. When
comparing with pre-emptive, many researchers demon-
strated that co-operative schedulers have numerous de-
sirable features, particularly for use in safety-related sys-
tems [2,5,7,13,14].

Cyclic executive is a form of co-operative scheduler
that has a time-triggered architecture. In such “time-
triggered co-operative” (TTC) architectures, tasks exe-
cute in a sequential order defined prior to system activa-

Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 418
Time-Triggered Co-operative Architectures

tion; the number of tasks is fixed; each task is allocated
an execution slot (called a minor cycle or a frame) during
which the task executes; the task – once interleaved by
the scheduler – can execute until completion without
interruption from other tasks; all tasks are periodic and
the deadline of each task is equal to its period; the
worst-case execution time of all tasks is known; there is
no context switching between tasks; and tasks are sched-
uled in a repetitive cycle called major cycle [15,16].

Provided that an appropriate implementation is used,
TTC schedulers can be a good match for a broad range of
embedded applications, even those which have hard
real-time requirements [15-21]. Overall, a TTC scheduler
can be easily constructed using only a few hundred lines
of highly portable code on high-level programming lan-
guages (such as “C”), while the resulting system is high-
ly-predictable [14]. Since all tasks in TTC scheduler are
executed regularly according to their predefined order,
such schedulers demonstrate very low levels of task jitter
[16,22,23] and can maintain their low-jitter characteris-
tics even when complex techniques, such as “dynamic
voltage scaling” (DVS), are employed to reduce system
power consumption [20].

Despite many advantages, implementing the software
code of TTC algorithm, with less care, can result in dem-
onstrating high levels of task jitter especially at the release
times of low-priority tasks. The presence of jitter can have
a detrimental impact on the performance of many em-
bedded applications. For example, [24] show that – dur-
ing data acquisition tasks – jitter rates of 10% or more can
introduce errors which are so significant that any subse-
quent interpretation of the sampled signal may be ren-
dered meaningless. Similarly [25] discusses the serious
impact of jitter on applications such as spectrum analysis
and filtering. In embedded control systems, jitter can
greatly degrade the performance by varying the sampling
period [26,27]. Moreover, in applications – like distrib-
uted multimedia communications – the presence of even
low amounts of jitter may result in a severe degradation in
perceptual video quality [28].

The present study is concerned with implementing
highly-predictable embedded systems. Predictability is
one of the most important objectives of real-time em-
bedded systems [20,29-31]. Ideally, predictability means
that the system is able to determine, in advance, exactly
what the system will do at every moment of time in
which it is running and hence determine whether the
system is capable of meeting all its timing constraints.
One way in which predictable behavior manifests itself is
in low levels of task jitter.

The main aim of this paper is to address the problem
of task jitter to enhance predictability of embedded ap-

plications employing TTC architectures. In particular, the
paper discusses the main sources of jitter in the original
TTC systems and proposes two new TTC scheduler im-
plementations which have the potential to reduce task
jitter by means of employing “sandwich delay” (SD) me-
chanisms [32]. Such implementations will be referred to
as TTC-SD and TTC-MTI schedulers.

The remaining parts of the paper are organized as fol-
lows. Section 2 reviews basic TTC scheduler implemen-
tations and highlights their main drawbacks with regards
to jitter behavior. In Section 3, we describe the TTC-SD
and TTC-MTI schedulers. Section 4 outlines the experi-
mental methodology used to evaluate the described
schedulers and provides the results in terms of task jitter
and implementation costs (i.e. resource requirements).
We finally draw the overall paper conclusions in Section
5.

2. Basic Implementations of TTC Scheduler

This section describes the implementation of the “origi-
nal TTC-Dispatch” scheduler [14] and discusses its main
limitations.

2.1. Overview

The original TTC-Dispatch scheduler is driven by peri-
odic interrupts generated from an on-chip timer. When an
interrupt occurs, the processor executes an Interrupt Ser-
vice Routine (ISR) Update function. In the Update func-
tion, the scheduler checks the status of all tasks to see
which tasks are due to run and sets appropriate flags.
After these checks are complete, a Dispatch function will
be called, and the identified tasks (if any) will be exe-
cuted in sequence. The Dispatch function is called from
an “endless” loop placed in the Main code and when not
executing the Update and Dispatch functions, the system
will usually enter a low-power “idle” mode. This process
is illustrated schematically in Figure 1. Note that such a
scheduler has previously been referred to as TTC-
Dispatch scheduler [33].

Despite that TTC schedulers provide a simple,
low-cost and highly-predictable software platform for
many embedded applications, such a basic implementa-
tion of the TTC scheduler can introduce high levels of
jitter at task release times [34]. This point is further dis-
cussed as follows.

2.2. Task Jitter

In periodic tasks, variations in the interval between the
release times are termed jitter. As previously noted, the
presence of jitter can – in many systems – result in less
predictable operation and cause a detrimental impact on
the system performance. Since our focus in this paper is

Copyright © 2011 SciRes. JSEA

Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 419
Time-Triggered Co-operative Architectures

Main () Sleep ()Task ()Dispatch ()Update ()

Figure 1. Function call tree for the original TTC scheduler.

on TTC schedulers, we identify the following three pos-
sible sources of task jitter in such systems.

1) Scheduling overhead variation
The overhead of a conventional scheduler arises mainly

from context switching. In some systems, such as those
employing DVS [20], the scheduling overhead is com-
paratively large and may have a highly-variable duration.
Figure 2 illustrates how a TTC system can suffer release
jitter as a result of variations in the scheduler overhead.

In [34], we observed that the underlying cause of this
variation in the original TTC-Dispatch scheduler is the
interrupt behavior. For example, when an interrupt occurs,
the processor takes fixed time to leave the “idle” mode
and begin to execute the ISR Update. However, in the
Update, and before calling Dispatch, the scheduler goes
through the task list and identifies which task is due to run.
Such check activities cannot be fixed in time if there is
more than one scheduled task to run. In order to deal with
this problem, a “modified TTC-Dispatch” scheduler has
been developed [34]. The proposed scheduler controls the
jitter in the first task (which is implicitly the “top priority”
task with hardest timing constraints) by re-arranging the
activities performed in the Update and Dispatch functions.
Specifically, the Update function is very short and has a
fixed duration: it simply keeps track of the number of
Ticks. The dispatch activities will then be carried out in
the Dispatch function. By doing so, we make sure that the
first task in the system is always free of jitter. Note that the
function call tree for the modified TTC-Dispatch sched-
uler is same as the original TTC-Dispatch scheduler
(Figure 1).

2) Task placement
Even if we can avoid variations in the scheduler over-

head, we may still have problems with jitter in a TTC
scheduler as a result of the task placement.

To illustrate this, consider Figure 3. In this schedule,
Task C runs sometimes after A, sometimes after A and B,
and sometimes alone. Therefore, the period between every
two successive runs of Task C is highly variable. Such a
variation can be called “schedule-induced” jitter. More-
over, if Task A and Task B have variable execution dura-
tions, then the jitter levels of Task C will even be larger.
This type of jitter is called “task-induced” jitter. The
original and modified TTC-Dispatch schedulers are not
capable of dealing with jitter caused by the task place-
ment.

3) Tick drift
For completeness, we also consider tick drift as a

source of task jitter. In the TTC designs considered in this
paper, a clock tick is generated by a hardware timer that is
linked to an ISR. This mechanism relies on the presence of
a timer that runs at a fixed frequency: in these circum-
stances, any jitter will arise from variations at the hard-
ware level (e.g. through the use of a low-cost frequency
source, such as a ceramic resonator, to drive the on-chip
oscillator: see [14]).

In the scheduler implementations considered in this
paper, the software developer has no control over the
clock source. However, in some circumstances, those
implementing a scheduler must take such factors into
account.

For example, in situations where DVS is employed (to

Speed
Over
head Task

OverheadTask

Task
Period

OverheadTask
Over
head

Task

Task
Period

Task
Period

Figure 2. Release jitter caused by variation of scheduling overhead.

Speed

Task
A

Task
C

Task
Period

Task
Period

Task
Period

Task
C

Task
A

Task
C

Task
B

Task
C

Task
B

Figure 3. Release jitter caused by task placement in TTC schedulers.

Copyright © 2011 SciRes. JSEA

Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 420
Time-Triggered Co-operative Architectures

reduce CPU power consumption), it may take a variable
amount of time for the processor’s Phase-Locked Loop
(PLL) to stabilize after the clock frequency is changed. As
discussed elsewhere, it is possible to compensate for such
changes in software and thereby reduce jitter (see [20]).
Such techniques are not considered further in this paper.

3. Modified implementations of TTC
Scheduler

Our concern in this paper is on jitter caused mainly by the
task placement. To reduce this type of jitter, we introduce
two techniques which can be incorporated in the basic TTC
scheduler framework. These techniques are described here.

3.1. Adding “Sandwich Delays”

One way to reduce the variation in the starting times of
“low-priority” tasks in TTC system is to place “Sandwich
Delay” (SD) [32] around tasks which execute prior to other
tasks in the same tick interval. Such a modified TTC
scheduler implementation will be referred to as TTC-SD
scheduler.

In the TTC-SD scheduler, sandwich delays are used to
provide execution “slots” of fixed sizes in situations where
there is more than one task in a tick interval. To clarify this,
consider the set of tasks shown in Figure 4. In the figure,
the required SD prior to Task C – for low jitter behavior –
is equal to the estimated “worst-case execution time”
(WCET) of Task A plus Task B. This implies that in the
second tick (for example), the scheduler runs Task A and
then waits for the period equals to the WCET of Task B
before running Task C. The figure shows that when SDs
are used, the periods between any successive runs of Task
C become equal and hence jitter in the release time of this
task is significantly reduced.

Note that – with this implementation – estimated
WCET for each task is input to the scheduler through a
function placed in the Main code. After entering task
parameters, the scheduler calculates the scheduler major

cycle and the required release time for each task. Note that
the required release time of a task is the time between the
start of the tick interval and the start of the predefined task
“slot” plus a little safety margin.

3.2. Working with “Multiple Timer Interrupts”

Although the use of SD can help to reduce jitter in
low-priority tasks significantly, this approach does not
give such a precise control over timing and can signifi-
cantly increase the levels of CPU power consumption.
This is because the processor is forced to run in normal
operating mode while the SD is executing. To address
both problems, a modified sandwich delay mechanism
that uses “Multiple Timer Interrupt” (MTI) is developed.
The TTC scheduler incorporating MTI technique will be
referred to as TTC-MTI scheduler.

In the TTC-MTI scheduler, several timer interrupts are
used to generate the predefined execution “slots” for tasks.
This allows more precise control of timing in situations
where more than one task executes in a given tick interval.
The use of interrupts also allows the processor to enter an
“idle” mode after completion of each task, resulting in
power saving.

To implement this technique, two interrupts are re-
quired:
 Tick interrupt: to generate the scheduler periodic tick.
 Task interrupt: to trigger the execution of tasks within

tick intervals.
The complete process is illustrated in Figure 5. In this

figure, to achieve zero jitter, the required release time
prior to Task C (for example) is equal to the WCET of
Task A plus the WCET of Task B plus scheduler overhead
(i.e. ISR Update function). This implies that in the second
tick (for example), after running the ISR, the scheduler
waits – in the “idle” mode – for a period of time equals to
the WCETs of Task A and Task B before running Task C.
Figure 5 shows that with the MTI technique, the periods

Task
A

Task
C

Task C
Period

Task
C

Task
B

t (Ticks)t = 0 1 2

Task C
Period

Task
C

Tick
Interrupt

Idle
Mode

SD SD SDTask
A

Figure 4. Using Sandwich Delays to reduce release jitter in TTC schedulers.

A C

Task C

Period

CB B

TimeTick 0 Tick 1 Tick 2

Task C

Period

C

Tick
Interrupt Task

Interrupts

Idle
Mode

Idle
Mode

I
S
R

I
S
R

I
S
R

Idle
Mode

Figure 5. Using MTIs to reduce release jitter in TTC schedulers.

Copyright © 2011 SciRes. JSEA

Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 421
Time-Triggered Co-operative Architectures

between the successive runs of Task C (the “lowest pri-
ority” task) are always equal. This means that the task
jitter in such implementation is independent on the task
placement or the duration(s) of the preceding task(s).

In fact, the method described here requires no more
than two timers or one timer – with multiple channels – in
total. The hardware used in this study to implement this
scheduler (Section 4.1) supports multiple channels per
timer, allowing efficient use of the available resources.

In the TTC-MTI, the estimated WCET for each task is
also input to the scheduler through the Main code. The
scheduler then calculates the scheduler major cycle and
the required release time for each task. Moreover, there is
no Dispatch called in the Main code: instead, “interrupt
request wrappers” – which contain Assembly code – are
used to manage the sequence of operation in the whole
scheduler. The function call tree for the TTC-MTI sche-
duler is shown in Figure 6.

Unlike the normal Dispatch schedulers, the TTC-MTI
implementation relies on two interrupt Update functions:
Tick Update and Task Update. The Tick Update – which
is called every tick interval (as normal) – identifies which
tasks are ready to execute within the current tick interval.
Before placing the processor in the “idle” mode, the Tick
Update function sets the match register of the task timer
according to the release time of the first due task running
in the current interval. Calculating the release time of the
first task in the system takes into account the WCET of the
Tick Update code.

When the task interrupt occurs, the Task Update sets
the return address to the task that will be executed straight
after this update function, and sets the match register of
the task timer for the next task (if any). The scheduled task
then executes as normal. Once the task completes execu-
tion, the processor enters “idle” mode and waits for the
next task interrupt or tick interrupt (depending on the task
schedule). Note that the Task Update code has fixed ex-
ecution duration to avoid jitter at the starting time of tasks.

Furthermore, it is worth noting that the TTC-MTI
scheduler also provides a simple solution to “task over-
run” problem in TTC system which may – in many cases –
have serious impacts on system behavior [35]. More spe-
cifically, the integrated MTI technique helps the TTC
scheduler to shutdown any task exceeding its estimated
“worst-case execution time” (WCET) [36]. In the im-
plementation considered, if the overrunning task is follo-

wed by another task in the same tick, then the task inter-
rupt – which triggers the execution of the latter task – will
immediately terminate the overrun. Otherwise, the task is
allowed to overrun until the next tick interrupt where a
new tick will be launched. Please note that this issue will
not be discussed further in this paper.

4. Evaluating the TTC-SD and TTC-MTI
Schedulers

This section first outlines the experimental methodology
used to evaluate the TTC-SD and TTC-MTI schedulers. It
then presents the output results in terms of task jitter and
implementation costs. Note that the results obtained from
the new schedulers are compared with those obtained
from the “modified TTC-Dispatch” scheduler [34] to
highlight the impact of the proposed schedulers on the
low-priority task jitter.

4.1. Experimental Methodology

We first outline the experimental methodology used to
obtain the results presented in this section.

1) Hardware platform
The empirical studies reported in this paper were con-

ducted using Ashling LPC2000 evaluation board sup-
porting Philips LPC2106 processor [37]. The LPC2106 is
a modern 32-bit microcontroller with an ARM7 core
which can run – under control of an on-chip PLL – at
frequencies from 12 MHz to 60 MHz [38]. The oscillator
frequency used was 12 MHz, and a CPU frequency was 60
MHz. The compiler used was the GCC ARM 4.1.1 oper-
ating in Windows by means of Cygwin (a Linux emulator
for windows). The IDE and simulator used was the Keil
ARM development kit (v3.12).

2) Jitter test
For meaningful comparison of jitter results, the fol-

lowing task set was used (Figure 7). To allow exploring
the impact of schedule-induced jitter, Task A was sched-
uled to run every two ticks. Moreover, all tasks were set to
have variable execution durations to allow exploring the
impact of task-induced jitter. Note that the duration of
Task A is double the duration of Task B and Task C. Also,
Task A has the highest priority and Task C has the lowest
priority.

Jitter was measured at the release time of each task. To
measure jitter experimentally, we set a pin high at the
beginning of the task (for a short time) and then measure

Main ()
Tick

Update ()
Sleep ()

Task
Update ()

Task () Sleep ()

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

Figure 6. Function call tree for the TTC-MTI scheduler.

Copyright © 2011 SciRes. JSEA

Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 422
Time-Triggered Co-operative Architectures

B1

A1

B2

C1

t = 0 1

C2

t = 0 1

t (Ticks)t = 0 1

Task A

Task B

Task C

t (Ticks)

t (Ticks)

Major cycle

B3

A2

C3

2

2

2

Figure 7. Graphical representation of the task set in jitter test.

the periods between every two successive rising edges.
We recorded 5000 samples in each experiment. The pe-
riods were measured using a National Instruments data
acquisition card “NI PCI-6035E” [39], used in conjunc-
tion with appropriate software LabVIEW 7.1 [40].

To assess the jitter levels, we report two values: “av-
erage jitter” and “difference jitter”. The difference jitter is
obtained by subtracting the minimum period from the
maximum period obtained from the measurements in the
sample set. This jitter is sometimes referred to as “abso-
lute jitter” [23]. The average jitter is represented by the
standard deviation in the measure of average periods.
Note that there are many other measures that can be used
to represent the levels of task jitter, but these measures
were felt to be appropriate for this study.

3) CPU test
To obtain CPU overhead measurements in each sche-

duler, we run the scheduler for 25 seconds and then, using
the performance analyzer supported by the Keil simulator,
the total time used by the scheduler code was measured.
The percentage of the measured CPU time out of the total
running time was also reported.

4) Memory test
In this test, CODE and DATA memory values required

to implement each scheduler were recorded. Memory
values were obtained using the “map” file created when
the source code is compiled. The STACK usage was also
measured (as part of the DATA memory overhead) by
initially filling the data memory with “DEAD CODE”
and then reporting the number of memory bytes that had
been overwritten after running the scheduler for suffi-
cient period.

5) Power test
To obtain representative values of power consumption,

the input current and voltage to the LPC2106 CPU core
were measured while executing the scheduler. Again, the
measurements were obtained by using the National In-
struments data acquisition card “NI PCI-6035E” in con-

junction with LabVIEW 7.1 software. The sampling rate
of 10 KHz was used over a period equal to 5000 major
cycles. Values for currents and voltages were then multi-
plied and then averaged out to give the power consump-
tion results.

4.2. Jitter Results

It can clearly be noted from Table 1 that the use of SD
mechanism in TTC schedulers caused the low-priority
tasks to execute at fixed intervals. However, the jitter in
the release times of Tasks B and Task C was not elimi-
nated completely. This residual jitter was caused by vari-
ation in time taken to leave the software loop – used in the
SD mechanism to check if the required release time for the
concerned task was matched – and begin to execute the
task.

The results also show that the TTC-MTI scheduler
helped to remove jitter in the release times of all tasks: this
in turn would help to cause a significant enhancement in
the overall system predictability.

4.3. CPU, Memory and Power Requirements

Table 2 show that the overall processing time required
for the TTC-SD scheduler is equal to 74% of the total
run-time. This overhead figure is too large compared to
that obtained from the other schedulers considered in this
paper (which was approximately equal to 40%). The ob-
served increase in processing time is expected when such
a SD approach is used: since the CPU is forced to run in
normal operating mode while waiting for tasks to start
their execution.

The results in Table 3 show that the Code memory
required in the TTC-MTI scheduler were slightly smaller
than those used to implement the other schedulers while
the Data memory requirements were larger. Remember
that – compared to the other schedulers – the overall ar-
chitecture was rather different in TTC-MTI (see Section
3.2).

Copyright © 2011 SciRes. JSEA

Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 423
Time-Triggered Co-operative Architectures

Table 1. Task jitter from the modified TTC-Dispatch, TTC-SD and TTC-MTI schedulers.

Scheduler Task A Task B Task C

Min Period (µs) 9999.4 2988.4 2164.3

Max Period (µs) 9999.5 7011.1 7864.1

Average Period (µs) 9999.5 4882.0 4799.3

Diff. Jitter (µs) 0.1 4022.7 5699.8

Modified TTC-Dispatch scheduler

Avg. Jitter (µs) 0.0 1172.7 1226.9

Min Period (µs) 9999.4 4999 4999

Max Period (µs) 9999.5 5000.5 5000.5

Average Period (µs) 9999.5 4999.8 4999.7

Diff. Jitter (µs) 0.1 1.5 1.5

TTC-SD scheduler

Avg. Jitter (µs) 0 0.4 0.3

Min Period (µs) 9999.4 4999.7 4999.7

Max Period (µs) 9999.5 4999.7 4999.7

Average Period (µs) 9999.5 4999.7 4999.7

Diff. Jitter (µs) 0.1 0.0 0.0

TTC-MTI scheduler

Avg. Jitter (µs) 0.0 0.0 0.0

Table 2. CPU overheads for the modified TTC-Dispatch, TTC-SD and TTC-MTI schedulers.

Scheduler Scheduler time (s): Total time (s): Overhead %
Modified TTC-Dispatch scheduler 9.93 25.01 39.7

TTC-SD scheduler 18.5 25.0 74.0

TTC-MTI scheduler 9.9 25.01 39.6

Table 3. Memory requirements for the modified TTC-Dispatch, TTC-SD and TTC-MTI schedulers.

Scheduler
ROM requirements

(Bytes)
RAM requirements

(Bytes)
Modified TTC-Dispatch scheduler 4012 325

TTC-SD scheduler 5344 310

TTC-MTI scheduler 3620 514

Table 4. Power consumption in the modified TTC-Dispatch, TTC-SD and TTC-MTI schedulers.

Scheduler Power consumption (mW)

Modified TTC-Dispatch scheduler 35.7

TTC-SD scheduler 54.5

TTC-MTI scheduler 36.3

Note from Table 4 that in the TTC-SD scheduler, the

CPU power consumption was significantly increased.
This was, again, due to the processor running in normal
operating mode whilst executing the SD function.

5. Conclusions

Time-triggered co-operative architectures provide simple,
low-cost software platforms for a wide range of embedded
applications in which highly-predictable system behavior
is a key design requirement. Simple TTC implementations
based on periodic timer interrupts can provide highly-

-predictable behavior for the first task in every tick in-
terval. However, if more than one task are executed in a
tick interval, the release times of later tasks will depend
(in many cases) on the execution time of earlier tasks. As
demonstrated in this paper, use of “sandwich delay” me-
chanisms with the TTC scheduler framework can sig-
nificantly reduce jitter levels in later tasks.

The results presented in the paper show that, although
the TTC-SD scheduler helped to reduce jitter in the task
release times significantly, such jitter could not be re-
moved completely and the CPU overhead (and, hence,

Copyright © 2011 SciRes. JSEA

Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 424
Time-Triggered Co-operative Architectures

system power consumption) was increased. Therefore, the
TTC-MTI scheduler was developed to provide a better
solution where all tasks became free of jitter while the
system maintained its low CPU overhead and power re-
quirements. The TTC-MTI scheduler achieved this per-
formance by using multiple timers to adjust the timing for
tick and tasks and also utilizing the “idle” mode when the
processor is not executing tasks or ISR functions. More-
over, the TTC-MTI scheduler has the potential to over-
come the problem of task overrun, thereby increasing the
overall system predictability.

Finally, it is important for embedded software devel-
opers who decide to employ any of the described tech-
niques or adapt them for use in their existing designs to
take into account the implementation costs (in terms of
CPU, memory and power resources) in addition to the
maximum levels of jitter that each task in the system can
tolerate.

6. Acknowledgements

The work described in this paper was carried out in the
Embedded Systems Laboratory (ESL) at University of
Leicester, UK, under the supervision of Professor Mi-
chael Pont, to whom the author is thankful. The author
also thanks Dr. Zemian Hughes for his valuable assis-
tance in creating the software code for the TTC-MTI
scheduler.

REFERENCES
[1] A. C. Shaw, “Real-Time Systems and Software,” John

Wiley & Sons Inc., New York, 2001.

[2] N. Nissanke, “Real-time Systems,” Prentice-Hall, Upper
Saddle River, 1997.

[3] A. Albert, “Comparison of Event-Triggered and Time-
-Triggered Concepts with Regard to Distributed Control
Systems,” Proceedings of Embedded World, Nurnberg,
17-19 February 2004, pp. 235-252.

[4] H. Kopetz, “Real-Time Systems: Design Principles for
Distributed Embedded Applications,” Kluwer Academic,
Boston, 1997.

[5] S. T. Allworth, “An Introduction to Real-Time Software
Design,” Macmillan, London, 1981.

[6] N. Storey, “Safety-Critical Computer Systems,” Addison-
Wesley, Boston, 1996.

[7] I. Bates, “Introduction to Scheduling and Timing Analy-
sis,” The Use of Ada in Real-Time System, IEE Confer-
ence Publication 00/034, 2000.

[8] R. Obermaisser, “Event-Triggered and Time-Triggered
Control Paradigms,” Kluwer Academic, Boston, 2004.

[9] B. Zhang, “Specifying and Verifying Timing Properties
of a Time-Triggered Protocol for in-Vehicle Communica-
tion,” 9th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking, and Pa-
rallel/Distributed Computing, Phuket, 6-8 August 2008,
pp. 467-472. doi:10.1109/SNPD.2008.99

[10] J. Zhang, F. Xiang, B. Wang and J. Lu, “An Extensible
Software Framework for Reliable Distributed Embedded
System Modelling,” 2nd International Asia Conference
on Informatics in Control, Automation and Robotics,
Wuhan, 6-7 March 2010, pp. 234-237.
doi:10.1109/CAR.2010.5456558

[11] F. Scheler and W. Schro ̈der-Preikschat, “The RTSC: Le-
veraging the Migration from Event-Triggered to Time-
Triggered Systems,” 13th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, Carmona, 5-6 May 2010, pp. 34- 41.

[12] J. W. S. Liu, “Real-Time Systems,” Prentice Hall, Upper
Saddle River, 2000.

[13] N. J. Ward, “The Static Analysis of a Safety-Critical
Avionics Control Systems,” Offshore Safety and Reliabil-
ity: Sarss’91-Proceedings of the Safety and Reliability
Society Symposium, SaRS, Ltd., Roselle, 1991.

[14] M. J. Pont, “Patterns for Time-Triggered Embedded Sys-
tems: Building Reliable Applications with the 8051 Fam-
ily of Microcontrollers,” ACM Press/Addison-Wesley,
Boston, 2001.

[15] T. P. Baker and A. Shaw, “The Cyclic Executive Model
and Ada,” Real-Time Systems, Vol. 1, No. 1, 1989, pp. 7-
25. doi:10.1007/BF02341919

[16] C. D. Locke, “Software Architecture for Hard Real-Time
Applications: Cyclic Executives vs. Fixed Priority Execu-
tives,” Real-Time Systems, Vol. 4, No. 1, 1992, pp. 37-52.
doi:10.1007/BF00365463

[17] M. J. Pont and M. P. Banner, “Designing Embedded Sys-
tems Using Patterns: A Case Study,” Journal of Systems
and Software, Vol. 71, No, 3, 2004, pp. 201-213.
doi:10.1016/S0164-1212(03)00006-2

[18] D. Ayavoo, M. J. Pont and S. Parker, “Does a ‘Simulation
First’ Approach Reduce the Effort Involved in the De-
velopment of Distributed Embedded Control Systems?”
6th UKACC International Control Conference, Glasgow,
30 August-1 September 2006.

[19] T. Nghiem, G. J. Pappas, R. Alur and A. Girard, “Time-
Triggered Implementations of Dynamic Controllers,”
Proceedings of the 6th ACM & IEEE International Con-
ference on Embedded Software, Seoul, 22-25 October 2006,
pp. 2-11.

[20] T. Phatrapornnant and M. J. Pont, “Reducing Jitter in
Embedded Systems Employing a Time-Triggered Soft-
ware Architecture and Dynamic Voltage Scaling,” IEEE
Transactions on Computers, Vol. 55, No. 2, 2006, pp.
113-124. doi:10.1109/TC.2006.29

[21] M. Short and M. J. Pont, “Fault-Tolerant Time-Triggered
Communication Using CAN,” IEEE Transactions on In-
dustrial Informatics, Vol. 3, No. 2, 2007, pp. 113-142.
doi:10.1109/TII.2007.898477

[22] I. J. Bate, “Scheduling and Timing Analysis for Safety
Critical Real-Time Systems,” Ph.D. Dissertation, De-

Copyright © 2011 SciRes. JSEA

http://dx.doi.org/10.1109/SNPD.2008.99
http://dx.doi.org/10.1109/CAR.2010.5456558
http://dx.doi.org/10.1007/BF02341919
http://dx.doi.org/10.1007/BF00365463
http://dx.doi.org/10.1016/S0164-1212(03)00006-2
http://dx.doi.org/10.1109/TC.2006.29
http://dx.doi.org/10.1109/TII.2007.898477

Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use
Time-Triggered Co-operative Architectures

Copyright © 2011 SciRes. JSEA

425

partment of Computer Science, University of York, Hes-
lington, 1998.

[23] G. Buttazzo, “Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications,” Sprin-
ger, New York, 2005.

[24] F. Cottet and L. David, “A Solution to The Time Jitter
Removal in Deadline Based Scheduling of Real-Time
Applications,” 5th IEEE Real-Time Technology and Ap-
plications Symposium, Vancouver, 2-4 June 1999, pp. 33-
38.

[25] A. J. Jerri, “The Shannon Sampling Theorem: Its Various
Extensions and Applications a Tutorial Review,” Pro-
ceedings of the IEEE, Vol. 65, No. 11, 1977, pp. 1565-
1596. doi:10.1109/PROC.1977.10771

[26] M. Torngren, “Fundamentals of Implementing Real-Time
Control Applications in Distributed Computer Systems,”
Real-Time Systems, Vol. 14, No. 3, 1998, pp. 219-250.
doi:10.1023/A:1007964222989

[27] P. Marti, J. M. Fuertes, K. Ramamritham and G. Fohler,
“Jitter Compensation for Real-Time Control Systems,”
22nd IEEE Real-Time Systems Symposium, London, 3-6
December 2001, pp. 39-48.

[28] S. R. Gulliver and G. Ghinea, “The Perceptual Influence
of Multimedia Delay and Jitter,” IEEE International Con-
ference on Multimedia and Expo, Beijing, 2-5 July 2007,
pp. 2214-2217. doi:10.1109/ICME.2007.4285125

[29] R. E. Kontak, “Applicability of Ada Tasking for Avionics
Executives,” Proceedings of the IEEE 1988 National
Aerospace and Electronics Conference, Dayton, 23-27
May 1988, Vol. 2, pp. 739-746.

[30] J. A. Stankovic, “Misconceptions about Real-Time Comp-
uting: A Serious Problem for Next-Generation Systems,”
Computers, Vol. 21 No. 10, 1988, pp. 10-19.
doi:10.1109/2.7053

[31] W. A. Halang and A. D. Stoyenko, “Comparative Evalua-
tion of High-Level Real-Time Programming Languages,”
Real-Time Systems, Vol. 2, No. 4, 1990, pp. 365-382.
doi:10.1007/BF01995678

[32] M. J. Pont, S. Kurian and R. Bautista-Quintero, “Meeting
Real-Time Constraints Using ‘Sandwich Delays’,” Trans-
actions on Pattern Languages of Programming I, Sprin-
ger, Berlin, 2009, pp. 94-102.

[33] S. Kurian and M. J. Pont, “Maintenance and Evolution of
Resource-Constrained Embedded Systems Created Using
Design Patterns,” Journal of Systems and Software, Vol.
80, No. 1, 2007, pp. 32-41. doi:10.1016/j.jss.2006.04.007

[34] M. Nahas, M. J. Pont and A. Jain, “Reducing Task Jitter
in Shared-Clock Embedded Systems Using CAN,” In: A.
Koelmans, A. Bystrov and M. J. Pont, Eds., Proceedings
of the UK Embedded Forum, University of Newcastle
upon Tyne, Newcastle, 2004, pp. 184-194.

[35] Z. M. Hughes and M. J. Pont, “Reducing the Impact of
Task Overruns in Resource-Constrained Embedded Sys-
tems in Which a Time-Triggered Software Architecture is
Employed,” Transactions of the Institute of Measurement
and Control, Vol. 30, No. 5, 2008, pp. 427-450.
doi:10.1177/0142331207086183

[36] A. Burns and A. J. Wellings, “Concurrent and Real-Time
Programming in Ada 2005,” Cambridge University Press,
Cambridge, 2007.

[37] Ashling Microsystems, “LPC2000 Evaluation and De-
velopment Kits Datasheet,” 2007.
http://www.ashling.com/pdf_datasheets/DS266-EvKit200
0.pdf

[38] Philips Semiconductors, “LPC2106/2105/2104 USER
MANUAL,” 2003.
http://www.standardics.nxp.com/products/lpc2000/datash
eet/lpc2104.lpc2105.lpc2106.pdf

[39] National Instruments, “Low-Cost E Series Multifunction
DAQ – 12 or 16-Bit, 200 kS/s, 16 Analog Inputs,” 2006.
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC
_212-213.pdf

[40] LabVIEW, “LabVIEW 7.1 Documentation Resources,”
2007.
http://digital.ni.com/public.nsf/allkb/06572E936282C0E4
86256EB0006B70B4

http://dx.doi.org/10.1109/PROC.1977.10771
http://dx.doi.org/10.1023/A:1007964222989
http://dx.doi.org/10.1109/ICME.2007.4285125
http://dx.doi.org/10.1109/2.7053
http://dx.doi.org/10.1007/BF01995678
http://dx.doi.org/10.1016/j.jss.2006.04.007
http://dx.doi.org/10.1177/0142331207086183
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_212-213.pdf
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_212-213.pdf

