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ABSTRACT 

In many real-time resource-constrained embedded systems, highly-predictable system behavior is a key design re-
quirement. The “time-triggered co-operative” (TTC) scheduling algorithm provides a good match for a wide range of 
low-cost embedded applications. As a consequence of the resource, timing, and power constraints, the implementation 
of such algorithm is often far from trivial. Thus, basic implementation of TTC algorithm can result in excessive levels of 
task jitter which may jeopardize the predictability of many time-critical applications using this algorithm. This paper 
discusses the main sources of jitter in earlier TTC implementations and develops two alternative implementations – 
based on the employment of “sandwich delay” (SD) mechanisms – to reduce task jitter in TTC system significantly. In 
addition to jitter levels at task release times, we also assess the CPU, memory and power requirements involved in 
practical implementations of the proposed schedulers. The paper concludes that the TTC scheduler implementation 
using “multiple timer interrupt” (MTI) technique achieves better performance in terms of timing behavior and resource 
utilization as opposed to the other implementation which is based on a simple SD mechanism. Use of MTI technique is 
also found to provide a simple solution to “task overrun” problem which may degrade the performance of many TTC 
systems. 
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1. Introduction 

Embedded systems are often implemented as a collec-
tion of communicating tasks [1]. The various possible 
system architectures can then be characterized according 
to these tasks. For example, if the tasks are invoked as a 
response to aperiodic events, the system architecture is 
described as “event-triggered” [2,3]. Alternatively, if the 
tasks are invoked periodically under the control of timer, 
the system architecture is described as “time-triggered” 
[3,4]. Since highly-predictable system behavior is an 
important design requirement for many embedded sys-
tems, time-triggered software architectures have become 
the subject of considerable attention (e.g. see [4]). In 
particular, it has been widely accepted that time-triggered 
architectures are a good match for many safety-critical 
applications, since they help to improve the overall safety 
and reliability [5-10]. In contrast with the event-triggered, 

time-triggered systems are easy to validate, verify, test, 
and certify because the times related to tasks are de-
terministic [11,12]. 

Moreover, embedded systems can also be character-
ized according to the natures of their tasks. For example, 
if the tasks – once invoked – can pre-empt (interrupt) 
other tasks, then the system is described as “pre-emptive”. 
If, instead, tasks cannot be interrupted, the system is de-
scribed as “non pre-emptive” or “co-operative”. When 
comparing with pre-emptive, many researchers demon-
strated that co-operative schedulers have numerous de-
sirable features, particularly for use in safety-related sys-
tems [2,5,7,13,14].  

Cyclic executive is a form of co-operative scheduler 
that has a time-triggered architecture. In such “time- 
triggered co-operative” (TTC) architectures, tasks exe-
cute in a sequential order defined prior to system activa-
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tion; the number of tasks is fixed; each task is allocated 
an execution slot (called a minor cycle or a frame) during 
which the task executes; the task – once interleaved by 
the scheduler – can execute until completion without 
interruption from other tasks; all tasks are periodic and 
the deadline of each task is equal to its period; the 
worst-case execution time of all tasks is known; there is 
no context switching between tasks; and tasks are sched-
uled in a repetitive cycle called major cycle [15,16].  

Provided that an appropriate implementation is used, 
TTC schedulers can be a good match for a broad range of 
embedded applications, even those which have hard 
real-time requirements [15-21]. Overall, a TTC scheduler 
can be easily constructed using only a few hundred lines 
of highly portable code on high-level programming lan-
guages (such as “C”), while the resulting system is high-
ly-predictable [14]. Since all tasks in TTC scheduler are 
executed regularly according to their predefined order, 
such schedulers demonstrate very low levels of task jitter 
[16,22,23] and can maintain their low-jitter characteris-
tics even when complex techniques, such as “dynamic 
voltage scaling” (DVS), are employed to reduce system 
power consumption [20]. 

Despite many advantages, implementing the software 
code of TTC algorithm, with less care, can result in dem-
onstrating high levels of task jitter especially at the release 
times of low-priority tasks. The presence of jitter can have 
a detrimental impact on the performance of many em-
bedded applications. For example, [24] show that – dur-
ing data acquisition tasks – jitter rates of 10% or more can 
introduce errors which are so significant that any subse-
quent interpretation of the sampled signal may be ren-
dered meaningless. Similarly [25] discusses the serious 
impact of jitter on applications such as spectrum analysis 
and filtering. In embedded control systems, jitter can 
greatly degrade the performance by varying the sampling 
period [26,27]. Moreover, in applications – like distrib-
uted multimedia communications – the presence of even 
low amounts of jitter may result in a severe degradation in 
perceptual video quality [28].  

The present study is concerned with implementing 
highly-predictable embedded systems. Predictability is 
one of the most important objectives of real-time em-
bedded systems [20,29-31]. Ideally, predictability means 
that the system is able to determine, in advance, exactly 
what the system will do at every moment of time in 
which it is running and hence determine whether the 
system is capable of meeting all its timing constraints. 
One way in which predictable behavior manifests itself is 
in low levels of task jitter. 

The main aim of this paper is to address the problem 
of task jitter to enhance predictability of embedded ap-

plications employing TTC architectures. In particular, the 
paper discusses the main sources of jitter in the original 
TTC systems and proposes two new TTC scheduler im-
plementations which have the potential to reduce task 
jitter by means of employing “sandwich delay” (SD) me-
chanisms [32]. Such implementations will be referred to 
as TTC-SD and TTC-MTI schedulers.  

The remaining parts of the paper are organized as fol-
lows. Section 2 reviews basic TTC scheduler implemen-
tations and highlights their main drawbacks with regards 
to jitter behavior. In Section 3, we describe the TTC-SD 
and TTC-MTI schedulers. Section 4 outlines the experi-
mental methodology used to evaluate the described 
schedulers and provides the results in terms of task jitter 
and implementation costs (i.e. resource requirements). 
We finally draw the overall paper conclusions in Section 
5. 

2. Basic Implementations of TTC Scheduler 

This section describes the implementation of the “origi-
nal TTC-Dispatch” scheduler [14] and discusses its main 
limitations. 

2.1. Overview  

The original TTC-Dispatch scheduler is driven by peri-
odic interrupts generated from an on-chip timer. When an 
interrupt occurs, the processor executes an Interrupt Ser-
vice Routine (ISR) Update function. In the Update func-
tion, the scheduler checks the status of all tasks to see 
which tasks are due to run and sets appropriate flags. 
After these checks are complete, a Dispatch function will 
be called, and the identified tasks (if any) will be exe-
cuted in sequence. The Dispatch function is called from 
an “endless” loop placed in the Main code and when not 
executing the Update and Dispatch functions, the system 
will usually enter a low-power “idle” mode. This process 
is illustrated schematically in Figure 1. Note that such a 
scheduler has previously been referred to as TTC- 
Dispatch scheduler [33]. 

Despite that TTC schedulers provide a simple, 
low-cost and highly-predictable software platform for 
many embedded applications, such a basic implementa-
tion of the TTC scheduler can introduce high levels of 
jitter at task release times [34]. This point is further dis-
cussed as follows. 

2.2. Task Jitter 

In periodic tasks, variations in the interval between the 
release times are termed jitter. As previously noted, the 
presence of jitter can – in many systems – result in less 
predictable operation and cause a detrimental impact on 
the system performance. Since our focus in this paper is  

Copyright © 2011 SciRes.                                                                              JSEA 



Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 419
Time-Triggered Co-operative Architectures 

Main () Sleep ()Task ()Dispatch ()Update ()

 
Figure 1. Function call tree for the original TTC scheduler. 

 
on TTC schedulers, we identify the following three pos- 
sible sources of task jitter in such systems. 

1) Scheduling overhead variation 
The overhead of a conventional scheduler arises mainly 

from context switching. In some systems, such as those 
employing DVS [20], the scheduling overhead is com-
paratively large and may have a highly-variable duration. 
Figure 2 illustrates how a TTC system can suffer release 
jitter as a result of variations in the scheduler overhead.  

In [34], we observed that the underlying cause of this 
variation in the original TTC-Dispatch scheduler is the 
interrupt behavior. For example, when an interrupt occurs, 
the processor takes fixed time to leave the “idle” mode 
and begin to execute the ISR Update. However, in the 
Update, and before calling Dispatch, the scheduler goes 
through the task list and identifies which task is due to run. 
Such check activities cannot be fixed in time if there is 
more than one scheduled task to run. In order to deal with 
this problem, a “modified TTC-Dispatch” scheduler has 
been developed [34]. The proposed scheduler controls the 
jitter in the first task (which is implicitly the “top priority” 
task with hardest timing constraints) by re-arranging the 
activities performed in the Update and Dispatch functions. 
Specifically, the Update function is very short and has a 
fixed duration: it simply keeps track of the number of 
Ticks. The dispatch activities will then be carried out in 
the Dispatch function. By doing so, we make sure that the 
first task in the system is always free of jitter. Note that the 
function call tree for the modified TTC-Dispatch sched-
uler is same as the original TTC-Dispatch scheduler 
(Figure 1). 

2) Task placement 
Even if we can avoid variations in the scheduler over-

head, we may still have problems with jitter in a TTC 
scheduler as a result of the task placement.  

To illustrate this, consider Figure 3. In this schedule, 
Task C runs sometimes after A, sometimes after A and B, 
and sometimes alone. Therefore, the period between every 
two successive runs of Task C is highly variable. Such a 
variation can be called “schedule-induced” jitter. More-
over, if Task A and Task B have variable execution dura-
tions, then the jitter levels of Task C will even be larger. 
This type of jitter is called “task-induced” jitter. The 
original and modified TTC-Dispatch schedulers are not 
capable of dealing with jitter caused by the task place-
ment. 

3) Tick drift  
For completeness, we also consider tick drift as a 

source of task jitter. In the TTC designs considered in this 
paper, a clock tick is generated by a hardware timer that is 
linked to an ISR. This mechanism relies on the presence of 
a timer that runs at a fixed frequency: in these circum-
stances, any jitter will arise from variations at the hard-
ware level (e.g. through the use of a low-cost frequency 
source, such as a ceramic resonator, to drive the on-chip 
oscillator: see [14]).  

In the scheduler implementations considered in this 
paper, the software developer has no control over the 
clock source. However, in some circumstances, those 
implementing a scheduler must take such factors into 
account. 

For example, in situations where DVS is employed (to  
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Figure 2. Release jitter caused by variation of scheduling overhead. 
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Figure 3. Release jitter caused by task placement in TTC schedulers. 
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reduce CPU power consumption), it may take a variable 
amount of time for the processor’s Phase-Locked Loop 
(PLL) to stabilize after the clock frequency is changed. As 
discussed elsewhere, it is possible to compensate for such 
changes in software and thereby reduce jitter (see [20]). 
Such techniques are not considered further in this paper. 

3. Modified implementations of TTC  
Scheduler 

Our concern in this paper is on jitter caused mainly by the 
task placement. To reduce this type of jitter, we introduce 
two techniques which can be incorporated in the basic TTC 
scheduler framework. These techniques are described here. 

3.1. Adding “Sandwich Delays” 

One way to reduce the variation in the starting times of 
“low-priority” tasks in TTC system is to place “Sandwich 
Delay” (SD) [32] around tasks which execute prior to other 
tasks in the same tick interval. Such a modified TTC 
scheduler implementation will be referred to as TTC-SD 
scheduler. 

In the TTC-SD scheduler, sandwich delays are used to 
provide execution “slots” of fixed sizes in situations where 
there is more than one task in a tick interval. To clarify this, 
consider the set of tasks shown in Figure 4. In the figure, 
the required SD prior to Task C – for low jitter behavior – 
is equal to the estimated “worst-case execution time” 
(WCET) of Task A plus Task B. This implies that in the 
second tick (for example), the scheduler runs Task A and 
then waits for the period equals to the WCET of Task B 
before running Task C. The figure shows that when SDs 
are used, the periods between any successive runs of Task 
C become equal and hence jitter in the release time of this 
task is significantly reduced. 

Note that – with this implementation – estimated 
WCET for each task is input to the scheduler through a 
function placed in the Main code. After entering task 
parameters, the scheduler calculates the scheduler major  
 

cycle and the required release time for each task. Note that  
the required release time of a task is the time between the 
start of the tick interval and the start of the predefined task 
“slot” plus a little safety margin. 

3.2. Working with “Multiple Timer Interrupts” 

Although the use of SD can help to reduce jitter in 
low-priority tasks significantly, this approach does not 
give such a precise control over timing and can signifi-
cantly increase the levels of CPU power consumption. 
This is because the processor is forced to run in normal 
operating mode while the SD is executing. To address 
both problems, a modified sandwich delay mechanism 
that uses “Multiple Timer Interrupt” (MTI) is developed. 
The TTC scheduler incorporating MTI technique will be 
referred to as TTC-MTI scheduler. 

In the TTC-MTI scheduler, several timer interrupts are 
used to generate the predefined execution “slots” for tasks. 
This allows more precise control of timing in situations 
where more than one task executes in a given tick interval. 
The use of interrupts also allows the processor to enter an 
“idle” mode after completion of each task, resulting in 
power saving. 

To implement this technique, two interrupts are re-
quired:  
 Tick interrupt: to generate the scheduler periodic tick. 
 Task interrupt: to trigger the execution of tasks within 

tick intervals. 
The complete process is illustrated in Figure 5. In this 

figure, to achieve zero jitter, the required release time 
prior to Task C (for example) is equal to the WCET of 
Task A plus the WCET of Task B plus scheduler overhead 
(i.e. ISR Update function). This implies that in the second 
tick (for example), after running the ISR, the scheduler 
waits – in the “idle” mode – for a period of time equals to 
the WCETs of Task A and Task B before running Task C. 
Figure 5 shows that with the MTI technique, the periods  
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Figure 4. Using Sandwich Delays to reduce release jitter in TTC schedulers. 
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Figure 5. Using MTIs to reduce release jitter in TTC schedulers. 
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between the successive runs of Task C (the “lowest pri-
ority” task) are always equal. This means that the task 
jitter in such implementation is independent on the task 
placement or the duration(s) of the preceding task(s). 

In fact, the method described here requires no more 
than two timers or one timer – with multiple channels – in 
total. The hardware used in this study to implement this 
scheduler (Section 4.1) supports multiple channels per 
timer, allowing efficient use of the available resources. 

In the TTC-MTI, the estimated WCET for each task is 
also input to the scheduler through the Main code. The 
scheduler then calculates the scheduler major cycle and 
the required release time for each task. Moreover, there is 
no Dispatch called in the Main code: instead, “interrupt 
request wrappers” – which contain Assembly code – are 
used to manage the sequence of operation in the whole 
scheduler. The function call tree for the TTC-MTI sche-
duler is shown in Figure 6. 

Unlike the normal Dispatch schedulers, the TTC-MTI 
implementation relies on two interrupt Update functions: 
Tick Update and Task Update. The Tick Update – which 
is called every tick interval (as normal) – identifies which 
tasks are ready to execute within the current tick interval. 
Before placing the processor in the “idle” mode, the Tick 
Update function sets the match register of the task timer 
according to the release time of the first due task running 
in the current interval. Calculating the release time of the 
first task in the system takes into account the WCET of the 
Tick Update code. 

When the task interrupt occurs, the Task Update sets 
the return address to the task that will be executed straight 
after this update function, and sets the match register of 
the task timer for the next task (if any). The scheduled task 
then executes as normal. Once the task completes execu-
tion, the processor enters “idle” mode and waits for the 
next task interrupt or tick interrupt (depending on the task 
schedule). Note that the Task Update code has fixed ex-
ecution duration to avoid jitter at the starting time of tasks. 

Furthermore, it is worth noting that the TTC-MTI 
scheduler also provides a simple solution to “task over-
run” problem in TTC system which may – in many cases – 
have serious impacts on system behavior [35]. More spe-
cifically, the integrated MTI technique helps the TTC 
scheduler to shutdown any task exceeding its estimated 
“worst-case execution time” (WCET) [36]. In the im-
plementation considered, if the overrunning task is follo- 

wed by another task in the same tick, then the task inter-
rupt – which triggers the execution of the latter task – will 
immediately terminate the overrun. Otherwise, the task is 
allowed to overrun until the next tick interrupt where a 
new tick will be launched. Please note that this issue will 
not be discussed further in this paper. 

4. Evaluating the TTC-SD and TTC-MTI 
Schedulers 

This section first outlines the experimental methodology 
used to evaluate the TTC-SD and TTC-MTI schedulers. It 
then presents the output results in terms of task jitter and 
implementation costs. Note that the results obtained from 
the new schedulers are compared with those obtained 
from the “modified TTC-Dispatch” scheduler [34] to 
highlight the impact of the proposed schedulers on the 
low-priority task jitter. 

4.1. Experimental Methodology 

We first outline the experimental methodology used to 
obtain the results presented in this section.  

1) Hardware platform 
The empirical studies reported in this paper were con-

ducted using Ashling LPC2000 evaluation board sup-
porting Philips LPC2106 processor [37]. The LPC2106 is 
a modern 32-bit microcontroller with an ARM7 core 
which can run – under control of an on-chip PLL – at 
frequencies from 12 MHz to 60 MHz [38]. The oscillator 
frequency used was 12 MHz, and a CPU frequency was 60 
MHz. The compiler used was the GCC ARM 4.1.1 oper-
ating in Windows by means of Cygwin (a Linux emulator 
for windows). The IDE and simulator used was the Keil 
ARM development kit (v3.12). 

2) Jitter test 
For meaningful comparison of jitter results, the fol-

lowing task set was used (Figure 7). To allow exploring  
the impact of schedule-induced jitter, Task A was sched-
uled to run every two ticks. Moreover, all tasks were set to 
have variable execution durations to allow exploring the 
impact of task-induced jitter. Note that the duration of 
Task A is double the duration of Task B and Task C. Also, 
Task A has the highest priority and Task C has the lowest 
priority. 

Jitter was measured at the release time of each task. To 
measure jitter experimentally, we set a pin high at the 
beginning of the task (for a short time) and then measure 

Main ()
Tick

Update ()
Sleep ()

Task
Update ()

Task () Sleep ()

If Task () is not the last due task in the tick

If Task () is the last due task in the tick

 
Figure 6. Function call tree for the TTC-MTI scheduler. 
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Figure 7. Graphical representation of the task set in jitter test. 

 
the periods between every two successive rising edges. 
We recorded 5000 samples in each experiment. The pe-
riods were measured using a National Instruments data 
acquisition card “NI PCI-6035E” [39], used in conjunc-
tion with appropriate software LabVIEW 7.1 [40].  

To assess the jitter levels, we report two values: “av-
erage jitter” and “difference jitter”. The difference jitter is 
obtained by subtracting the minimum period from the 
maximum period obtained from the measurements in the 
sample set. This jitter is sometimes referred to as “abso-
lute jitter” [23]. The average jitter is represented by the 
standard deviation in the measure of average periods. 
Note that there are many other measures that can be used 
to represent the levels of task jitter, but these measures 
were felt to be appropriate for this study. 

3) CPU test 
To obtain CPU overhead measurements in each sche-

duler, we run the scheduler for 25 seconds and then, using 
the performance analyzer supported by the Keil simulator, 
the total time used by the scheduler code was measured. 
The percentage of the measured CPU time out of the total 
running time was also reported. 

4) Memory test 
In this test, CODE and DATA memory values required 

to implement each scheduler were recorded. Memory 
values were obtained using the “map” file created when 
the source code is compiled. The STACK usage was also 
measured (as part of the DATA memory overhead) by 
initially filling the data memory with “DEAD CODE” 
and then reporting the number of memory bytes that had 
been overwritten after running the scheduler for suffi-
cient period. 

5) Power test 
To obtain representative values of power consumption, 

the input current and voltage to the LPC2106 CPU core 
were measured while executing the scheduler. Again, the 
measurements were obtained by using the National In-
struments data acquisition card “NI PCI-6035E” in con-

junction with LabVIEW 7.1 software. The sampling rate 
of 10 KHz was used over a period equal to 5000 major 
cycles. Values for currents and voltages were then multi-
plied and then averaged out to give the power consump-
tion results. 

4.2. Jitter Results 

It can clearly be noted from Table 1 that the use of SD 
mechanism in TTC schedulers caused the low-priority 
tasks to execute at fixed intervals. However, the jitter in 
the release times of Tasks B and Task C was not elimi-
nated completely. This residual jitter was caused by vari-
ation in time taken to leave the software loop – used in the 
SD mechanism to check if the required release time for the 
concerned task was matched – and begin to execute the 
task. 

The results also show that the TTC-MTI scheduler 
helped to remove jitter in the release times of all tasks: this 
in turn would help to cause a significant enhancement in 
the overall system predictability. 

4.3. CPU, Memory and Power Requirements 

Table 2 show that the overall processing time required 
for the TTC-SD scheduler is equal to 74% of the total 
run-time. This overhead figure is too large compared to 
that obtained from the other schedulers considered in this 
paper (which was approximately equal to 40%). The ob-
served increase in processing time is expected when such 
a SD approach is used: since the CPU is forced to run in 
normal operating mode while waiting for tasks to start 
their execution. 

The results in Table 3 show that the Code memory 
required in the TTC-MTI scheduler were slightly smaller 
than those used to implement the other schedulers while 
the Data memory requirements were larger. Remember 
that – compared to the other schedulers – the overall ar-
chitecture was rather different in TTC-MTI (see Section 
3.2). 

Copyright © 2011 SciRes.                                                                              JSEA 



Employing Two “Sandwich Delay” Mechanisms to Enhance Predictability of Embedded Systems Which Use 423
Time-Triggered Co-operative Architectures 

Table 1. Task jitter from the modified TTC-Dispatch, TTC-SD and TTC-MTI schedulers. 

Scheduler  Task A Task B Task C 

Min Period (µs) 9999.4 2988.4 2164.3 

Max Period (µs) 9999.5 7011.1 7864.1 

Average Period (µs) 9999.5 4882.0 4799.3 

Diff. Jitter (µs) 0.1 4022.7 5699.8 

Modified TTC-Dispatch scheduler

Avg. Jitter (µs) 0.0 1172.7 1226.9 

Min Period (µs) 9999.4 4999 4999 

Max Period (µs) 9999.5 5000.5 5000.5 

Average Period (µs) 9999.5 4999.8 4999.7 

Diff. Jitter (µs) 0.1 1.5 1.5 

TTC-SD scheduler 

Avg. Jitter (µs) 0 0.4 0.3 

Min Period (µs) 9999.4 4999.7 4999.7 

Max Period (µs) 9999.5 4999.7 4999.7 

Average Period (µs) 9999.5 4999.7 4999.7 

Diff. Jitter (µs) 0.1 0.0 0.0 

TTC-MTI scheduler 

Avg. Jitter (µs) 0.0 0.0 0.0 

 
Table 2. CPU overheads for the modified TTC-Dispatch, TTC-SD and TTC-MTI schedulers. 

Scheduler Scheduler time (s): Total time (s): Overhead % 
Modified TTC-Dispatch scheduler 9.93 25.01 39.7 

TTC-SD scheduler 18.5 25.0 74.0 

TTC-MTI scheduler 9.9 25.01 39.6 

 
Table 3. Memory requirements for the modified TTC-Dispatch, TTC-SD and TTC-MTI schedulers. 

Scheduler 
ROM requirements 

(Bytes) 
RAM requirements 

(Bytes) 
Modified TTC-Dispatch scheduler 4012 325 

TTC-SD scheduler 5344 310 

TTC-MTI scheduler 3620 514 

 
Table 4. Power consumption in the modified TTC-Dispatch, TTC-SD and TTC-MTI schedulers. 

Scheduler Power consumption (mW) 

Modified TTC-Dispatch scheduler 35.7 

TTC-SD scheduler 54.5 

TTC-MTI scheduler 36.3 

 
Note from Table 4 that in the TTC-SD scheduler, the 

CPU power consumption was significantly increased. 
This was, again, due to the processor running in normal 
operating mode whilst executing the SD function. 

5. Conclusions 

Time-triggered co-operative architectures provide simple, 
low-cost software platforms for a wide range of embedded 
applications in which highly-predictable system behavior 
is a key design requirement. Simple TTC implementations 
based on periodic timer interrupts can provide highly- 

-predictable behavior for the first task in every tick in-
terval. However, if more than one task are executed in a 
tick interval, the release times of later tasks will depend 
(in many cases) on the execution time of earlier tasks. As 
demonstrated in this paper, use of “sandwich delay” me-
chanisms with the TTC scheduler framework can sig-
nificantly reduce jitter levels in later tasks. 

The results presented in the paper show that, although 
the TTC-SD scheduler helped to reduce jitter in the task 
release times significantly, such jitter could not be re-
moved completely and the CPU overhead (and, hence, 
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system power consumption) was increased. Therefore, the 
TTC-MTI scheduler was developed to provide a better 
solution where all tasks became free of jitter while the 
system maintained its low CPU overhead and power re-
quirements. The TTC-MTI scheduler achieved this per-
formance by using multiple timers to adjust the timing for 
tick and tasks and also utilizing the “idle” mode when the 
processor is not executing tasks or ISR functions. More-
over, the TTC-MTI scheduler has the potential to over-
come the problem of task overrun, thereby increasing the 
overall system predictability. 

Finally, it is important for embedded software devel-
opers who decide to employ any of the described tech-
niques or adapt them for use in their existing designs to 
take into account the implementation costs (in terms of 
CPU, memory and power resources) in addition to the 
maximum levels of jitter that each task in the system can 
tolerate. 
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