
Journal of Software Engineering and Applications, 2011, 4, 195-216
doi:10.4236/jsea.2011.44023 Published Online April 2011 (http://www.SciRP.org/journal/jsea)

Copyright © 2011 SciRes. JSEA

195

End to End Development Engineering
Abdelgaffar Hamed1, Robert M. Colomb2

1College of Computer Science and Information Technology, Sudan University of Science and Technology, Khartoum, Sudan;
2Faculty of Computer Science and Information Systems, Universiti Technologi Malaysia, Skudai, Malaysia.
Email: abdalgafarhamid@sustech.edu, colomb@siswa.utm.my

Received February 22nd, 2011; revised March 10th, 2011; accepted March 13th, 2011.

ABSTRACT
Raising software abstraction and re-use levels are key success factors for producing quality software products. Model-
driven architecture (MDA) is an OMG initiative following this trend by mapping a conceptual model of application
specified in platform independent model (PIM), to one or more platform specific models (PSM) automatically. Because
there is little previous work tackling the development problem from specification through to implementation, this paper
proposes End to End Development engineering (E2EDE) method using MDA methodology. E2EDE is intended to fill
the mapping gap between PIM and PSM in MDA. The notion of variability is utilized from software product line and
used to model design decisions in PSM. PIM is equipped with Nonfunctional requirements which borrowed from Design
pattern to inform design decisions; thereby guiding the mapping process. In addition we have developed a strategic
PSM for messaging systems can be configured to produce different applications such as the helpdesk system which is
used as a case study.

Keywords: End to End Engineering, MDA, Metamodeling, Domain Engineering

1. Introduction
The complexity of producing large-scale software systems
is increasing due to the increased complexity of require-
ments. Technologies are volatile for many reasons but
enhancing the quality of services is among clear reasons
justified by software providers. For example, java plat-
form versions and Google chrome browser has adopted
new browsers technology. The functionality of browsers
is already crafted (i.e. Mozilla) but putting it into a new
fashion is because of security, performance, reliability,
and etc. On other hand, service-based system (SOA) has
emerged as new engineering discipline encourages orga-
nizations to integrate their systems in a seamless manner.
These highlight questions like 1) How to extend the tra-
ditional methods (Code-based) in a longlived architec-
ture to deliver these new businesses? 2) how to provide
an effective integration with legacy systems? 3) If a deci-
sion is made to change technology (acquiring new qual-
ity such as security and performance) is the design easily
adaptable? The trend now is proposing model-based en-
gineering approach which means separating concerns
where software development is driven by a family of
high level languages [1]. To this end abstraction level is
raised above 3GLs which increases re-using

theme and put software artifact into a situation of core
asset. More importantly formalizing of these artifacts (i.e.
metamodels) leads to realize the benefit of high degree of
automation. This means a machinery of specification (i.e.
UML), synchronization and management of these models
are essential. Thus, software not a program became like
an information system itself. Thereby the crafting of code
is becoming a manufacturing process not a personal skill.

Model Driven Architecture (MDA) is a new software
development method following that trend. It raises ab-
straction level and maximizes re-use. Using MDA, we
will be able to work with software artifacts as assets
which from the software engineering perspective is a ma-
jor success factor for reliable and fast development. The
philosophy of MDA is to do more investment on soft-
ware artifacts (models) to increase their efficiency, lead-
ing to systematic and more powerful mechanisms for so-
ftware re-use.

MDA is an aspect of the more general discipline of
software reuse. The synergistic relationship among MDA
and the longer-established areas of Design pattern and
software product line engineering (SPL) [2] has been stu-
died as part of the present research [3,4].

The problem of producing a complete solution from
specification through to implementation is still a long

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

196

standing research aim, and because of the mapping gap
from PIM to PSM, E2EDE has emerged. Most of previ-
ous work in MDA has been on infrastructure and compo-
nents. Therefore the major question in this paper is how
to write a program in MDA?

End to End development engineering (E2EDE) is a
new trend to software engineering, proposed to answer
that question, which uses MDA methodology and explo-
its some experience from Software Product Line (SPL)
and lessons from Design Pattern (e.g. nonfunctional re-
quirements) to automate the development from specifica-
tion through to implementation. In doing so, we need to
investigate the relationships among MDA, SPL, and de-
sign pattern and how MDA can fit on them. Therefore the
contributions of the paper are the following:

1) We present E2EDE to automate the mapping pro-
cess as realization to MDA which is intended to produce
products without entirely writing code.

2) We discuss the relationship between MDA, SPL,
and design pattern and how MDA can fit in the both lon-
ger established re-using approaches.

3) We share some lessons learned and challenges of
MDA software engineering in practice.

Domain engineering is the key concept utilized from
SPL which realizes breeding of a number of products that
have similarity and some sort of variability in features.
Design pattern in the history of software engineering has
concerned with linking the design with nonfunctional
requirements. Therefore, Nonfunctional requirements is
borrowed as a concept.

The paper is organized as follows: Section 2 describes
MDA as a major method used in E2EDE. In Section 3 we
explain the problem through example of mappings from
QVT specification. The proposed E2EDE methodology
is discussed at Section 4. The concepts of E2EDE are
validated by case study at Section 5. Sections 6 and 7
describe the relationship among MDA, Design Pattern
and SPL. Section 8 draws on the principle of MDA and
shows a case of strategic PSM. In Sections 9 and 10 we
discuss MDA and E2EDE implementation aspects re-
spectively. In Section 11 the realistic value of our ap-
proach with existing platforms is investigated. A conclu-
sion is presented in Section 12.

2. Model Driven Architecture (MDA)
MDA is a new development paradigm initiated by the
OMG aimed at software development driven by model [1].
In this case, a Platform Independent Model (PIM) is used
to specify application behavior or logic by using MOF or
a MOF-complaint modeling language [3]. This step re-
presents a problem space in an application-oriented pers-
pective. A Platform Specific Model (PSM) is used to rea-
lize a PIM. It represents a solution space from an imple-

mentation-oriented point of view. Therefore, a transfor-
mation from the problem space to the solution space is
required. The automation of this process is the ultimate
goal of MDA. Thereby, when we need to change the ap-
plication, changes will be in only one part (PIM) without
affecting implementation technologies (PSM). Converse-
ly, when the platform such as SQL Server is changed re-
targeting a new platform for example new version (has
enhanced feature), we need only to select the appropriate
PSM and then regenerate the code not only without mod-
ifying PIM but also this time re-using most of the trans-
formation. Productivity becomes higher and cost is redu-
ced due to the increased reuse of models. In addition,
maintenance becomes cheaper. It is worthwhile to obser-
ve here that MDA is working with models as assets that
can be reused once the initial investment is made. MDA
depends on a well established code-base.

2.1. MDA Transformation Process
The transformation from PIM to PSM is done by a map-
ing function, which is a collection of mapping rules. In
this case some or all of the content of the target model is
defined. It is expected that when MDA automates this
process, development efficiency and portability would
significantly increase. In addition, the mapping function
can be repeated many times (re-used) for different appli-
cations using the same PIM and PSM metamodels. MDA
also helps avoid risks of swamping the application with
implementation detail which causes model divergence [5].

The steps of designing a system is to create a concept-
tual model by designers for application requirements and
developing another implementation model to map the fir-
st into the second. But this might involve many sub acti-
vities. However, we can divide MDA into two major pro-
cesses [1]:

1) Model to Model mappings
The mapping in this stage does not consider any speci-

fic characteristics or special cases that apply to technolo-
gy or platform (called M2M). The result of this phase is
still high level model but for code (PSM instances).

2) Bringing in a Particular Platform
The goal of this mapping (sometimes called M2T) is

tailoring the conceptual model to specific technology.
Different platforms have different features and constrain-
ts so step 1 will be refined to conform to features of one
of the selected platform. The result in this phase is expec-
ted to be context dependant code expressed in a platform
concrete syntax. In fact, we intended to use the word
bringing to denote applying the principle of MDA in de-
veloping standard PSM.

2.2. Metamodeling
The conceptual model of the design language such as

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

197

UML data model (i.e. class diagram) is called a meta-
model, which has concept like a class. A particular design
in a design language is called model instance like student
class in the student record system. This model instance
can be visualized by using UML model instance (i.e. ob-
ject diagram) but also MOF has similar model instances
metamodel. A metamodel defines a schema for database
called a repository. The population of this repository is
the model instance. Formation rules of the metamodel are
expressed as constraint on the repository [6]. A meta-
model represents syntax of a modeling language. If the
metamodel tells the designer how to create a model in-
stance, it is said to be concrete syntax [6]. If it does not,
it is said to be abstract syntax. Therefore, sometimes
rendering conventions augmented with abstract syntax to
generate concert syntax like MOF instance specification
[7].

Model-based design that relies on a repository (tables
or data structure) for storing a complex object (design), is
the key art behind the MDA approach. For example QVT
mappings are specified as patterns on schemas, or meta-
model [8]. In this way, information contained in the mo-
dels is separated from the algorithms defining tool be-
havior, instead of being hard-coded into a tool. The algo-
rithmic part of tool communicates with models via an
abstract program interface (API), which affords the facil-
ity to create, modify and access the information in models
[9]. Further, MDA tools can transform model instances
into various forms. For example, the mappings from PIM
to PSM takes PIM metamodel instances from the instan-
ce repository and turns it into corresponding instances
updating the target repository, moving from problem spa-
ce to solution space.

This mapping activity is done using standard language
independent of the source and target. The metamodel of
the mapping from end to another end can also be re-used
as an asset.

2.3. Query, Views, and Transformations (QVT)
Two kinds of transformation are recognized in MDA
community:
• Horizontal, that does not change the abstraction

level, for example from PIM to PIM which is used
when a model is enhanced, filtered or specialized
(mapping from analysis to design),

• Vertical, that changes the abstraction level, for ex-
ample projection to the execution infrastructure.
Four types of these transformations are categorized
in [10].

There are tools to specify such mappings, such as
query-view-transform QVT [8]. QVT is an OMG standard
which helps us to specify rules for the transformation
function. QVT uses the concept of predicate (expression

evaluated to true or false) and pattern (set of expressions)
in much similar way as prolog programming language.

The intended scenario of writing a program using MDA
will be demonstrated first by an example then below in
our case study where the mapping task is the major activ-
ity. Generally the application development is a process
involves many transformations so vertical and horizontal
or combination of them might be used.

3. MDA Example and Mapping Problem
We will use the QVT specification [8] example of object
to relational mappings in order to understand where the
problem is in this context. For sake of simplicity we fo-
cus on part of the mappings between PIM (object model)
and PSM (relational model). This example shows the
mappings take place between simplified UML2 metamo-
del in Figure 1, the PIM, and the PSM in Figure 2.

The mapping between conceptual models and relatio-
nal schema is well established in the database. The gen-
eral idea is that classes map to tables, packages map to
schemas, attributes to columns, and associations to for-
eign keys. We will discuss part of this mapping informal-
ly then we will show simple QVT rules for that.

In Figures 3 and 4 examples we have a relation (use
to specify rules of mapping source to target) named Pac-
kageToSchema, and ClassToTable. Both have two do-
mains that will match elements in uml (our PIM) and
rdbms (our PSM).The relation ClassToTable specifies the
map of a class which has attribute name with value equal
the variable “cn”. All classes instances in uml repository
will populate this variable one by one. For example if the
model instance of our PIM is student record system, these
will be person, lecturer, student, etc (M1). If the precon-
dition is satisfied by this way the enforce clause is very
similar to a checkonly clause. If there is an instance in
the rdbms repository satisfying the pattern expression,
then the enforce clause behaves as a predicate, with the
value true. If no such instance exists, then the QVT en-
gine will create one.

The mapping takes structural patterns in the M1 PIM
model (problem domain) instance into in some cases
quite different structural patterns in the M1 PSM model
(implementation domain). The patterns are described in
the M2 metamodel. Thereby that mapping is grasped as a
part of the process of specifying and implementing the
system. This process in most traditional software engi-
neering methods is done manually. The ultimate goal of
mapping is having a way to be able relate M0 instances
of the PIM to M0 instances of the PSM. But the standard-
document of MDA [1] does not specify how to do that.

MOF specification has described how to create instan-
ces from MOF-based metamodel. When we talk about
MOF we mean M2 level in the OMG hierarchy. Both

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

198

Figure 1. Simplified UML2 metamodel from QVT [8].

Figure 2. Simplified relational database model from QVT
specification [8].

create and destroy methods for objects and links are spe-
cified as MOF standard operations for creating and de-
leting dynamic objects [7]. So the objects created and
destroyed by these methods are of kind M1 objects for
M2 metaclasses. By this way an instance model will be
created for M2 metamodel elements similar like having
student, lecturer, and course, etc., instances. UML stan-
dard also specifies methods for creating instance model
for M1 objects which are M0.Hence since like the in-
stance model of record system is UML instance model
then it should be able to create m0 objects using UML
model instance inherited capabilities: create and destroy
of objects and links.

The intended scenario for mapping is that an applica-
tion using application terms have a facility to create ob-
jects which is PIM instance model. On other hand the
implementation model that is PSM creates objects corre-
sponding to that objects using PSM concepts and terms
which represents a design vocabulary. To this end still in
the MDA development (i.e. using MDA to solve prob-
lems) the question is how to do this process which re-
quires finding concrete technical mapping methods.

A general method to approach this problem is needed
whereby one could develop application without entirely

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

199

Figure 3. Mapping package to schema QVT rule.

Figure 4. Mapping class to table QVT rule.

writing code. Here the task for developer/modeler is a
function of specification where application requirements,
implementation and mapping metamodels are presented
using design languages such as UML/MOF and mapping
language such as QVT. In this case mapping and syn-
chronization among models are performed by toolset.

4. Proposed E2EDE Design &
Implementation

This section demonstrates key points of E2EDE and ex-
plores most important aspects that should be addressed.

4.1. Introduction
End to End development engineering (E2EDE) is a novel
paradigm intended to automate software development
from the specification end (i.e. object model) to the im-
plementation end (i.e. relational model) using the MDA
approach. The central issue is filling the mapping gap
between PIM and PSM in MDA.

Theoretically E2EDE is inspired from an investigation
of the synergistic relationship among MDA, SPL, and de-
sign patterns as we will see in Sections 6 and 7.The ratio-
nale behind establishing this relationship was from litera-
ture SPL and design patterns have long history of re-use
software development. So they are longer established re-
use methods. MDA is a more recent stream of re-use.
E2EDE engineering is going to exploit this relationship
to achieve its mapping goal. The key concept in SPL is
variability which gives customization or configuration
options. Variant feature is a place in the software artifact
can be populated by at least one variant at a time from a

set of variant. For example, if color is variant feature
then Red is one variant. We conceive design decisions as
variation points and the design choices as variants popu-
lating these points. This comes from the observation that
PSM as a design artifact has different structures most
properly lead to different architectural qualities. Therefore,
to model design decisions we need to represent variabil-
ity explicitly in the PSM. The study of the design pattern
approach highlights the importance of the relationship
between design and requirements, specifically nonfunc-
tional requirements, which is proposed to be modeled in
the PIM. Still there is a research gap in these areas on
how to map nonfunctional requirements with design de-
cisions systematically. The problem has been looked at
from one dimension, for example SPL has concerned only
with variability without considering NFR such as [2,3,11,
12] while design pattern has recognized the impact of
NFR dimension without variability in an explicit way
[13-15].

However, the benefit here is PSM construction could
be automated effectively because of consideration of de-
sign quality and management of single PSM. Hence, do-
cumenting variability in architecture and modeling non-
functional requirements explicitly will become major ac-
tivities during the development process. This section de-
monstrates key issues arising when we tackle E2EDE.
Further, these issues have been applied to a selected case
study to evaluate the possibility of the proposed enginee-
ring approach.

The ultimate goal of E2EDE is to provide a method of
generating a solution from one specific source to a spe-
cific target like for example, from object-model to rela-
tional model. The advantages of E2EDE are reflected in
the modeling support for the concepts in the domain and
the ability to do more than general-purpose languages do,
in addition to reduction of cost.

4.2. The Steps of E2EDE Process
In this section we will see the main steps of E2EDE. It
will be detailed step by step and finally summarized as
shown in Table 1.

4.2.1. Modeling Variation Points in PSM (Task A)
The key concept is to document variability in the PSM,
which can be thought of as an abstract data type similar
to the logical level in database systems. Usually, a solu-
tion is specified firstly at high abstraction level before
rendered into a database technology. Variability in this
PSM exposes different design decisions from the design
space. The design decisions we mean in this context are
architectural elements. Since it is possible to create diffe-
rent implementations from a generic specification, vari-
ability management concepts and techniques from SPL ex-

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

200

Table 1. The steps of E2EDE process.

Tasks Technique Specific Solution

A- Modeling Variation Points in PSM variability from SPL Profile For PSM

B- Analyzing Variability and categorized based on
PSM /mapping, and functional/non-functional

variability concepts + MDA concepts +
design concepts

Guidelines and informal steps help
categorizing different sorts.

C- Developing Profiles for variability &NFRs UML-based extension mechanisms MOF language

D-Modeling of Non-functional Requirements in PIM
and classified into package/class level nonfunctional requirements concepts Profile for PIM + guidelines for

classifying NFRs

E- Developing model-model mapping rules. QVT language QVT rules

F- Packaging mappings variability rules opaque rule QVT meta rules

G- Implement the system metamodels UML Package, Profile and relationship
program metamodels.

periences are utilized to document design decision vari-
ants explicitly in the architecture. For example we will see
in Section 5 two types of connection: Topic (indirect) and
Queue (direct) for a messaging system. The variability
difference is that in topic multiple subscribers receive a
message while in queue only one subscriber is allowed to
receive. This variability can be modeled as two different
structures at PSM or formally as variants populating the
connectionType variation point.

Since standard UML does not have a variability conce-
pt, modeling variability in a PSM we need to use a profile
to allow us to specify the variability ontology. A profile is
a special domain language used as an extension mechan-
ism to UML model elements while keeping their syntax
and semantic intact.Proposed metamodels and profiles in
the literature such as [2,12]can allow an architect to iden-
tify specific variation points, constraints and dependen-
cies that indicate different relationships between varia-
tion points (VP) and variants (V), VP and VP, etc.

Because we are using design model (i.e. class diagram)
the proposed profile here is different from these because
there is no need for dependency and constraints concepts.
They are built-in mechanisms whose semantics is speci-
fied with the mapping process and NFRs. Also, there is
no need for open and closed concepts which gives the
ability to add new variant or variation points because all
are closed in this situation (MDA works above 3 GLs).

Therefore, developing a suitable variability MOF-pro-
file is an essential part for the solution presented by
E2EDE.In fact there are alternative ways to model vari-
ability and nonfunctional requirements concepts using a
profile. The method we have chosen will help produce a
working system.

The variability ontology needed includes the concepts
variant indicated by <<V>> stereotype, variation point
indicated by <<VP>>, and an ID tag attribute to identify
each VP.

In Figure 5 the UML metaclass class is extended to

represent variant and variation point. A tagged value ex-
tension mechanism is used to model identifier and type
meta-attributes. Tagged values are additional meta-att-
ributes assigned to a stereotype, specified as name-value
pairs. They have a name and a type and can be used to
attach arbitrary information to model elements.For in-
stance, if we need to model ConnectionType (the two
kinds of connections in messaging system) variation
point we use the stereotype <<VP>> and for its variants
Queue and Topic we use two <<V>> at class level. Then
the tag for ConnectionType will be VPID =1and default
can take the value Direct. The effect tag of variant speci-
fies design decision consequences like resource consump-
tion.

4.2.2. Variability Analysis (Task B)
A taxonomy for variability has emerged from our analy-
sis of variability in software architecture artifacts. They
could be called Nonfunctional variability, Functional
variability and Mapping variability. SPL has been focu-
sed mainly on functional variability. An extensive analy-
sis of this can be found in [16]. Although our proposed
method includes this sort of variability, it highlights the
influence of Nonfunctional variability in the design. Most
of the issues discussed in Section 6.3 are of this kind.
Mapping variability can be seen in the problem of map-
ping superclass/subclass structures from object model in-
to relational model. It is not like the others because the
variation points are in the transformation, not in the PSM
(i.e. the mappings are parameterized). In this case the
mapping is from an object model as a source to the rela-
tional model as the target. The former specifies objects
and relationships between them which may includes su-
perclass-subclass relationship in a class diagram, while
the latter specifies relations and their structure. The meta-
models and mapping using QVT of these are well descri-
bed in [8].The target does not include a structure corre-
sponding to superclass-subclass in the source. To solve

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

201

Figure 5. Variability MOF-profiles.

this deficiency four options are suggested for this map-
ping in the standard database literature [17].

Generally these options can be classified into single-
relation and multiple-relation approaches named SR and
MR respectively. In the SR approach a table for super-
class attributes will be created with subclass attributes
included as optional while in MR approach table for each
subclass will be created. Two implementation techniques
are available for both. SR can be implemented by intro-
ducing one type attribute indicating the subclass to which
each tuple belongs (null values will introduced), or multi-
ple boolean type attributes can be used (allowing over-
lapping subclasses). MR has as one option with super
class attributes duplicated in each subclass table and ano-
ther option to share a key among superclass and subclass
tables.

For example, the option of one table for the superclass
with subclass attributes included as optional is a good de-
sign in terms of performance for SQL navigation, at a cost
of increased table space and increased integrity checking.

4.2.3. Modeling of Non-Functional Requirements
(Task D)

The E2EDE methodology considers NFRs as first class
objects which allow a PIM metamodel to be more infor-
mative. The separation of concerns (i.e. PIM-PSM) of
MDA effectively supports their representation.

Functional requirements are functions that the devel-

oped software must be capable of performing, while non-
functional requirements (NFRs) inform the design choi-
ces as to how functional requirements are going to be
realized in software products [16]. There is no one agreed
definition because of the extremely diverse nature of NFR.
In fact, practices like in design pattern shows a single
NFR can have different semantic interpretations (impact
on implementation) within the same application. These
can be called impact factors. For example in our case stu-
dy, connection types, session types, and message types are
impact factors affecting performance positively or nega-
tively. There is confusion in term usage where a term so-
metimes refers to the nature of the requirement and so-
metimes refers to the design decisions. We will be using
the term NFR to denote the nature of the requirement so
a PIM metamodel is the place where we can define spe-
cific NFR types.

The difficulty of modeling and integrating explicitly
NFRs (additional constraints) within the context of func-
tional requirements is the fact that NFR affects the system
as whole [18]. Non-functional requirements especially
related to architecture are called quality attributes [4].
They affect design decisions where different quality of
products can be distinguished. These are the decisions
that drive the system architecture. The representation and
categorization of non-functional requirements are still
under research. More than one piece of information con-

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

202

tributes negatively or positively to one NFR. Preliminary
results show diversity in terminology and orientation [4].
In addition, there are dependency relationship among
non-functional requirements. For example, in some cases
maintainability requires portability. More importantly
conflicts are found such as between performance and re-
liability as shown in our case study below.

The field of nonfunctional requirements as a compo-
nent in requirements engineering is less developed than
functional requirements[19], so there are only a few con-
tributions such as [14,20,21].We are going to follow a
simple approach that would be compatible with E2EDE.
For example, Zuh and Ian [22] proposed a generic UML
NFR Profile, but it is not suitable to work under MDA
because the assumption was to treat NFR and design de-
cision in one place. These are different (separate abstract-
tion levels) according to E2EDE’s principles. The 6-ele-
ments framework from SEI [21] follows a scenario-based
approach that presents a good way to resolve the over-
lapping problem between NFRs. Our approach simply
prioritizes NFRs to judge on design decisions, promoting
automation.

Since the types of NFRs differ greatly among classes
of application, a NFR Profile is needed as a domain spe-
cific language to allow system architecture to specify
NFRs easily in a PIM metamodel. According to investi-
gation in this track we have seen there is a need to priori-

tize NFRs so the toolset can tradeoff between NFRs or
resolve conflicts. Most of the current contribution to NFR
considers the human factor and does not take account of
tool support. For example Zhu and Ian [22] proposed for
the relationship between design decision and NFR: sup-
port, break, help and hurt. Daniel and Eric [14] follow the
same trend. In order to reach our goal we need to identity
NFRs so the identifier concept is used to discriminate
NFR instances. The 6-elements framework suggested by
[21] could be a useful tool for Non-functional analysis at
earlier development phases.

Figure 6 shows the elements of the NFR profile (Task
C) used by an architect to specify NFRs which is spe-
cializing a metaclass class with two tag attributes. Below
in the anchor is an example of an instance model. It also
shows NFRs can be at Package level, which represents
global NFRs such as Application Type, while delivery
mode is at class level. It also shows that NFRs can act as
Packagelevel, which represents global NFRs such as Ap-
plication Type, while delivery mode is at class level.

4.2.4. Transformation of informative PIM to PSM
(Task E)

The notion of transformation is hardly a new concept in
software engineering. Traditionally, most software engi-
neering work is conceived of as mapping, like the trans-
formation from software specification to software design.

Figure 6. NFR UML profile.

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

203

But what makes MDA different is considering mappings
as first class objects in the effort to formalize this process
by using standard languages such as QVT where mapping
is from one metamodel to another metamodel. This appr-
oach is a prerequisite for the automation that MDA is
seeking to achieve.

The key concept of MDA mapping is to resolve a stru-
cture pattern instance from PIM into a PSM correspond-
ing structure pattern(s) instance. For example, in case of
mapping from object model (PIM) to the relational mod-
el (PSM), a class instance will map to a table instance.

Our work proposes NFRs as major design drivers fee-
ding the mapping process. This feature facilitates the ma-
pping task where it becomes easier to select the corre-
sponding PSM structure. NFRs make the difference be-
tween two PSM configurations. For instance, as we will
see later there are two types of messages, persistent and
nonpersistent, in the messaging system. If performance
impact factor(s) are most important, the nonpersistent
variant is suitable while if reliability is a design issue, the
persistent variant is the best option. The former architect-
ture will expose performance quality while the latter will
expose reliability based on the additional computation the
application needs to maintain the message storing process.

4.2.5. Mappings of Class Operations
The class structure in UML includes methods or behavior.
Because maintaining different views in one model is
com-plex, UML supports capturing dynamic behavior of
the system separately by a set of behavioral diagrams
such as the activity diagram. This subsection is about
highlighting mapping problem from PIM instances of the
process model to PSM instances of its process model. In
this case a metamodel does not have user-defined opera-
tions, the MOF specification has defined default methods:
create object, destroy object, and create link in each MOF
metaclass [7]. Firstly, these methods are abstract methods.
Secondly, mappings of structural patterns are somehow
straightforward but the relationship between PIM be-
have- ioral model and PSM behavior is nonlinear. So
when mappings for example occurred for attributes
which are going to be columns in the relational model,
there might be a set of corresponding operations (1 to M
relationship) in the PSM behavioral metamodel for a
corresponding class’ methods in PIM behavioral model.
However, there is no uniquely determined method to do
that. Recent attempt for example in this case was sug-
gested by [6], one possible MDA program written for
medium-sized problem involving organizing a swimming
meet according to FINA rules (insert and update native
call) utilizing OCL capability to construct SQL PSM.

However, we can use the hierarchy structure of UML
activity diagram to show the implementation of PIM me-

thods in PSM as workflow as in our case study in Figure
7: Sendcase mapped to SendingProcess where it is ex-
tended into five operations as described in 5.3.

We notice here future work is needed to find a method
that realizes the operations mapping so we can see how
to incorporate variability and NFR concepts.

Generally the tasks comprise E2EDE process are shown
in Table 1.

5. Case Study
A set of applications has been analyzed to produce the
PSM architecture used by this case study as an imple-
mentation end. This family of products which are men-
tioned in Table 2 has exposed commonality in most as-
pects under messaging system domain. This analysis step
is in line with the principle of domain engineering where
at least three products should expose commonalities to
justify the investment in core asset architecture [23]. A
Help desk system is one example from this set of produ-
cts which is a major component in most current business
web-based systems. The idea is to allow a user to raise a
case for some aspect which needs a reply from some or-
ganization web site party. An employee should consult
through the same web site a list of cases or a specific case
that has been presented as a request in order to update it.
Then the update is sent back to user, who may be offline,
as response. A broker is an intermediate module used to
exchange messages between the system and users. Users
contacting the system are durable customers. The non-
functional requirement for system performance is higher
than reliability.

5.1. The Problem Specification
The helpdesk software system is needed to service cus-
tomer(s) and employee(s) at the same time. A customer
will be required to insert identification information such
as user name and password after registration—both of
which will be sent for validation to the web site system
which is located remotely somewhere on the internet. The
customer as well as the employee will then be able to
perform one or more operations.

The helpdesk must be able to provide the following
services to the customer:

1) A customer must be able to login using his account
information.

2) A customer must be able to submit a case to any
employee linked to organization, by writing a text messa-
ge and submitting it to a broker.

3) A customer must be able to view their case history
(feedback), status, and details.

4) A broker needs to maintain a queue in order to sche-
dule cases and differentiate between different users’ cases.
They also must be able to create a message.

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

204

Figure 7. Behavioral mappings activity for helpdesk PIM to messaging system PSM.

Table 2. Configuration for a set of products from PSM metamodel with profile.

Appliction domains NFR Profile Priority Variation point(Design Decisions)
<Message,connection,session,Ack>

1-Email System
App-size = normal

Iscritical = yes
Delivery = notUrgent

P1
P2+P3>P1

P3
<persistence,queue,transacted, AutoAck>

2-Chat
App-size = normal

Iscritical = no
Delivery = medium

P1>P2+P3
P2
P3

<NonPersistence,
Topic,nontransacted, DupAck>

3-Forum
App-size = normal

Iscritical = no
Delivery = medium

P1>P2+P3
P2
P3

<NonPersistence,Topic,nontransacted,
AutoAck, >

4-Mobile application
Reliability = high

Iscritical = yes
Delivery = high

P1=
P2=
P3=

<persistence,queue,
transacted,
FastAck>

5) An employee should be able view cases by individ-

ual case or list of cases and look for details.
6) An employee should be able to update a case.
This is the functionality needed to develop an applica-

tion conceptual model (PIM) as we will see in Figure 8.
Figure 8 shows a class diagram for the helpdesk sys-

tem. The basic structure of the class diagram includes six
major classes: customer, login, broker, case, manager, and
Queue with their responsibilities and relationships among
them. In the case of the manager, one of the responsibili-
ties is to provide access to a case in the response queue
that has received a message from a broker and send the

updated version back to broker; thus, Case, Queue, and
broker have associations to manager. Case has associa-
tion to the queue class. Case will be given unique ID and
created so each case will represent uniquely an individual
customer case which is stored in a queue either as a re-
quest if it came from the customer or response if it came
from the system. The UI is specified in this PIM but we
are not considering this part. It could be possible to cap-
ture an entire UI specification from this PIM that could
be rendered by an outsourced third-party platform such
as a browser.

We are using <<NFR>> stereotype to indicate non-

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

205

CaseKind
<<enum>>

StatKind
<<enum>>

Requests

AddResponse()

Responses

AddRequest()

DeptKind
Admin UsrName : str
Admin Password : str
Dept : CaseKind

Login
UsrName : String
LogID : int
Password

submit()

Customer
UsrName : String
Address : string
Email : String
<<NFR>> CustomerType : int = {NFRId=1,P=meduim}

1
1..*

1 +Loged
1..*

Manager
Claasification : CaseKind
CasDetails : string
<<NFR>> AppType : string {NFRId = 2,P=low}
<<NFR>> Sensitivity : string {NFRId = 3,P=medium}

send()
receive()
update()

+Connected

Broker
ProcessID : int
Casestate : StatKind
ProContent : string

recieve()
send()

1..*1..*

Case Msg

1
+reciver

+sender

1

Queue
ContentID
content : string
length : int

listCases()

1..*

1

+case

1..*

1

1..*

+archive

Case
ID : Integer
content : String
Date : date
<<NFR>> Delivery Mode : String {Id = 4,P=normal}
<<NFR>> Appkind = {NFRId=5,P=high}

create case()
createID()
Set Status()

1..*

1
+theCase

1..*

1
1..*

1

+pool

1..*

1

+owned

1..*

Figure 8. PIM: Helpdesk system with NFR documented.

functional requirements according to the NFR profile.
Tag values are used to denote two pieces of information:
ID to identify a NFR and priority (P) which assigns an
integer number to indicate a priority level of NFR. These
are the elements of the NFR specific-language used to
model NFRs as described in 4.2.3 (Task D).

In the PIM shown in Figure 8 there are the following
NFRs: Application sensitivity {High, low, medium}, App-
Kind{transactional,nontransactional}, CustomerType {nor-
mal, durable}, AppType {normal, critical}, and delivery
Mode{normal,guaranteed}. (Task D). The interpretation
of these NFRs will make sense when we link to design
decisions as we will see later.

We now have a helpdesk system conceptual model de-
scribing functionality as well as nonfunctional require-

ments.
The PSM in Figure 9 shows a messaging system which

can be a realization of a PIM such as in Figure 8. It de-
scribes how data can communicate between two software
entities: Producer instance and Consumer instance. A
Session instance must be created between the two ends
but to do that a Connection instance must be created first
with suitable parameters. Session has two types as does
Connection, while Transact means the underlying system
should treat the data send as a transaction in database so
the system should guarantee correct update, consistency,
and can rollback a NonTransactional is to treat data not
as a transaction. Consumer and data instances can be
synchronous (Synch) or Asynchronous (Asynch) which
refers to whether it is necessary or not for the consumer

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

206

Figure 9. PSM of messaging system with variability in design decision.

to attend at the time of connection. Connection is Direct
type or Indirect type transaction in case of failure.

We can call Queue for the former which allows one
receiver per send action and Topic for the later that allows
multiple receivers per send. Data can be Persistence type
which means using backing store, preserving it in the
case of any failure, or it can be NonPersistence. (Task B)

We notice this abstraction deals with concepts that are
from implementation space not like the PIM concepts that
are from an application domain.

Figure 9 shows the capability to deal with different
design decisions configuration that are represented by va-
riability (Task A, C). For example Connection is denoted
by <<VP>> stereotype which can take Direct or Indirect
variants. Likewise session denoted by <<VP>> with its
two different variant kinds. The focus on the discussion
will be only on variability that is non-functional with res-
pect to the PIM.

5.2. Mappings (Task E)
In order to explain how to apply this principle we will
describe mappings of this case manually, while it should
be automated. The NFR in the PIM of Figure 8 will guide
the mapping process to configure a suitable PSM from
Figure 9 automatically. For instance, the two data vari-
ants: persistence or NonPersistence is selected according
to the application need for reliability or performance so
delivery mode will determine that. The current case study

says Application Sensitivity is not high and a delivery
mode is normal hence these two NFRs are not reliability
factors which require maximizing performance. The de-
livery would use NonPersistence option which does not
necessarily insure message delivery by for example stor-
ing message until a receiver becomes available.

Similarly, the Session variation point has two variants:
Transacted and Nontransacted. Because the AppType (i.e.
size) NFR is normal application in the help desk PIM
Nontransacted variant is the most suitable.

This factor affects performance directly for example
when transacted variant is used performance is impacted
negatively compared with the Nontransacted mode. This
is because there is additional overhead for resource ma-
nipulation needed in the system for transaction mode.

Connection variation point has two connection varian-
ts: Direct and Indirect which means single receiver versus
multiple receivers per message. They are selected based
on AppKind and CustomerType Non-functional require-
ments. A Transactional application, for example banking
transactions, requires usually direct connection such as
for doing funds transfer. The same is true in our case
study where direct connection is selected for request and
response messages because CustomerType is single user.
In contrast, mobile applications such as advertisements
prefer broadcasting a message to group of receivers so
indirect connection is the most suitable variant. In that
case customer Type can be multiple users.

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

207

Generally in terms of performance indirect connection

is contributing positively while direct connection is con-
tributing negatively. The same message is forwarded to
different subscribers which mean lower resource con-
sumption.

Note that we need one of the variants to be set as de-
fault because the PIM and PSM are independent so that
the default will be selected in case there is no correspon-
ding NFR(s). For instance Figure 10 shows that the de-
fault variant is selected ([2]) for ConnectionVP if there is
no corresponding NFR addressed. We notice also two or
more design decisions determined by single NFR such as
Appkind can be used to decide both connection and ses-
sion variants.

Table 2 shows informally part of mappings from Help-
desk system PIM to messaging system PSM with NFRs
guidance. It also shows how application concepts turn in-
to design concepts. For instance the Case from PIM meta-
model which is a unit of work between customers and
company holding the necessary information will be map-
ped into three objects: Message, Connection and Session.

Because we have two kinds of messages and so two
different bodies of computations, we need to judge on
suitable design by looking into NFRs presented in the
PIM according to for example performance or reliability.

NFRs can be extracted from system specification by
different formats and meaning. For simplicity Iscritical
(such as OCL style) is used instead of AppType. The
mapping rules that can be used to implement the map-
pings specified in Table 1 are shown below.

PSMR= PSM repository holding instances
Pi=Priority
[1] CaseToData

IF (Iscritical=Yes) and (delivery=guaranteed)
then
 If (P1[Is critical]>P2[delivery])
 Then store in PSMR ([Data,type=Persistence)])
 IF (Iscritical =NO) and (delivery=guranteed)
Then store in PSMR ([Data,type=NonPersistence)])
 IF (Iscritical =No) and (delivery=normal)
 Then store in PSMR ([Data,type=Persistence])

[2] CaseToConnection
Select connection.default-V [Queue in this case]
Store in PSMR ([Connection.type=connection.default-V])

[3] CaseToSession
 IF (AppKind.value=transactional)
 Then store in PSMR ([session,type=transacted])

Figure 10. Part of informal mappings rules from helpdesk
PIM to messaging system PSM.

Figure 10 like pseudo-code shows a sample of map-
pings rules to transform PIM instances with existence of
priority consideration into PSM instances. For example,
[1] describes a conflict situation where if the application
Iscritical and at the same time the delivery is guaranteed,
the selection of design decision will depends on the hi-
ghest priority. In this case persistence (factor of reliabil-
ity) is chosen because P1 is greater than P2. Note here
priority is used only in the case of NFR values causing a
conflict.

We notice by this way an application could be config-
ured at the two extremes: reliability and performance
using suitable design decisions represented in the design
artifact with NFRs guidance. It is also possible to con-
figure an application in between these two extremes.
Thus our method affords different products with archi-
tecture designs at different levels of quality-attributes.
Inputs for mappings will be PIM metamodel (holds appli-
cation instances), NFRsrepository (NFR instances), PSM
metamodel, and Variability (design decision instances).

5.3. Class Methods Mapping
This activity is intended to realize the abstract operations
expressed by one kind of behavior diagram for the help-
desk PIM metamodel. We can use an activity diagram to
show the control flow and instances creation during the
execution of the mappings from PIM to PSM at this stage.
For example in the behavior instances model of Figure 8,
the sendcase method in broker needs to map into the fol-
lowing sequence: createObject (connection), createOb-
ject (session), createObject (producer) as in the behavior
instances model shown in Figure 7. It shows the control
flow of mapping activity and relationship occurrences
between source (helpdesk behavior model) and target
(messaging system model). For example, raise case will
be mapped to initialize Connection and sendcase will be
mapped to sending process. We can determine PIM
(source) and PSM (target) actions from this activity dia-
gram. For example PSM activity are, initalizeConnetion,
SendingProcess, ReceivingProcess, CreateUniqueRecord,
lookupcase, UpdateRecord and createResponse (from 1.1
to 1.7). But still as we mentioned previously more inves-
tigation is needed in this place to map a PIM process
model to PSM process model and understand this map-
ping completely.

6. MDA in the Context of Design Pattern
and SPL

It is a claim in this paper that MDA is a re-use approach.
In this section we see how MDA can fit in with other
common re-use approaches such as design pattern and
software product line (SPL).The investigation of this
relationship is the reason behind approaching E2 EDE.

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

208

Varibility and Nonfunctional requirement concepts are
borrowed as we have seen in section. MDA is a special
case of design pattern techniques as we will argue in Se-
ction 6.1, while MDA and SPL have a synergistic rela-
tionship according to observations described in Section
6.2.

6.1. MDA and Design Pattern
The design pattern concept goes back to Christopher Al-
exander [24]. His definition identified a relationship be-
tween three parts constituting a pattern: problem, solu-
tion and context. In software engineering, a design pat-
tern is a general reusable solution to a commonly occur-
ring problem in software design [25].

6.1.1. Limited to Domains with a Well-Established
Code Base

The nature of solution provided by MDA is more specific
to the problem domain than the design pattern which is
more general because there are many kinds of design pat-
terns [26]. A general purpose pattern perspective in solv-
ing problems is more expensive in terms of the estab-
lishment of working environment than in MDA, which is
characterized by its well-established specific backend.
Typically, MDA is used to target platform(s) that have al-
ready been crafted. For instance, large scale software
RDBMS (a complex proven solution) can be utilized
automatically by tools which transform PSM relational
model after mapping to the SQL language. In contrast, for
a pattern to be executed generally involves establishing
new tools. For instance, Yacoub, Xue and Ammar [27]
proposed their own visual systematic tool.

6.1.2. Separating Concerns Allows Application Logic
and Platform to be Variable and Encourages
Re-Use

It is observed that design pattern tends to integrate the
behavior aspects with implementation aspects which re-
sult in risks of platform changing or volatility. Further,
some implementation details become suppressed as con-
sequence of behavioral variation as in the publish-sub-
scribe pattern which does not say anything about remote
objects design [15]. If this pattern is used in a distributed
environment it becomes necessary to distinguish local
from remote objects which is not available as a design
decision at design time.

6.1.3. End of Pattern Life Cycle
Design Pattern follows a life-cycle as patterns become
more mature and quality increases [28]. MDA produces
high quality patterns because PSMs are end of the pattern
life cycle. Although the nonfunctional requirement emer-
ged first in the design pattern approach, MDA gives a
wide opportunity to represent NFR explicitly. It is the

critical requirement that discriminates between pattern
architecture designs. In fact, it is still a research question
how to graft design pattern with recognition of NFRs. In
Buschmann [15] we can observe the role of NFRs in ba-
lancing design forces.

6.2. MDA and Software Product Line (SPL)
Software product line engineering is a paradigm to deve-
lop software applications (software-intensive systems and
software products) using common platforms and mass
customization [2]. The intended goal is to avoid reinven-
ting the same solution for different applications in order
to achieve shorter development time and high quality
products (i.e. Nokia mobile applications). There are two
distinct development processes adopted by SPL: domain
engineering and application engineering. The former is
concerned with design for reuse by seeking communal-
ties and variability in the software product line. As a re-
sult a reference architecture called product line architect-
ture (PLA) is established. The aim of the latter is to drive
applications by exploiting the variability of the software
product line.

6.2.1. Defining Variation Points and Variants
The central concept in SPL is the explicit representation
of variability. Variability is a variable item of the real
world or a variable property of such an item [16].A vari-
ant identifies a single option of a variation point and can
be associated with other artifacts corresponding to a par-
ticular option (dependency relationship). For example,
payment method as a variation point can be realized by
variants: payment by credit card or payment by cash, etc.
It is necessary in SPL to identify variability by defining
variation points and variants, which is used by a selection
process to produce different products.

There are two types of variability: Variability in time,
which is different versions of the artifact at different
times (i.e. performance), while variability in space refers
to an artifact in different shapes at same time. For exam-
ple “system access by” variation point in a home security
system can have two variants: web browser and mobile
phone. Variability in space is the central challenge faced
by SPL, so management of variability is the main issue in
this engineering approach [16].

A set of closely related objects, packaged together with
a set of defined interfaces, forms a component [28]. Usu-
ally a component-based approach is used to realize SPL
concepts.

SPL tightly couples application and implementation
models together.MDA as an approach reduces the SPL to
abstract computational processes. It separates the appli-
cation from implementation by creating PIM and PSM
abstraction levels.

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

209

6.3. MDA in the Context of the Software Product
Line

Both software product line engineering (SPL) and model
driven architecture (MDA) are emerging as effective
paradigms for developing a family of applications in a
cost effective way [3]. SPL through its feature-based mo-
dels provides a capability to capture variability in inten-
sive systems, while the effectiveness of MDA is primar-
ily due to potential for automation it offers for variability
in technology. Generally MDA can fit into SPL as an ef-
fective software development method. For instance MDA
can tackle implementation variability within a specific
platform. So the synergistic relationship between the two
approaches has been studied recently [4,20,29]. The basic
differences between the two approaches are as follows:

6.3.1. MDA Decouples Implementation Model from
Application Model

The PSM is constructed as an API to specify the imple-
mentation aspects for an intended target such as rela-
tional database model. Similarly a PIM model is built
which specifies the business logic. This will add value by
enabling MDA to tackle technology variability which
allows the same PIM to be rendered into different plat-
forms or PSMs.

Although components raise the reuse level a little bit,
they still suffer from the software evolution problem. For
example, any small interface changes will entail finding
everywhere the interface is used, changing it to reflect the
new interface, testing new code, reintegrating and retest-
ing the system as whole. Therefore, a small change in the
interface can cause enormous changes by following each
code part that refers to this component interface. In con-
trast, the PSM, an intermediate subsystem, abstracts this
tedious task by concentrating the changes in one place.
Also, MDA avoids the problem of features explosion that
tends to complicate maintenance [9]. In addition, keeping
a mapping function separate avoids swamping the source
model (application) with implementation details and re-
duces the problem of model divergence because the tar-
get (implementation) is generated [29].

Furthermore, MDA increases architecture longevity
(ageing) compared to the fact that sometimes PLE suffers
from architecture lifespan which may reach end of life
[22]. In this case evolving architecture will be expensive
or risky. MDA’s potentiality comes where evolving the
architecture becomes much cheaper because each of
PSMs and PIMs are adapted separately and they do not
carry any volatility risks (technology variability).

6.3.2. MDA is Intended to Automate the Craft of
Code

The potential of MDA is due to the capability of automa-

tion it offers. It is recognized that if we will be able to
formalize the model to the extent that it has no ambiguity
and the model is machine readable (executable) then the
code in principle can be mechanically generated. MOF is
a powerful metamodeling language that realizes this trend
by allowing tools to interoperate and accurately modeling
the conceptual model of a design language such as UML.
Crafting code becomes a model driven process wherein a
transformation from source model (PIM) to a target mo-
del (PSM) can be automated by for example QVT tools.
Eventually the PSM can automatically mapped into text
(code). MDA works best if the scale of PSM objects is
the same as that of PIM. The mapping function is kept
separate so that it can generalize some concepts and it can
be repeated many times (repeated design decisions) sho-
wing a big picture of reuse. The mapping function can be
automated at the instance level because it is an algo-
rithmic process in which generic transformation rules are
established at the type level. The general feature of auto-
mation is the synchronization between the two ends.

6.3.3. Higher Abstraction and Systematic
Development Methodology

The main goal of MDA is to raise the abstraction level
higher than traditional middleware and 3 GL/4 GLs pro-
gramming languages. This means taking advantage of
software-platform independence that enables a specifica-
tion to execute on a variety of software platform with a
stable software architecture design. The granularity of
code re-use will increase to the level of a PSM (ADT) in-
stead of components as in SPL. The PSM is scoped to this
level of code reuse. For example relational database PSM
is an abstraction for the family of relational databases
above any specific technology. Also, there is a difference
between MDA and SPL in defining interfaces to compo-
nents and frameworks via an API. In MDA, the interface
is not concrete but it is meta-interface exported by mark-
ing models [29]. The mappings are externalized and gen-
eralized, which can be reused in similar problems.

MDA is standards-based development method which
is specified entirely by a nonprofit organization, OMG,
since 2001 [1]. It involves algorithmic mapping processes
from model to model (PIM-PSM) and from model to text
(PSM-code). The mapping process is rule-driven in which
transformation rules are expressed by a standard language
(e.g. QVT). However, different viewpoints could be con-
structed for different abstraction levels. Formal mapping
functions will often fill the gap between any two differ-
ent abstraction levels (consider compilers). Further, hav-
ing MOF as metalanguage and other well-established
OMG standards (i.e. XMI), it promises industrial-scale
systematic re-use and integration capability.

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

210

7. How Design Pattern and SPL Contribute
to E2E2D Engineering

The survey of the relationship among MDA, SPL, and
Design Patterns has shown a synergistic relationship.
MDA improves each approach by supporting these quail-
ties: automation, proper management of technology
changes or volatility, high granularity of reuse and more
important a capability of integration.

Design Pattern is not an end to end concept because it
is an abstraction for software implementation.

Design pattern could be used to construct the architect-
ture in E2EDE. It adds value by acting as a proven solu-
tion and a documented experience.

SPL is an end to end concept but in addition to the pro-
blem of coupling application and implementation toge-
ther, it does not tackle the variability in the implementa-
tion part. In contrast, E2EDE is mainly addressing this cha-
llenge. In addition, there is no concrete link as in E2EDE
between higher level models and lower detailed models.

SPL engineering gives another insight for E2EDE: the
concept of explicit variability representation and mana-
gement. Introducing variability explicitly in the PSM
helps mainly in its construction. This means a PIM can
become informed about variation points that are docu-
mented explicitly therefore it becomes possible to auto-
mate the design decision process. A UML profile for spe-
cifying PLA [3] can fill the gap between PSM and the
PLA core assets artifact.

Metamodeling and MDA are an alternative technique
successfully used to organize SPL and feature model
concepts as demonstrated by Muthig and Atkinson [11].
Furthermore, unlike orthogonal models, the variability
model and original model would not be separated, which
increases readability.

8. Strategic Messaging System PSM
The philosophy of MDA is to do more investment on me-
tamodels so as to hopefully obtain payoff at production

time by producing larger number of products. It can be
conceived as the same scale as where database systems
and X11 [20] are considered viable.

We have looked at PSM in Figure 9 in the previous
section as a specific implementation for helpdesk system.
In fact this PSM was built from a general messaging sys-
tem perspective. The concepts in this PSM form an on-
tology. There are many messaging systems which com-
mit to that ontology.

Examples are: Chat system, Email system, instant me-
ssaging system, media streaming system, mobile applica-
tions, etc.

As we argued before re-use is a major trend in the soft-
ware development community. Important are not only re-
usable components but also strategic reusable assets like
models and transforms.

Table 2 shows a simple configuration for four prod-
ucts as a picture of the benefits of re-using the messaging
system PSM. Further, it is obvious that the rationale of
this specific architecture design does not exhaust the
E2EDE approach. An architect can reason about different
architecture designs.

In Table 3 we see there are number of NFRs common
to this set of applications, which are re-used to make a
design decisions. They are App-size (i.e. Application size),
Iscritical and Delivery. Both App-size and Iscritical are a
kind of Package level NFRs while Delivery is a class
level NFR because it is about an object class inside the
system. Design decisions are: message (data), connection
and session, and Acknowledgement mechanisms. In the
example of email system two reliability factors are high-
er than the other; App-size has lower value than for de-
livery and apply-size, therefore message (data) delivery
is persistence with Queue type connection and transacted
session. The Acknowledgement will be given normal va-
lue which is AutoAck. All these values makes reliability
higher than performance because of the overhead proce-
ssing (i.e. store) which what is said by NFRs. The inverse

Table 3. Part of mappings from helpdesk system to messaging system.

PIM Relevant NFR PSM Variation Points

1- Case
Data needed between producer and consumer and let the system works so
it is functional. But there is a quality on its processing based on
priority and type.

1.1 Message
1.2 connection

1.1 Data [message] Apptype{normal,critical}or sensitivity {low, high} and
delivery mode

1.1.1 persistence or
1.1.2 nonpersistence

1.2 connection customerType and AppKind{transactional, nontrnsact} 1.2.1 queue or
1.2.2 topic

1.2.x.1 session AppKind and delivery mode 1.2.3 transacted
1.2.4 Nontransacted

1.3 broker User or customerType 1.3.1 Consumer::Asynch Or
1.3.2 consumer::Synch

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

211

of this situation typically is in Chat and Forum applica-
tion where P1 of application size put into highest priority
than data delivery and Iscritical so the configuretion of
parameters is set to increase performance. The mobile
application comes in the middle between performance
and reliability more oriented to reliability. Note that this
is an arbitrary configuration but any other scenarios are
possible. The point is by that we can see an example of
NFRs and variability reusing among products in mes-
saging systems.

9. How MDA Works
MDA is new trend in software development. This section
sketches key points about MDA implementation.

The history of software engineering shows that a soft-
ware design model is a complex object that needs to be
maintained during a project life cycle and refined over a
long period. CASE tool (computer-aided software engi-
neering) is used to allow easy model creation, editing,
rendering etc. In this case, a tool designer utilizes infor-
mation system technology to keep this complex object in
a database called a repository. A repository consists of a
schema which stores model instances [6]. In fact this re-
pository does not need the complete commercial database
machinery. There are recently emerging MOF-standards
like XMI [30] used as a mechanism not only for persis-
tence purpose but also as a mechanism for exchanging
models between tools which it was difficult before in a
classic CASE tool (i.e. magic draw, rational rose). Many
recent MOF-based toolsets support in addition to effi-
cient access methods, both system and user- defined API
serialization mechanisms in which developers can render
a model using an XMI concrete syntax for different pur-
poses. There are many tools with different features and
capabilities working in this context, extensively studied
in [31]. EMF [32] an open platform adopting MDA prin-
ciples provides a Java code-generation facility to achieve
interoperability between applications based on a MOF
meta-modeling framework.

10. E2EDE Implementation
The implementation of E2EDE need to be considered as
there is some limitation in current MDA tools. Our ap-
proach in this space is to separate working on the model
view from the implementation view the same way UML
gives a different views for different purposes such class
diagram and activity diagram.

The proposed profiles are useful in terms of readability
and explicit showing of the NFRs and VPs but for im-
plementation it needs suitable representation to fit the
MDA computation environment.

There are three reasons underlying the solution sug-
gested in this section: source, target and mapping meta-

models. Firstly, current tools have a limitation of recog-
nizing a profile instances in a model annotated by a pro-
file elements such as MediniQVT [33]. (Tag values are
not visible to QVT pattern expressions.) Therefore we
suggest a representation for profiles to resolve this issue.
Secondly, if we look practically to the mapping the me-
talevels concept breaks down when we compare two sys-
tems. For instances, if we used UML as PIM metamodel
and MOF as PSM metamodel, the mapping is from in-
stances of M0 objects to instances of M1 objects. The
same is true more generally when we use Profile instan-
ces that are at level higher than instances level of the me-
tamodel. In our specific case, profile instances are at M1
level while the metamodel instances needed by QVT en-
gine are at M0 level. However, OWL-Full [34] can be
suggested as an alternative technology to UML which
could resolve this solution. OWL has an OWL metaclass
class which is itself a class, so we can build a profile
mechanism by declaring subclasses of OWL class.

Finally there is a need for linking a single VP with a
set of NFRs and mapping variability should be conside-
red. (Task G)

Figure 11 describes the relationship between VP, NFR
and a Design Decision. A design decision is one of two
kinds: selection which denotes the normal variability exi-
sts on PSM, and compiled which represents the mapping
variability highlighted in the previous sections. This sort
of design decision groups related rules that have some
common property which is modeled by the attribute rank.
An instance of compiled design decision is associated
with an instance of NFR because NFR(s) is the reason
behind this grouping.

For example, consider how the mapping variability
discussed in Section 4.2.2 could be represented. Also,
more information details about design decisions can be
added, for instance to compiled subclasses, like the ef-
fects and cost of effect etc. However, an instance of a de-
sign decision is an opaque rule specifying the creation of
valid PSM instances when its precondition is satisfied as
shown in the following. A program manipulating this
metamodel should differentiate between three modes: de-
fault, application of a rule, and conflict resolution. A
conflict mode needs to refer to NFR’s priority. Seduo-
code based in QVT relation language is shown in Figure
12 .This part showing application of Task F.

Figure 12 demonstrates statements describe two dis-
joint types of connection that will only be created as
PSM instances when certain Preconditions are satisfied.
The function of the Guard Predicate class is to collect VP
related NFRs which has multiplicity one to many. This
means a pattern structure in PIM will be linked with one
variant through one or more NFRs. For instance, in the
two examples we have two sets of NFR related to Direct

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

212

Figure 11. PIM to PSM mapping metamodel.

Figure 12. Opaque rules for mapping variability rules.

and Indirect variants respectively: {important, transactio-
nal}, {normal, Nontransactional}. Note that variants in
PSM are disjoint and covering because they are alterna-
tive design elements. NFR and VP are imported from
corresponding packages.

The metamodel in Figure 13 is a lightweight UML2.0
metamodel used as an example by the QVT specification.
We use this as a base for presentation purposes (Profile).
The full work makes use of UML.

The extension or adaptation to this existing metamodel
was special NFR (SNFR) metaclass, general NFR (GNFR)
metaclass and NFR metaclass. Working with this case
study shows that there are two kinds of NFR: package

level (general) and class level (special).
An extension to the same UML simple metamodel

could be done for variability model using an extension to
the metaclass class to represent variation point, variant
and QuailityAttribute. The same extension is found in the
literature such as [2,3,12] but there are two problems
with this. Firstly, it does not model mapping variability
and for example the conflict cases that arise when we
link NFRs with variants. Secondly, it is impossible to use
the UML toolset to do that modification because it is at
the level of UML metamodel. Here the proposed app-
roach generally involves Profiles, packages and model
manipulation.

The meaning of variability in PSM is somehow diffe-
rent from traditional variability in SPL. In E2EDE, vari-
ants are disjoint and covering which represents only al-
ternative design decisions. These decisions can be over-
lapped and not covering in SPL. Variants in E2EDE exist
on a PSM artifact to represent Nonfunctional while SPL
traditionally represents only functional variability. There
is no dependency such as between VP-VP because it is
already inherited from the UML design language.

10.1. Packages (Task G)
PSM variability needs to be represented in a way access-
ible and without ambiguity to the relationship programs.

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

213

Figure 13. Simple UML2.0 metamodel extention from QVT specification as Profile implementation.

The relationship program has end to end functionality. It
is intended to link a PSM variant with the relevant
NFR(s). The traditional mechanism in literature used to
model variability is through a subclass structure of the
UML class model like [12]. This is suitable for humans
but if the system is scaled up, it would be difficult for a
human to comprehend that system. The second problem is
that some times in these large system names of classes,
properties, and association etc, can be ambiguous. There-
fore we need a representation mechanism that allows the
program to find model elements. MOF and UML support
a Package mechanism which has a capability to make
names of members unique within the package that owns
them. Further it is has a facility to disambiguate names
where necessary by adding the package name as prefix.
So both human and programs could easily access model
elements without ambiguity. Further a package may need
to import or merge another package.

Therefore, the semantic operations of incorporating a
subclass (variant) in the model will be through legal stan-
dard package operations.

In UML2 infrastructure a package [35] is defined to
group elements, and provides a namespace for the grouped
elements. A package merge is used as basic re-use me-
chanism that allows extension by new features. For ins-
tance, UML2.1.2 superstructure builds on the Infrastruc-
ture library by re-use of the kernel package. It is defined
in UML2.1.2 infrastructure as a direct relationship be-
tween two packages that indicates the contents of the two
packages are to be combined. Conceptually this means
there is a resulting element combining the characteristics
of both source and target.

Since we modeled VP and V using the generalization
concept, a subclass is always an extension for superclass
i.e. by adding new structural features. A package merge
has these capabilities. Therefore, a PSM super-subclass
structure will be modeled using packages.

The second value of using a package is that it is a po-
werful mechanism for embedding an entire metamodel
(sub architecture) to represent a variant that could be re-
used in the main model (namespace). It is effective due
to its capability to represent PSM implementation varia-

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

214

bility that can scale up as practically used by OMG as a
basic building block to develop and reuse a variety of in-
frastructure and superstructure constructs. Further the
capability of package operations (i.e. import, merge, etc)
allows one to build complex structures by combining
simple constructs using a systematic rule. This feature in
the programming languages concepts is recognized as
orthogonality [36].

So now we have the representation of variability in
PSM using the package mechanism. In addition, we have
NFRs represented in PIM metamodel which has repre-
sentation in Figure 13. They were two kinds: package
level NFRs and class level NFRs. To this end we need a
relationship program using NFRs to select the suitable
variant(s). This will be modeled using model manipula-
tion tools. But in order for this relationship program to
work we represented elements of the problem in way
easier for the programs to find and manipulate (Package).

11. Lessons & Realistic of E2EDE
The key point from the step toward strategic PSM like
the one presented in section 8 is since there are a group
of different products complaint with a standard interface,
they are sharing an abstract data type (ADT). It becomes
easy for example to replace one by another, for example
Dell laptops standard architecture is the reason behind a
wide set of products. Another example from our commu-
nity is the service-oriented architecture where its stan-
dard interface leads to proliferation of applications and
what is known as Agility. This scenario even could be
applied to situation where there is no standard specifica-
tion. Here we need a reengineering process to fill the gap
but this time with the lowest reengineering cost, with
assumption that the different products have largely simi-
lar functionality. Typically any drift from common func-
tionality would be resolved as a mapping from the PIM
to the PSM. Any further changes made necessary by use
of a particular platform should be relatively minor.

Typically it is the case of messaging system PSM there
is no standard specification but E2EDE encourage rea-
ching agreements on messaging design vocabulary. Our
investigation shows us there is similarity even if some-
times there are differences in naming.

One could see the advantage of what we are taking
about if we look at Advanced Message Queuing Protocol
(AMQP) [37] practice when it standardized message
format (known as a wire-level protocol) which is pro-
prietary in JMS [38]. Any tool conforming to this data
format can interoperate with any other compliant tool
regardless of implementation language. Both JMS and
Microsoft's MSMQ [39] comprise alternative candidate
platforms for our messaging system PSM. Both have
similar capabilities but have differences in performance

and integration features plus others. Our messaging PSM
is developed from the standard of JMS which is recog-
nized as the best-known standard in the asynchronous
messaging world [40]. As we mentioned, a complete
ontology of messaging systems needs to be established
by a standards body so one could take the advantage of
replacing one messaging platform by another. This stan-
dard will establish a vendor-neutral protocol by studying
different practices of messaging paradigms such publish/
subscribe, point-to-point, request-response, etc. The stan-
dard would specify message format, Brokers behaveior
scenarios, and others.

12. Conclusions
MDA is about mapping PIM instances to PSM instances
automatically using a standard mapping language such as
QVT as a new trend of developing applications. The
MDA standard specification does not show in details
how to do the mappings from PIM metamodel (applica-
tion-space) to PSM metamodel (implementation-space).
This situation raises a question: how to develop End to
End applications which is the ultimate goal of MDA.

In the view of that question we have proposed E2EDE,
a novel software development approach which bridges
the mapping gap between PIM (functional specification)
and PSM (implementation specification) using the MDA
method.

E2EDE approach is based on documenting variability
in architecture artifact design on the PSM by utilizing the
variability notion in the software product line approach.
Our variability analysis has shown taxonomy for vari-
ability including mapping variability.

NFRs is proposed to be documented in PIM to make
the PIM more informative thereby guiding the mapping
process to select from among design alternatives in order
to automatically produce a suitable implementation or
PSM instance model. In this scenario the mapping pro-
cess is modeled in a configurable way to drive an archi-
tecture that can lead to considerable cost-saving. We have
shown that this study has contributed to NFRs knowle-
dge by identifying two kinds of NFRs: Package level and
class level. The former have more re-use potential.

E2EDE contributes to the MDA domain by finding
concrete mapping methods for generating high quality
applications within specific but big enough domains
through building explicit links between design decisions
and NFRs.

E2EDE implementation models were developed and it
was discovered that a profile is good at presentation level
but not suitable for implementation level. Generally, we
followed Profiles, Packages, and model manipulation ap-
proach where metamodels were developed for source,
target and relationship program.

http://en.wikipedia.org/wiki/Microsoft_Message_Queuing�

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

215

We have investigated the realistic application of E2EDE
and found that there different examples of messaging
systems without a standard. For use of E2EDE, having a
standard PSM would be an advantage. It increases the re-
use theme (PIM with NFRs can be like variant feature)
and achieves interoperability. The best situation would
be gained if PSM is built by standards bodies such as
ISO or the OMG.

Finally, throughout this paper we have seen how MDA
can fit in with SPL and Design pattern under the reuse
umbrella which helps explore the research issues that are
arose such as Non-functional requirements when we tac-
kle E2EDE engineering. A case study was presented to
show the possibility of success under this approach. A
strategic PSM for messaging systems is developed as an-
other potentially valuable product. In addition, the les-
sons and the realistic application of the approach are in-
vestigated.

REFERENCES
[1] “MDA Guide Version 1.0.1,” 2001.

http://www.omg.org/cgi-bin/doc?omg/03-06-01.
[2] K. Pohl, G.Böckle and F. J. van der Linden, “Software

Product Line Engineering: Foundations, Principles and
Techniques,” Springer, Berlin, 2005, pp. 53-72.

[3] H. Min and S. D. Kim, “A Technique to Represent Prod-
uct Line Core Assets in MDA/PIM for Automation,”
Proceedings Rapid Integration of Software Engineering
Techniques Second International Workshop (RISE 2005),
Minneapolis, Vol. 3943, 2006, pp. 66-80.

[4] M. Matinlassi, “Quality-Driven Software Architecture
Model Transformation,” PhD Dissertation, VTT Techni-
cal Research Centre of Finland, 2006.
www.vtt.fi/inf/pdf/publications/2006/P608.pdf

[5] S. J. Mellor, K. Scott, A. Uhl and D. Weise, “MDA Dis-
tilled: Principles of Model-Driven Architecture,” Addison
Wesley, New York, 2004.

[6] R. M, Colomb “Metamodelling and Model-Driven Ar-
chitecture,” In Publishing.

[7] “MOF 2.0 Core Final Adopted Specification,” 2004.
http://www.omg.org/cgi-bin/doc?ptc/03-10-04.

[8] “OMG MOF QVT Final Adopted Specification,” 2005.
http://www.omg.org/docs/ptc/05-11-01.pdf

[9] S. Jarzabek, “Effective Software Maintenance and Evolu-
tion: A Reuse-Based Approach,” Auerbach Publications,
Boca Raton, 2007, pp. 68-106.
doi:10.1201/9781420013115

[10] D. Ramljak, J. Puksec, D. Huljenic, M. Koncar and D.
Simic, “Building Enterprise Information System Using
Model Driven Architecture on J2EE Platform,” Proceed-
ings IEEE the 7th International Cconference on Tele-
communications, Zagreb, June 2003, Vol. 2, pp. 521-526.

[11] D. Muthig and C. Atkinson, “Model-Driven Product Line
Architectures,” Second International Conference on Soft-

ware Product Lines, San Diego, Vol. 2379, August 2002,
pp. 79-90.

[12] B. Korherr, “A UML2 Profile for Variability Models and
Their Dependency to Business Processes,” Proceedings
of IEEE Conference Database and Expert Systems Ap-
plications, Regensburg, September 2007, pp. 829-834.

[13] L. Chung “Representing and Using Non-Functional Re-
quirements: A Process-Oriented Approach,” PhD Thesis.
University of Toronto, Toronto, 1993.

[14] D. Gross and E. Yu, “From Non-Functional Require-
ments to Design through Patterns,” Requirements Engi-
neering, Vol. 6, No. 1, 2001, pp. 18-36.
doi:10.1007/s007660170013

[15] F. Buschmann, K. Henney and D. C. Schmidt, “Pattern
Oriented Software Architecture on Patterns and Pattern
Languages,” John Wiley & Sons, England, Vol. 5, 2007,
pp. 67-74.

[16] M. Svahnberg, J. Van Gurp and J. Bosch, “A Taxonomy
of Variability Realization Techniques,” ACM Software-
Practice & Experience, Vol. 35, No. 8, July 2005, pp.
705-754.

[17] R. Elmasri and S. B. Navathe, “Fundamentals of Database
Systems,” 5th Editon, Addison-Wesley, Reading, 2007,
pp. 232-234.

[18] I. Dubielewicz, B. Hnatkowska, Z. Huzar and L. Tuz-
inkiewicz, “Feasibility Analysis of MDA-Based Database
Design,” IEEE International Conference on Dependabil-
ity of Computer Systems, Washington, May 2006, pp.
19-26. doi:10.1109/DEPCOS-RELCOMEX.2006.26

[19] M. Glinz, “On Non-Functional Requirements,” Proceed-
ings of the 15th IEEE International Requirements Engi-
neering Conference, Delhi, October 2007, pp. 21-26.

[20] Wikipedia, “X Window System (Computer Science),”
2008. http://en.wikipedia.org/wiki/X_window_system.

[21] L. Bass, P. Clements and R. Kazman, “Software Archi-
tecture in Practice,” 2nd Edition. Addison-Wesley, Mas-
sachusetts, 2003, pp. 75-88.

[22] L. Zhu and I. Gorton, “UML Profiles for Design Deci-
sions and Nonfunctional Requirements,” IEEE Second
Workshop on Sharing and Resuing Architectural Knowl-
edge, Minneapolis, May 2007, pp. 49- 54.

[23] F. J. V. Linden, K. Schmid and E. Rommes, “Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering,” Springer, Berlin Heidelberg,
2007, pp. 43-45.

[24] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.
Fiksdahl-King and S. Angel, “A Pattern Language,” Ox-
ford University Press, New York, 1977.

[25] Wikipedia, “Design Patterns (Computer Science),” 2008.
http://en.wikipedia.org/wiki/Design_pattern_%28comput
er_science%29

[26] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “De-
sign Patterns: Elements of Reusable Object-Oriented
Software,” Addison-Wesley, New York, 1995, pp. 79-
315.

[27] M. Yacoub, H. Xue and H. Ammar, “Automating the

http://dx.doi.org/10.1201/9781420013115�
http://dx.doi.org/10.1007/s007660170013�
http://dx.doi.org/10.1109/DEPCOS-RELCOMEX.2006.26�

End to End Development Engineering

Copyright © 2011 SciRes. JSEA

216

Development of Pattern-Oriented Designs for Application
Specific Software Systems,” Proceedings IEEE the 3rd
Symposium on Application-Specific Systems and Software
Engineering Technology, Washington DC, March 2000,
pp. 163-170.

[28] S. M. Yacoub, “Pattern-Oriented Analysis and Design
(POAD): A Methodology for Software Development,”
PhD Thesis, West Virginia University, Morgantown, De-
cember 1999.

[29] S. J. Mellor, K. Scott, A. Uhl and D. Weise, “MDA Dis-
tilled: Principles of Model-Driven Architecture,” Addison
Wesley, New York, 2004.

[30] “OMG MOF XMI Final Adopted Specification,” July
2010.
http://www.omg.org/technology/documents/formal/xmi.ht
m.

[31] P. Konemann, “The Gap between Design Decisions and
Model Transformations,” September 2009.
http://www2.imm.dtu.dk/.../the_gap_between_design_dec
isions_and_model_transformations.pdf

[32] D. Steinberg, F. Budinsky, M. Paternostro and E. Merks,
“EMF: Eclipse Modeling Framework,” 2nd Edition, Ad-
dison-Wesley Professional, Singapore, December 26

2008.
[33] “IKV++ technologies ag.MediniQVT,” 2007.

http://projects.ikv.de/qvt/
[34] “W3C OWL Web Ontology Language,” August 2010.

http://www.w3.org/TR/owl-ref/
[35] “OMG (2007b) OMG Unified Modeling Language

(OMG UML), Superstructure, V2.1.2,” OMG Document
Number: Formal/2007-11-02.

[36] W. R. Sebesta “Concepts of Programming Languages,”
5th Edition, Addison Wesley, Boston, 2005.

[37] “Microsoft Messaging Queue,” August 2010.
http://www.microsoft.com/windowsserver2008/en/us/
technologies.aspx.

[38] “Advanced Message Queuing Protocol (AMQP),” 2010.
http://www.amqp.org/confluence/display/AMQP/Advanc
ed+Message+Queuing+Protocol

[39] “Java Messaging System Standard,” 2010.
http://java.sun.com/products/jms/

[40] S. Vinoski, “Advanced Message Queuing Protocol,” IEEE
Internet Computing, Vol. 10, No. 6, 2006, pp. 87-89.
doi:10.1109/MIC.2006.116

http://dx.doi.org/10.1109/MIC.2006.116�

	6.1. MDA and Design Pattern
	6.1.1. Limited to domains with a well-established code base
	6.1.2. Separating concerns allows application logic and platform to be variable and encourages re-use
	6.1.3. End of Pattern Life cycle
	6.2. MDA and Software Product Line (SPL)
	6.2.1. Defining variation points and variants
	6.3. MDA in the context of the software product line
	6.3.1. MDA decouples implementation model from application model
	6.3.2. MDA is intended to automate the craft of code
	6.3.3. Higher abstraction and systematic development methodology
	7. How Design Pattern and SPL Contribute to E2E2D Engineering
	8. Strategic Messaging system PSM
	of this situation typically is in Chat and Forum application where P1 of application size put into highest priority than data delivery and Iscritical so the configuretion of parameters is set to increase performance. The mobile application comes in th...
	9. How MDA works
	10. E2EDE Implementation
	10.1. Packages (Task G)
	11. Lessons & realistic of E2EDE
	12. Conclusions

