
J. Software Engineering & Applications, 2010, 3, 1054-1059
doi:10.4236/jsea.2010.311124 Published Online November 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

PLC Modeling and Checking Based on Formal
Method*

Yueshan Zheng1,2, Guiming Luo1,2, Junbo Sun1,2, Junjie Zhang1,2, Zhenfeng Wang1,2

1Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China; 2School of Software,
Tsinghua University, Beijing, China.
Email: championkop@gmail.com, gluo@tsinghua.edu.cn

Received September 5th, 2010; revised September 16th, 2010; accepted September 24th, 2010.

ABSTRACT

High reliability is the key to performance of electrical control equipment. PLC combines computer technology, auto-
matic control technology and communication technology and becomes widely used for automation of industrial proc-
esses. Some requirements of complex PLC systems cannot be satisfied by the traditional verification methods. In this
paper, an efficient method for the PLC systems modeling and verification is proposed. To ensure the high-speed prop-
erty of PLC, we proposed a technique of “Time interval model” and “notice-waiting”. It could reduce the state space
and make it possible to verify some complex PLC systems. Also, the conversion from the built PLC model to the Pro-
mela language is obtained and a tool PLC-Checker for modeling and checking PLC systems are designed. Using
PLC-Checker to check a classical PLC example, a counter-example is found. Although the probability of this logic er-
ror occurs very small, it could result in system crash fatally.

Keywords: Model Checking, PLC Modeling, PLC-Checker, Formal Method

1. Introduction

PLC is an automatic control device that can receive in-
formation from sensors, computing device or other PLC
logic input signal, and output the logic signal processed.
The control algorithm can be written using standard lan-
guage, such as Ladder Diagram (LD), Structured Text
(ST) or Instruction List (IL) [1].

The technique of PLC using programmable language to
control large scale integrated circuit has been widely used
in industry [2]. Because of safety critical software can
cause serious damage to life or property, verification of
safety critical software has become an indispensable step
required to assure software quality. The present verifying
method for the PLC is still stuck by simulation and test-
ing. However, they cannot cover all possible cases, espe-
cial whether the design model of PLC to meet the demand.
Therefore, the model checking technology is introduced
into the field of PLC. To give theoretical analysis of PLC
design becomes important.

The primary step of PLC model checking is to the es-
tablishment of PLC model, such as establish a model
from Function Charts [3]. The PLC model focuses on the

establishment of the time attributes [4]. It can be modeled
by the method of timed automata [5] or time period mod-
eling method [6]. Thus state space of the model will be
decreased compared to timed automata. Either way one
choose, eventually an abstract model can be given [7].
How to build a good PLC abstract model is the most im-
portant issue to the checking. As the manually modeling
is easy to introduce many errors, so the establishment of
an integrated modeling and testing tool is very important,
and this is one of the issues of concern to this paper.

PLC control program runs in real-time operating sys-
tem (multi-task or single-task); this paper is mainly based
on multi-task scheduling PLC system. Section 2 of the
article has an introduction to the modeling method of
PLC system. Section 3 gives the analysis and improve-
ment of this model as we need to reduce the probability of
pseudo-errors. Section IV designs a model checking tool
PLC-Checker to check the established model, including
introduce the way of converting PLC program into SPIN's
input language Promela code. Finally, a classical PLC
example is applied to check and a critical couter-example
is found by the PLC-Checker.

2. PLC Modeling
*This work is funded by NSFC 60973049, 60635020, and TNList
cross-discipline foundations.

There are three steps of model checking: modeling, prop-

PLC Modeling and Checking Based on Formal Method 1055

erty description, and verification. The most important is
how to build the system model.

In the system, PLC controller is not isolated, but has
interaction with its working environment, driver and hu-
man [8]. Therefore, these factors should also be modeling.
The environment, human, and the PLC controller is inde-
pendent and concurrent with each other in logic. Also, the
model checker SPIN’s input language Promela is focused
on describing the concurrent, so starting from this idea,
we build these factors into several concurrent processes to
fit the checking from SPIN, it will also accurately de-
scribe the system. To describe conveniently, they will be
called concurrent entities. PLC controller interacts with
the concurrent entities through the symbols in image table.
The symbols of PLC system include I (input port), Q
(output port), and M (intermediate relay). Figure 1 is a
diagram of PLC system model.

Time interval modeling strategy: using the flag
which specific the bit state of concurrent entities to
represent the concurrent entities in the state, without
regard to the system clock. This may neglect the time
difference of states, thus simplifying the PLC model.
The modeling strategy does not add the system clock
properties, not fully corresponds with the original PLC
model. That is mainly due to join the system clock will
cause PLC system model become too large, there is no
for model checking tool to deal with such a large
model. The starting point for modeling the state like
this is not to consider the number of PLC scans when a
migration is experienced. No matter how many scans it
experienced, they will all include in this model. In
other words, the real model will be a subset of the built
model (Time interval model).

The real PLC environment is complex, and includes a
variety of hardware and human behavior. The following
we will give an analysis of different kinds of PLC envi-
ronment concurrent entities.

1) Hardware entity

Hardware entity of the PLC system is mainly some
equipment that PLC controls. The state of these equip-
ments can be the input of PLC controller. Therefore, the
hardware entity binding with its associated I and Q, while
the hardware has its own workflow, this workflow is de-
cided by the hardware requirements. This work flow can
be abstracted into automata. This automata is used to de-
scribe the working status of the hardware.

Definition 2.1. A Hardware entity is a tuple Env = <Ienv,
Qenv, A>, where Ienv is the I port binding with the hardware
entity, Qenv is the Q port binding with the entity. A is the
automata that describes the work flow of the entity, A is a
tuple A = <s0, S, T>, where s0 is the initial state of A, S is
the set of states while T is the set of the transfers.

The states of hardware entities is a subset of I symbols,
and the Is sign each state are all mapped to {True, False},
the I symbol do not appear in the state can be either True
or False (that is: act arbitrarily). The transfer of the hard-
ware entities directly expressed with the subset of Q
symbols, said that all Q symbols in the subset be true at
the same time will drive migration between states. The
state transition diagram of hardware entities also need to
specify an initial state, the transitions graph starts from
this state.

The hardware entities’ states of transition diagram are
based on the division of symbol I, and time properties are
not taken into account. Hardware entities state transition
diagram is actually an abstract of hardware entity ignored
time, the abstract simulation required reference of the
hardware.

2) Simple output entity
Simple output entity only binding with the Q port

without using I port, that means the simple output entities
does not have a state transition diagram. Simple output
entity is the equipment that shows the work state of PLC,
like a signal light. The usage of the simple output entity is
to bind with the Q port such that the PLC can make its
logical design.

Figure 1. PLC system model.

Copyright © 2010 SciRes. JSEA

PLC Modeling and Checking Based on Formal Method 1056

3) Human behavior entity
Definition 2.2. A Human behavior entity is a tuple Env

= < Ienv, A>, where Ienv is the I port binding with the
hardware entity, Qenv is the Q port binding with the en-
tity. A is the automata that describes the work flow of the
entity, A is a tuple A = <s0, S, T>, where s0 is the initial
state of A, S is the set of states while T is the set of the
transfers.

Human behavior entity is similar with Hardware entity;
they have the same state definition. It is difficult to simu-
late the behavior of people, especially the design of a
PLC to a number of individuals involved. In response to
these difficulties, human behavior modeling should take
an iterative process: First, a simple behavior model is
built use the model validation; then, if not find a counter
example, a more complex model is built, and validate,
until find a counter-example or hard to be more complex;
Finally, if not previously find a meaningful counter-ex-
ample, then generate a completely random person behav-
ior model (that is: human behavior is a complete graph
with all transfers be true) to verification. However, com-
pletely random behavior’s verification will cause state
space increases dramatically, so how to choose a suitable
model of human behavior is the difficulty in modeling. If
the person's input is relatively simple, we can use com-
pletely random behavior modeling, otherwise, you need
to seriously consider the establishment of a rational model
of human behavior.

We build model to PLC environment and the human
behaviors above, and then we will model the PLC con-
troller. PLC controller will be in a loop when it is turned
on.

 PLC read all the input from I ports.
 PLC compute all the logic units.
 PLC set all the Q ports.
PLC process on the basic unit called Network. All the

networks will operate in order according to the number
set when design.

Basic logic operation network of PLC controller in-
cludes: S Trigger, R Trigger, SR flip-flop, EQ trigger, RS
flip-flop, POS rising edge detector, NEG falling edge
detector and so on. To the basic logic operation network
modeling, we use direct mapping strategy, namely: PLC
controller model of network behavior and the logical be-
havior of the network is completely equivalent. Where S
trigger, R trigger, SR flip-flop, EQ trigger, RS flip-flop
can directly use Boolean expressions to mapped to their
behavior.

3. PLC Model’s Analysis and Improvement

The previous section describes the modeling of a PLC
system, according to this strategy; we can abstract a PLC

system as a formal model for model checking. Therefore,
this model will have a direct decision of the credibility of
the model checking results. If the model does not fully
cover the original system (we call smaller than the origi-
nal system), there may cause some errors are not detected;
model can be completely covered if the real system, but it
contains many states that the original system does not
exist (we call it larger than the original system), this may
introduce some errors that real system do not exist. Here
called it pseudo-error. So there are two requirements for
modeling strategy.

First, in order to find all the errors in the system, we
shall build a model large enough to cover all the states in
the original system; second, require the model be close to
the real system as much as possible. This will not only
reduce the state space, but also improve efficiency. Base
on the requirements, we will give an analysis about the
Time interval model.

Proposition 1 If time interval model conforms the
property, real PLC system model also conforms.

The correctness of Proposition 1 can be concluded
from the relationship between the two models. That
means all the situations that real model will happen are
included by the time interval model, time interval model
is larger than the real model. If you couldn’t find a
counter-example by using a time interval model, you can
prove the correctness of the real PLC model; the other
hand, if we find a counter-example, we cannot determine
whether there are errors in the real PLC system. That is to
say the converse of proposition 1 is wrong. Then manual
intervention is required to analyze the anti-cases to de-
termine whether it is a pseudo-error.

Time interval modeling strategy can get an abstract
PLC model, many research based on NuSMV also use the
strategy similar to time interval model to model PLC sys-
tem. However, the “time interval model” has large devia-
tion with the real model, it needs to be improved. The
deviation is: “time interval model” does not reflect the
high-speed scanning characteristics of PLC and low-speed
characteristics of concurrent entities. That is, all the
changes in the environment should be scanned by the
high-speed PLC, but the time interval model ignores the
high-speed characteristics of PLC, which makes changes
in the external environment may not be scanned.

To address the above issues, taking into account the
external high-speed scanning and low-speed concurrent
physical characteristics, time interval modeling strategy
shall be improved by adding a notice-waiting mechanism.
Base on the time interval model, each concurrent state
entity must be blocked and wait after the transfer took
place. Only if the PLC controller completely scans at least
once, the notice-waiting mechanism will sent messages to

Copyright © 2010 SciRes. JSEA

PLC Modeling and Checking Based on Formal Method 1057

Figure 2. Notice-waiting mechanism of concurrent entities.

concurrent entities to remove the block and go on work-
ing. Then the transfer finished. The process that concur-
rent entities work to complete the migration by no-
tice-waiting mechanism is shown in Figure 2:

 t0: Transfer start, block and notice the PLC control-
ler.

 t1-tm: PLC completely scanned m times (m is one at
least).

 tm+1: The concurrent entities get the notice from the
PLC, transfer finish.

This mechanism ensures every state change of con-
current entities can be scanned at least once by PLC con-
troller.

Proposition 2 After add the notice-waiting mechanism,
the model become a subset of the time interval model. At
the same time, the model can also include the entire situa-
tion in real model. That is to say, if a model which adds
the notice-waiting mechanism conforms the property, real
PLC system model also conforms.

It is similar to prove proposition 2 with proposition 1.
By proposition 2 we can see, after add the notice-waiting
mechanism the model still has a good nature. As previ-
ously mentioned, an abstract system model has two re-
quirements: first, to fully contain the real system, fol-
lowed by the model as close to real systems. The first
proposition is proved that the time interval model in-
cludes the real systems, as long as the use of model
checking tools to prove that this abstract model satisfies a
certain property, then the true nature of the system will
also satisfy this. But this model and the real model is not
entirely equal, it should be far greater than the real model.
Compare to time interval model, this model further re-
duced the distance between the real systems, greatly re-
duce the chance that finding out pseudo-errors.

Model checking tool will give out a counter-example
violate the property of the system; it is easy to manually
determine the counter-examples in the real system is true
or not. If the errors in the original system really exist,
then we find a counter-example. Otherwise, this error is

because the abstract model is larger than the real system,
it is a pseudo-error. Therefore, although this time interval
model and the original system are not fully equivalent,
but by this model, we can judge a system meets a certain
property, if not we can find a specific counter-example
(still needs more examine to determine whether it is a
pseudo-error).

Model is not equivalent with the original system,
mainly because there are many factors difficult to model
in real systems, some of which may give rise to error. If
all the factors are modeled, that will lead to the estab-
lishment of a huge model that cannot check, or simply
cannot be achieved. Time interval model abstract the key
factors from the real system and model them, greatly
reducing the state space, and reduce the time complexity.
Meanwhile, add by the notice-waiting mechanism, the
model become much closer to real systems, not only re-
duces the time complexity, while it reduced the pseu-
do-errors mentioned before.

4. PLC Model Checking

PLC is widely used in many applications, and has many
devices; this is a large area of research. Any PLC work
in the environment that includes different equipment and
people, so PLC system is concurrent. At the same time, a
PLC system difficult to find if there are some errors,
mostly because of the logical design errors, but not the
calculation error. So we focus on the detection of PLC
program logic process, and this logic can be completely
described by bit logic. Therefore, in order to simplify the
PLC program model, focused on model checking, we
make the following settings:

 PLC is a logic control program, all the control va-
riables only has two states 0 and 1;

 PLC program is run in concurrent environment. In
this case, PLC programming is more likely to have
some errors not easy to find.

In respect of the above characteristics, we use the
model checking tool SPIN (our tools PLC-Checker also

Copyright © 2010 SciRes. JSEA

PLC Modeling and Checking Based on Formal Method 1058

realized NuSMV) on the above established model for
checking. We made a series of transformation rules,
build the above model into SPIN's input language Pro-
mela, the system property also need to be translated into
Promela, SPIN will put them together and then perform
detection.

PROMELA language is a C class language, they are
similar in semantic. So we will only give some examples
to show the basic concept of the translation. To see the
details of PROMELA language, please visit www.spin-
root.com. We will introduce the three part of a PRO-
MELA file as the input of SPIN.

1) Code of PLC controller
PLC controller is composed of multiple networks.

Code of PLC controller is also generated from the net-
work. Of course, before that, you should declare the vari-
ables you need. Each network has its input ports and out-
put ports, each port can be indicate by a Boolean expres-
sion. We assign the output port’s value through the logic
computing of all the input port. This is the translation
approach of PLC network.

Here is an example of converting SR network:
if
:: Exp(R) == 1 -> Q = 0;
::else ->
 if ::Exp(S) == 1 -> Q = 1;
 ::else -> skip; fi;
fi;
/* Exp(S) is the Boolean expression of S port
 Exp(R) is the Boolean expression of R port
 Q is the output port */
2) Code of concurrent entities
We consider each concurrent entity a unique process, no

matter it is human behavior or equipment. These processes
share variables with PLC controller process. This must be
done to ensure the concurrency of the system.

In the 2nd part of this paper, we discuss that all the
concurrent entities are modeled as an automata. The
meaning of automata is to transfer from a state to another.
We use the I port to form the state of the entities. Use
goto statement as the transfer (just like in Assembly lan-
guage). A simple example is shown like below:

StateA:
 atomic {

if
:: Q1 -> {IB, goto StateB}
:: Q2 -> {IC, goto StateC}
fi;}

/* StateA is the label of State A
 Q1, Q2 is the condition of transfer
 IB is to set the state value to the value of state B
 goto StateB means jump to stateB */
3) Code of property

Property is the rule that the PLC system must obey. We
use LTL (Linear Time Logic) formula as the input format.
We should write the counter-property because of the
mechanism of SPIN. SPIN will find a situation that our
property happens, that should be a counter-example.
We couldn’t directly write the LTL formula, but by us-

ing macros. Firstly we should define all the propositions
in the LTL in a macro (like # define p i5 == 0), then we
use propositions defined to form a LTL formula. SPIN
can automatically convert the LTL formula to PRO-
MELA code by using “SPIN–f” instruction (see more
details in manual of SPIN).

4) Notice-waiting mechanism
In the modeling discussion, we propose to add no-

tice-waiting mechanism. This mechanism also needs re-
flected in the code. Specific implementation is to sign a
bit variable for each non-PLC process (all the process
except PLC controller) as a signal. When the automata
transfer to a state label, the signal variable is set to 0, and
the next assignment requires this variable to be 1 to con-
tinue. As the result of PROMELA grammatical features,
the process will hang onwards. In the PLC process no
such restrictions, on the contrary, PLC process can set
these variables to 1, thus ensuring every move must go
through at least one PLC scan to complete. That is the so
called notice-waiting mechanism.

Follow the four steps above; we get a complete code of
a SPIN input file of our system. Then we can use SPIN to
check the model. For the steps of operating SPIN model
checker, see the manual of SPIN (visit www.spin-
root.com). SPIN will give the result whether a counter-
example is found, and we can analyze using the theory
mentioned above with the trail files that spin gives.
Using this detection mechanism, we developed a tool for
model checking PLC-checker. It helps to build visual
models and the implementation of checking, and can give
a simple analysis to the result. Of course, the coun-
ter-example it find should be checked manually to make
sure whether it is a true counter-example. However, with
the help of trail file, this is not a very difficult task. We
also successfully implemented some checking using
PLC-checker (shown in the next section). In a classic
textbook example, a counter-example was found. Al-
though the probability of occurrence of counter-example
is very low, but it does happen and can have serious con-
sequences. This tool is also proves the correctness and
validity of the theory in this article.

5. Running PLC-Checker

We will show the effectiveness of PLC checker by
checking a two-door channel model. A two-door channel
is used to prevent a closed room from the contact with
the outside world.

Copyright © 2010 SciRes. JSEA

PLC Modeling and Checking Based on Formal Method 1059

Figure 3. Result of model checking.

By input the ladder gram and the concurrent entities

into the tool, also the definition of the property, we exe-
cute the checking. Figure 3 shows the result.

As we can see, there is one error in the result. It is
proved to be a true counter-example by checking the trail
file manually. That is to say our mechanism is effective
in checking such kind of PLC programs.

6. Conclusions

We study the theory of modeling and checking on PLC
system in formal method in this paper. The requirement
of PLC modeling is analyzed, and the models of concur-
rent entities are built up through time interval strategy.
Then we prove the time interval model a super set of the
PLC system, and decrease the model by adding no-
tice-waiting mechanism. It also ensures all the changes in
the system can be scanned by the PLC controller. We find
the error of the system by checking out the coun-
ter-example of the system. Finally, the way of using SPIN
to check the model is given. Also the corresponding
model checking tool PLC-Checker is introduced. In this
stage, the mechanism still has many imperfections, such
as the handling of the timer. But it has great and unique
advantages in solving the problem of state exploration.
We are still on active exploration of such issues.

REFERENCES

[1] Pavlovic, R. Pinger and M. Kollmann, “Automated For-
mal Verification of PLC Programs Written in IL,” Con-
ference on Automated Deduction (CADE), Bremen, July

2007, pp. 152-163.

[2] M. B. Younis and G. Frey, “Formalization of Existing
PLC Programs: A Survey,” Proceedings of CESA 2003,
Lille, 2003.

[3] N. Bauer, S. Engell, S. Lohmann, M. Remelhe and O.
Stursberg, “Verification of PLC Program Given as Se-
quential Function Charts,” Lecture Notes in Computer
Science, Vol. 3147, 2004, pp. 517-540.

[4] S. R. Koo, P. H. Seong and S. D. Chaa, “Software Design
Specification and Analysis Technique for the Safety
Critical Software based on Programmable Logic Control-
ler (PLC),” Proceedings of the Eighth IEEE International
Symposium on High Assurance Systems Engineering
(HASE’04), Florida, March 2004, pp. 283-284.

[5] A. Mader and H. Wupper, “Timed Automaton Models for
Simple Programmable Logic Controllers,” Proceedings
of the 11th Euromicro Conference on Real-Time Systems
1999, York, June 1999, pp.106-113.

[6] E. Brinksma1, A. Mader and A. Fehnker, “Verification
and Optimization of a PLC Control Schedule,” Interna-
tional Journal on Software Tools for Technology Transfer
(STTT), Vol. 4, No. 1, October 2002, pp. 21-33.

[7] S. Lamp′eri`ere and J. J. Lesage, “Formal Verification of
the Sequential Part of PLC Programs,” 5th Workshop on
Discrete Event Systems (WODES 2000), Ghent, August
2000, pp. 247-254.

[8] S. Kowalewski, S. Engell, J. Preußig and O. Stursberg,
“Verification of Logic Controllers for Continuous Plants
Using Timed Condition/Event-System Models,” Auto-
matica: Special Issue on Hybrid Systems, Vol. 35, No. 3,
March 1999, pp. 505-518.

Copyright © 2010 SciRes. JSEA

