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ABSTRACT 

The development of the information technology has brought threats to human society when it has influenced seriously 
the global politics, economics and military etc. But among the security of information system, buffer overrun vulner-
ability is undoubtedly one of the most important and common vulnerabilities. This paper describes a new technology, 
named program slicing, to detect the buffer overflow leak in security-critical C code. First, we use slicing technology to 
analyze the variables which may be with vulnerability and extract the expressions which will bring memory overflow. 
Secondly, we utilize debug technology to get the size of memory applied by the variable and the size of memory used for 
these code segments (the slicing result) further. Therefore we can judge whether it will overflow according to the 
analysis above. According to the unique excellence of program slicing performing in the large-scale program’s debug-
ging, the method to detect buffer overrun vulnerability described in this paper will reduce the workload greatly and 
locate the code sentences affected by corresponding variable set quickly, particularly including the potential vulner-
ability caused by parameter dependence among the subroutines. 
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1. Introduction and Related Work 

As early as the beginning of 1970s, buffer overflow has 
been wildly believed that it is caused by the defects of C 
language’s design model. Array and pointer references 
are not automatically bounds-checked, so programmers 
must be up to do these checks by themselves. It is more 
important that many of the string operations supported by 
the standard C library such as strcpy(), strcat(), sprintf(), 
gets(), are unsafe actually. They directly copy data with 
unknown size to the fixed buffer (as shown in Figure 1), 
causing data overwriting in memory, access violation, or 
execution of malicious code designed by hackers. The 
data from CERT shows that 55 percent of general injec-
tion attacks are buffer overflow attacks [1], and that 
among the thirty new vulnerabilities happened during 
April 19 to May 30 in this year, buffer overflow holds 40 
percent [2].  

Currently, there are some problems to be solved. Tools 
with static buffer overflow detection based on string 
matching algorithms maintain a high rate of false alarms.  

If the functions existed in the program match the vulner-
ability database carrying by themselves, they give the 
corresponding reports. 

Now, the common detection methods check the bound 
of arrays. They regard the memory space variable applied 
as integer range, for example, char e.g. [10], and its range 
is [1,10]. When data are copied into it, we must judge 
whether the buffer overflows. But problems are still ex-
isted. First, we are hard to know how many sizes of the 
buffer have been used. Because we used to call library 
function to operate the string, and almost all of the library 
 

  
// no buffer overflow  
void NoVulFunc(void) 
{ 
char dest[6]; 
…… 
strcpy(dest,”Hello”); 
…… 
}  

 
// buffer overflow 
void VulFunc(void) 
{ 
char dest[6]; 
…… 
strcpy(dest,”HelloWorld”); 
…… 
} 

 
This work was supported in part by the Natural Science Foundation of 
China (60703086, 60873231, 60873049, 60973046), Jiangsu Natural 
Science Foundation of China (BK2009426). Figure 1. An example of a buffer overflow. 
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function’s source code is private or existed in DLLs. 
Second, these tools are hard to deal with a program with 
multiple procedures. Lastly, tracking every variable’s 
buffer is almost impossible in a large project. 
To solve these problems, many researchers have pre-
sented methods and tools for detecting buffer overflows. 

1) The static detection methods based on string match-
ing. Through string matching, the UNIX’s tool, grep, can 
be used to find the unsafe library function call. The tool 
RATS [3,4], developed by Secure Software inc., also 
studies the unsafe function call in the source code. It 
matches with the vulnerability database, and then gives 
the description of the vulnerabilities. Those tools as men-
tioned above can hardly analyze the semantics and 
grammar of a program, thus they have many limitations 
and high false positive. 

2) The detection method based constraint analysis. 
Splint [5], developed by university of Virginia, is a static 
analysis tool used to detect the vulnerabilities in the C 
program. It adds information of constraint to the source 
code, and then makes lexical, grammar and semantic 
analysis for the source. It judges the leaks that may hap-
pen in a program and gives the related instructions. From 
the workflow of the Splint, its limitation is that it re-
quests analysts to be known the source well, and to add 
notations to the interesting variables and functions. 

3) The dynamic detection methods. The dynamic de-
tection tool of buffer overflows first inserts some detect-
ing codes in the place where it may happen buffer over-
flow, then compiles and executes the codes after insert-
ing, and finally, detects whether overflow happens during 
the execution. But the dynamic detection has defects of 
efficiency and coverage. 

Against the problems described above, this paper pro-
poses a novel method of program analysis, program slic-
ing [6-8], to detect the buffer overrun. 

2. Program Slicing 

Program slicing [6], originally introduced by Weiser, has 
been widely used in maintenance of software, program 
debugging, software testing, code analysis, reverse engi-
neering and so on. For example, during the program de-
bugging, we hope to allocate the codes causing the error. 
But perhaps the program is too large to find by our hands. 
If we apply program slicing, we can exclude the codes 
that have nothing to do with the error, then allocate the 
error in a smaller range. 

In general, program slicing technology has experience 
a lot: from static slicing to dynamic, from forward slicing 
to backward, from single procedure to multiple, from 
non-distributed slicing to distributed, etc. 

The slice of a program with respect to program point p 
and variable x consists of all statements and predicates of 

the program that might affect the value of x at point p 
(see Figure 2). This concept, originally discussed by 
Mark Weiser, can be used to isolate individual computa-
tion threads within a program. In Weiser’s terminology, a 
slicing criterion is a pair <p,v>, where p is a program 
point and v is a subset of the program’s variable. 

With the expansion of the program scale, it is inevita-
ble that program contains multiple procedures. So it ap-
pears more important to study inter-procedural slicing. 
Regarding inter-procedural slicing as a question of 
graph’s reachability, S.Horwitz et al. [8] introduce sys-
tem dependence graph (SDG) to represent the program’s 
dependence graph (PDG). 

PDG is a directed graph connected by different kinds 
of vertexes and some edges (e.g. Figure 3). And the ver-
texes include function’s entrance node, declaration node, 
assignation node, control predicate node, function’s call 
site node, parameter node, the FINAL_USE node of 
every variable, etc. The edges include control depend-
ence edge of program’s circuit, parameter-in and pa-
rameter edges generated by call and other data depend-
ence edges. If the definition of variable x in node n is a 
reachable definition of node m, node m is data dependent 
on n. Control dependents only exist in condition expres-
sion and inside the loop expression. 

SDG (e.g. Figure 4) composes of procedure depend-
ence graph, which is connected by edges that represent 
direct dependences between a call site and the called 
procedure and edges that represent transitive depend-
ences due to calls.  
 

 // a simple example 
1   void EgForSlicing () 
2   { 
3      int a = 0; 
4      int b = 0; 
5      int c = 5; 
6      if(c > 10) 
7         a++; 
8      else 
9         b++; 
10   } 

Slice for variable a in 7th 
expression 
1   viod EgForSlicing () 
2   { 
3       int a = 0; 
6       if(c > 10) 
7         a++; 
10   } 

Slice for variable c in 6th 
expression 
1    viod EgForSlicing ()
2     { 
5        int c = 5; 
10    } 

Slice for variable b in 9th 
expression 
1    viod EgForSlicing () 
2    { 
4       int b = 0; 
6       if(c > 10) 
8       else 
9         b++; 
10    } 
 

 

 

Figure 2. A sample of program slicing. 
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 //a sample with single 
//procedure 

void main () 
{ 

int i = 0; 
while (i < 10) 

         i++; 
} 

Control dependence

Data dependence 

 

 

Figure 3. A program and its PDG. 
 

 //a sample with two 
//procedures 
void main() 
{ 
   int i = 0; 
   inc (i); 
} 
void inc (int a) 
{ 
    a++; 
} 

Control dependence

Data dependence 

 

 

Figure 4. A sample program and its SDG. 
 

For every call site, we use four sorts of vertices to de-
note the parameter passing: on the calling side, informa-
tion transfer is represented by a set of vertices called ac-
tual-in and actual-out vertices. These vertices, which are 
control dependent on the call-site vertex (see Figure 4), 
represent assignment statements that copy the values of 
the actual parameters to the call temporaries and from the 

return temporaries, respectively. Similarly, information 
transfer in the called procedure is represented by a set of 
vertices called formal-in and formal-out vertices. These 
vertices, which are control dependent on the procedure’s 
entry vertex, represent assignment statements that copy 
the values of the formal parameters from the call tempo-
raries and to the return temporaries, respectively. 

3. An Algorithm of Buffer Overflow  
Detection 

In this section, we will show in detail an algorithm of 
detecting buffer overflow through program slicing. The 
algorithm includes four steps as follows. 

Step 1. Constructing PDGs 
Through the lexical and syntax analysis (with Flex and 

BYACC) of the program to be detected, we first con-
struct the vertices in PDGs. There are usually seven 
kinds of vertexes as follows. 

1) The beginning vertex of compound statements 
which includes function, if-else, switch statements and so 
on; 

2) The end vertex of compound statements; 
3) Call-site vertex; 
4) Actual-in and actual-out vertex; 
5) Formal-in and formal-out vertex; 
6) FinalUse vertex; 
7) Others vertex such as ordinary definition statements 

(e. g.: int i), predicate vertexes (e. g.: the judgment part 
of a if statement) and jump statements (e. g.: break, goto 
and so on). 

Then we construct the edges of PDGs by analyzing the 
program dependences (includes control dependences 
and data dependences, see Figure 4). 

Step 2. Constructing SDG 
According to the PDGs in Step 1, the SDG can be con-
structed by the following substeps: 

1) For each call site, a call edge from the call-site ver-
tex to the corresponding procedure-entry vertex, is added 
into the PDG related. 

2) For each actual-in vertex v at a call site, we add in 
PDGs a parameter-out edge from v to the corresponding 
formal-in vertex in the call procedure; 

3) For each actual-out vertex v at a call site, we add in 
PDGs a parameter-out edge to v from the corresponding 
formal-out vertex in the called procedure; 

4) We finally add in PDGs an edge between actual-out 
vertex to actual-in vertex if they are reachable between 
the corresponding formal-out and the corresponding for-
mal-in. 

Step 3. Computing program slices by traversing SDG 
in two phases 

Supposing that we want to computer the inter-procedure 
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slice of the variables in vertex n. 
Phase 1: Starting from the vertex n, we travel re-

versely the SDG through the control dependence edges 
and data dependence edges (not including parameter-in 
edges), and then mark all of reachable vertexes. 

Phase 2: Starting from the vertexes marked in phase 1, 
through the control edges (not including call-site edges) 
and data dependence edges (not including parameter-out 
edges), we mark all of reachable vertexes. 

The result of the inter-procedure slice is the union set 
of the marked vertexes in above two phases. 

Step 4. Detecting Buffer Overflow 
For each variable needed to analyze, we can use a data 

structure to store the information of usage. The data 
structure includes variables, the flags of overflow, the 
usage information and the total size of memory applied 
by a variable. For example, char p [10], the detection 
model about p is as follows (see Figure 5). 

From the abstract syntax tree obtained by lexical 
analysis and syntax analysis, we can get each call func-
tion. Through the inter-procedure slicing of the parame-
ters of the vulnerable functions, we then can obtain a 
piece of executable code segment which may affect these 
parameters. At last, we watch the memory of the variable 
for judging whether the buffer related is overflow, by 
setting breakpoints in a debugger at the beginning of the 
main function and the vulnerable function. 

4. Implementation 

Through the intermediate representation AST of a pro-
gram (from the lexical and syntax analysis of the pro-
gram), we can construct some useful graphs such as 
PDGs and SDGs. In PDGs, the data structure of nodes 
and edges are as follows. 

struct PDGNode { 
CFGType type;          

//type of node, such as “DEFINE”, “IF”, “WHILE”. etc 
      StructId   astId;            

//node’s ID in AST  
      PDGId    father;            

//connect to the control predicate 
      PDGId    tBranch, fBranch;  

 //the PDGID of true branch or false branch  
   PDGId    ifd;           

//post-dominator  
  ListId     prevHead;        

//the first node’ID of the father node table 
  PDGId    callLink;         

//link to the first function call site 
      DepEdgeId cdFirst;         

//the ID of the node’s first control dependence edge 
  DepEdgeId ddFirst;          

//the ID of the node’s first data dependence edge 

 P: 

noFlow 

h e l l o \0 

hasUsed maxLen 
 

Figure 5. The detection model of buffer overflow. 
 

}; 
struct DepEdge { 

   int       depSrc;      
//the PDG ID of dependence source  

   int       depDest;    
//the PDG ID of dependence destination  

DepEdgeId srcNext;   
//the next dependence edge with the same dependence 

//source  
DepEdgeId destNext;    

//the next dependence edge with the same dependence  
//destination  

}; 
According to the algorithm in above section, we can 

construct SDGs from PDGs by adding some edges with 
the following functions. 

1) Adding control dependence edges from call-site to 
the callee’s body, through the function AddEdge (CTRL_ 
EDGE, callSite, entry).  

2) Adding data dependence edges from actual-in to 
formal-in, through the function AddEdge (DATA_EDGE, 
Actual_in, Formal_in) 

3) Adding data dependence edges from formal-out to 
actual-out, through the function AddEdge (DATA_EDGE, 
Formal_out, Actual_out) 

The function AddEdge inserts dependence edges to the 
dependence table according to the edge’s style. Then we 
assign an ID of the new edge to the destNext (a member 
variable of DepEdge). The following codes show in de-
tail the implementation of AddEdge. 

AddEdge (int kind, int from, int to) 
{ 

int lastEdge; 
   DepEdge dep (from, to);  
   depTable. insert (dep); 
   switch (kind) 
   { 
     case CTRL_EDGE: 
       lastEdge = pdgTable [from]. cdFirst; 
    break; 
   case DATA_EDGE: 
    lastEdge = pdgTable [from] .ddFirst; 
    break; 

}  
   if (lastEdge < 1)  

Copyright © 2010 SciRes.                                                                                 JSEA 



Program Slicing Based Buffer Overflow Detection 969 

//if this node has no dependence edge 
{ 

   pdgTable [from]. cdFirst = depTable. getCurId(); 
   return; 
   } 
  //if the node has dependence edge already  
  while ((depTable [lastEdge]. depDest! = to)&&  

depTable [lastEdge]. destNext >= 1) 
 lastEdge = depTable [lastEdge]. destNext; 

     depTable [lastEdge]. destNext = depTable.getCurId (); 
} 

The dependence between the actual parameter can be 
formed according to the dependence among the corre-
sponding formal parameters. When we analyze the li-
brary function, we suppose that each actual-out is de-
pendent on the actual-in. So we need not go deep into the 
inner of the library function body. The detail codes of the 
dependence among formal parameters are as follows. 

void BuildInterActualParameterDep (int fnId) 
{ 

//paramNum is the number of the parameter 
for(int i = 0; i < fnTable[fnId]. paramNum; i++)  

//judge whether the corresponding formal-in can 
//reach the corresponding formal-out 
if (IsReachable (formal-in, formal-out)) 
//Add edge between the corresponding actual-in             
//and the corresponding actual-out; 
AddEdge (DATA_EDGE, actual-in, actual-out); 

 } 
According to the algorithm described in section 3, we 

need to traverse the SDG in two phases. Because pa-
rameter-out edges are not followed, the traversal in phase 
1 does not descend into procedures. But the effects of 
such procedure are not ignored. The presence of transi-
tive flow dependence edges from actual-in to actual-out 
vertices permits the discovery of vertices that can reach 
the vertex you want to slice through a procedure call, 
although the graph traversal does not actually descend 
into the called procedure. In phase 2, because call edges 
and parameter in edges are not followed, the traversal 
does not ascend into the calling procedure; the transitive 
flow dependence edges from actual-in to actual-out ver-
tices make such ascents unnecessary. So we can solve the 
call-context problem (as shown in the following codes). 

void InterProSlice (SDGs, PDGId vulPdgNode) 
{ 
 //phase 1: traverse in calling procedure  
 ReachingNode (s, vulPdgNode, {parameter_out}); 
 //phase 2: traverse in called procedure  
 //vSet is a set marked in phase 1; 
 ReachingNode(s, vSet, {parameter_in, call}); 
} 

 void ReachingNode(SDG s, vSet, kind) 

//vSet is the set of vertex 
//kind is type of the vertex  

{ 
stack<PDGId> nodeStack; 
push the vertices that exist in the vSet to the stack;  
while (!nodeStack .IsEmpty()) 
{ 

pop a vertex v from the stack; 
mark the vertex v; 
while (if v’s depTable is not empty) 
{ 

push the vertices existed in the depTable to the stack; 
} 

} 
} 

After obtaining the result of the slicing, we set break-
point at the beginning of the main function and at the 
place of the vulnerable function, then call the debugger 
(for example: the debugger embedded in Microsoft Vis-
ual Studio or the Zeta debugger [9]) to execute by step 
until the end. The implementation is as follows: 
void BufferOverDetect (int start, int end, int vulPos, char * 
fileName) 

{  
char buf [10]; 
ZD_LoadProgram (fileName); 

 ZD_SetBreakPoint (start,true); 
 ZD_SetBreakPoint (vulPos,true); 
 ZD_RunTo (start); 
 While (start <= end) 

 { 
  ZD_RunTo (++start); 

} 
/*the function below is used to read a byte of 

content starting from the memory address of 
add to the buf. The add is passed as follows: if 
you want to check whether vul (vul is defined 
like this: char vul [10]) will be overflowed, we 
just need to watch the content of the vul [10], 
and the add is & vul [10].*/ 
ZD_Read (add, 1, buf); 

} 

5. A Sample 

In this section, we will show based on program slicing a 
sample (see Figure 6), where the variable of vulBuf will 
be overflowed. 

Due to the restriction of space, parts of the vertices in 
Figure 6 have been abbreviated shown as follows.  

D:noR    = DEFINE:noRelated;   
D:noRBuf = DEFINE:noRelatedBu; 
D:vulBuf = DEFINE:vulBuf;   
A:noR++ = ASSIGN:noRelated++; 
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Figure 6. A sample of buffer overflow and its SDG. 
 
  C:copy   = CALL_SITE:copy;   

F:noR    = FINALUSE:noRelated; 
  F:noRBuf = FINALUSE:noRelatedBuf;   

F:vulBuf = FINALUSE:vulBuf; 
  A_IN  = ACTUAL_IN;   

A_OUT  = ACTUAL_OUT; 
F_IN  = FORMAL_IN;   
F_OUT  = FORMAL_OUT; 

  A_IN_1 = ACTUAL_IN_1;   
A_OUT_1  = ACTUAL_OUT_1; 
A_IN_2 = ACTUAL_IN_2;   
A_OUT_2  = ACTUAL_OUT_2; 

After constructing the SDG, we start to find the vul-
nerable function call with the matching. Then we can 
find the strcpy in the copy may cause overflow. So we 
make inter-procedure slicing for variable p, and obtain 

the result showed in Figure 7. 
Then we call the debugger, and set breakpoint at the 

beginning of the main function and at the place of the 
strcpy, by starting to execute by step. At last, we will 
find vulBuf [10] equals character of NULL (see Figure 
8). This shows that vulBuf has been overflowed. 

After debugging, we will give the corresponding re-
port. 

There are some advantages in our detection tool based 
on program slicing. First, this tool improves the accuracy 
greatly compared with the ITS4 and RATS which use 
string matching to detect the buffer overflows. Second, 
through program slicing, we can get rid of the useless 
codes. Compared with the detecting tool that sets a con-
straint for each variable and watches its value, our tool 
can reduce the variables needed to watch, improve the 
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# include <string.h> 
void copy(char *p) 
{ 

strcpy (p,”HelloWorld”); 
} 
void main() 
{ 

char vulBuf [10]; 
copy (vulBuf); 

} 

  

Figure 7. The slice result of the sample in Figure 6. 
 

 

 

Figure 8. The result of a detection debugger. 
 
performance. Third, compared with the Splint, our tool 
needs not to insert information of constraint to the source. 
So the analyst needs not learn the program a lot. 

6. Conclusions 

This paper introduces inter-procedure slicing to solve the 

problem of detecting buffer overflow. Compared with the 
other methods, this method has the high performance and 
excellent precision. But our tool is only fit for the pro-
grams coded by C, and it is still blindness in the ob-
ject-oriented languages. So eliminating the blindness will 
be our further work. 
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