
J. Software Engineering & Applications, 2010, 3, 561-571
doi:10.4236/jsea.2010.36065 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

MDA (Model-Driven Architecture) as a Software
Industrialization Pattern: An Approach for a
Pragmatic Software Factories

Thomas Djotio Ndie1, Claude Tangha1, Fritz Ekwoge Ekwoge2

1Department of Computer Science, National Advanced School of Engineering, University of Yaounde 1, Yaounde, Cameroon; 2Koossery
Technology Cameroon, Douala, Cameroon.
Email: {tdjotio, ctangha, ekwogefee}@gmail.com

Received March 5th, 2010; revised April 30th, 2010; accepted April 30th, 2010.

ABSTRACT

In this paper we show that the MDA can be considered as a software industrialization pattern (or a software factory).
Nearly all industries today are haunted with how to reduce costs, improve quality, faster time-to-market and to maximize
profits. These challenges are particularly relevant to the software industry, because it still lags behind other technology
sectors as regards industrialization and the timely delivery of software products. Most software are still of poor quality,
always finished after deadlines (most don’t finish at all), and are very labour intensive. Here, we discuss the MDA as an
approach that may help solving at the same time both problems of industrialization and ever-changing software
infrastructures. We propose a MDA Engine based on a real case study in an IT services company. It is a proposal for a
framework to create custom MDA tools, based on XMI, XSLT and the Visitor Pattern.

Keywords: Software Industrialization, Software Factories, MDA, MDA Engine, MDD, DSM

1. Introduction

Software engineers are faced with the ever evolving na-
ture of the software industry. New implementation infra-
structures come and go at non negligible rates. What is
“in” today may be “out” in just a few months, with little or
no backward compatibility. A software factory’s major
concern is the industrialization of software development
[1,2]. Just as a brewing industry has brewing factories that
industrialize the production of beer, a software factory’s
main goal is the rapid production of high quality software
components, at lower costs. According to Microsoft1
“Software Factories provide a faster, less expensive, and
more reliable approach to application development by
significantly increasing the level of automation in appli-
cation development, applying the time-tested pattern of
using visual languages to enable rapid assembly and con-
figuration of framework based components”[3].

The keyword that makes any industry factory produc-
tive is automation. But the automation process is a more

complicated issue in the software industry compared to
other industries. The software industry is constantly
plagued by new technologies springing up very frequently.
At one time everything was in C. Now most developers
code in Java or any .NET language. At one time we had
COM, now we equally have Web Services. The software
industry has accepted the UML, which may help in de-
scribing systems, irrespective of implementation details.
With UML, the model we describe will not change as
often as the technology used to realize the system. The
challenge then, in industrializing software components,
will be the automatic transformation of UML models to
concrete implementations. This is where tools like the
MDA pattern come into play. When designing with UML,
our level of abstraction is increased.

Software development is a complex issue. The com-
plexity is aggravated by the fact that most developers
build every application as though it is the first of its kind
anywhere. We re-code the same Data Access Layers,
design user interfaces from zero for each new product that
comes, and we create services that are not reusable be-
cause deadlines are catching up on us. We may have gone
a long way from writing code in assembly, but software
development has always been regarded as an art by most

1
Microsoft coins the term “software factory” in association with

their .NET platform, but this description of software factories can be
applied to other platforms.
LIRIMA (http://www-direction.inria.fr/international/lirima.html)

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 562
An Approach for a Pragmatic Software Factories

software developers, be they professional or casual de-
velopers. To industrialize the development of software,
we need an increased level of abstraction, standardization
and automation. According to the authors of the publica-
tion [1], “the key to industrialize software development is
to leverage experienced developers by encapsulating their
knowledge as reusable assets that others can apply. De-
sign patterns demonstrate limited but effective knowledge
reuse. The next step is to move from documentation to
automation, using languages, frameworks and tools to
automate more of the software life cycle”. Most software
has been written in the past decades to increase the pro-
ductivity of workers in offices, a popular example being
office automation suites. Software has been written to
manipulate robots that assemble car parts in record time.
For many years now, the software industry has been
writing software that has helped increase the level of in-
dustrialization in other technical and non-technical sec-
tors. It is time we seriously consider using software to
industrialize the development of software. There are many
ways we could automate the software development proc-
ess. The most popular today being: Templates, Code
Generators, MDA and DSL. This paper is separated into
four parts. The first part will explore the state-of-the-art
on the techniques used in industrializing software com-
ponents, with particular focus on MDA. The second will
focus on a specific case study of an IT Services Company:
the Koossery Technology Framework (KTF). The third
section will present our solution: the MDA Engine de-
signed to serve as a guide for the creation of custom MDA
tools. The last will present OptimaDev, the result of the
application of the MDA Engine proposed.

2. Software Industrialization Techniques:
The State-of-the-Art

2.1 Elementary Industrialization Techniques:
Generators and Templates

A source code generation result in generating source
code based on an ontological model such as templates. It
is accomplished with a programming tool such as tem-
plate processor or an Integrated Development Environ-
ment (IDE) [4,5]. The generation of source code also
results from abstract models for particular application
domains, particular organizations, or in simplifying the
production process for computer programmers [5-7]. In
the context of software engineering, the use of the term
template implies many technical specifications, but it is
generally identified as any processing element that can
be combined with a data model and processed by a tem-
plate engine to produce a result document2. Source code
generators improve the quality of source code, provide

some consistency, increase productivity and increase the
level of abstraction to a certain degree. The most com-
mon form of generating code is by using templates.
Though aiding in industrializing the development of
software components, code generators and templates in
general are too technology-oriented. It is to remove this
coupling that the MDA comes into play.

2.2 Model Driven Architecture (MDA) and
Domain Specific Modeling (DSM)

2.2.1 MDA (Model Driven Architecture)
The MDA is a development framework defined by OMG
[8]. It “starts with the well-known and long established
idea of separating the specification of the operation of a
system from the details of the way that system uses the
capabilities of its platform” [9]. MDA addresses three
main objectives which are portability, interoperability
and re-usability through architectural separation of con-
cerns. The MDA is a form of Model-Driven Develop-
ment (MDD) that promises to allow the definition of
machine readable application and data models which
permits the long-term flexibility of implementation, inte-
gration, maintenance, testing and simulation [1,9-11].
Many basic concepts are described around it. We will
just mention three of them: system, model, and viewpoint
[9]. The system concept may include anything that can
be a program, a single computer system, some combina-
tion of part of different systems, a federation of systems,
each under separate control, a people, an enterprise or a
federation of enterprises. The model of a system is a
specification of that system and its environment for some
purpose. “A viewpoint on a system is a technique for
abstraction using a selected set of architectural concepts
and structuring rules, in order to focus on particular con-
cerns within that system” [12-14].

The MDA specifies three viewpoints on a system: a
platform independent view point, a computation inde-
pendent viewpoint and a platform specific viewpoint.
The ‘Platform Independent’ is a quality which a model
can exhibit and sets that the model is independent of the
features of a platform of any particular type [14-16]. The
Computation Independent Model (CIM) is a view of a
system from that computation independent viewpoint
which focuses on the environment of the system, and the
requirements for the system. The details of the structure
and processing of the system are hidden or are yet unde-
termined. The Platform Independent Model (PIM) relies
from platform independent viewpoint. It focuses on the
operation of a system while hiding the details necessary
for a particular platform. “A PIM exhibits a specified
degree of platform independence so as to be suitable for
use with a number of different platforms of similar type.”
[14]. A very common strategy to achieve platform inde-
pendence is to target a system model for a technology-

2
http://www.nationmaster.com/encyclopedia/template-processor; (also

at Wikipedia, accessed February 24, 2009)

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 563
An Approach for a Pragmatic Software Factories

neutral virtual machine [1]. The Platform Specific Mod-
eling (PSM) combines the specifications in the PIM with
the details that specify the way that the system uses a
particular type of platform [13,14].

MDA is based on detailed platform models, for exam-
ple, models expressed in UML and/or OCL, and stored in
a MOF compliant repository [9,17-21]. There is the
MDA pattern, by which a PIM is transformed to a PSM.
This process of converting one model to one another of
the same system is called “the model transformation”
that forms a key part of MDA.

2.2.2 MDA vs. Domain Specific Modeling (DSM)
DSM is a software engineering methodology for design-
ing and developing systems, most often IT systems such
as computer software. It involves systematic use of a
graphical Domain-Specific Language (DSL) to represent
various facets of a system. DSM languages tend to re-
quire less effort and fewer low-level details to specify a
given system [10,16,21,22]. MDA and DSM may appear
to be the same concepts; both approaches will result in
producing code automatically from a higher abstraction,
thus increasing productivity. Though they both propose
methods of solving the software industrialization prob-
lem based on Model-Driven Development (MDD), they
both differ in approach. The principal differences can be
summarized as follows: MDA promotes the use of the
UML or any MOF-compliant modeling language, while
DSM promotes the use of DSL for the description of a
domain space. MDA is all about the use of models and
their automatic transformations using a standard trans-
formation language while on the other hand DSM is not
limited to using models. The other main reason of chois-
ing MDA but not DSM is because the cost of creating
and maintaining a new language not based on a standard
will be too high for the compagny with no signficant
added value and mostly because the nowaday IT com-
pagny already has a lot of trained UML professionals. In
the next section, we will present the Koossery Technol-
ogy Framework, a real case study in an IT company.

3. Case Study: The Koossery Technology-
Framework; Industrializing the
Development of Koossery Technology
Software Components

We exposed some basic concepts currently used to in-
dustrialize the development of software components. We
have talked about the MDA Pattern, code generators,
templates, and DSM. In this section, we will explore a real
world example of industrializing software components in
an IT services company called Koossery Technology
(KT)3.

3.1 Koossery Technology: Company Profile

KT adapts its services to the size of its customers, where
ever the customer’s location. Its center for technological
support, Koossery Tech' Lab (KTL) does continuous
technical tracking on predilected technologies, and
knowledge management. KT's solutions include but are
not limited to (1) J2EE and .NET Architecture and ap-
plication development, (2) CORBA/C++ and CORBA/
Java Distributed Application Development, and (3)
DataWareHouse, DataStage, Genio, BO/Webi. There are
generally two phases involved in building .NET, Java or
Corba C++/Java applications in KT. During the phase of
architecture and UML design, engineers will model al-
ternately ‘use case diagrams’; ‘class diagrams’; ‘se-
quence diagrams’; ‘component diagrams’; ‘deploy-
ment diagrams’ to respectively identify the functional
components; represent the relationship between objects;
depict the dynamics of the objects and state the distrib-
uted character of the application.

During the phase of development of KT .NET applica-
tions, engineers can be allocated to the development of
one or several layers. In the particular case of .NET ap-
plications we have: the Presentation Layer (be it a light
client based on ASP.NET, or a rich client based on Win-
forms, or a smart client); the Business Logic Layer (BLL)
(that can be implemented using an internal framework of
the customer and the .NET framework, with target lan-
guages C# or VB.NET). The Data Access Layer (DAL)
that can be implemented using the internal framework of
the customer, or a commercial or open source Object/
Relational (O/R) mapping framework. The Database
Management System (DBMS) familiar to KT engineers
include but are not limited to: Sql Server, Oracle, and
Sybase. The Inter-Layer Communications: different lay-
ers exchange data using some message queuing (like
MSMQ, MQ-Series), the XML web service model in a
heterogeneous environment, .NET Remoting in a homo-
geneous Microsoft environment, or PONOs4 exposed as
services via the Spring framework. In the following sec-
tion, though mainly references will be made to the .NET
framework, KT uses the same philosophy for other tech-
nologies (Java and CORBA/C++) [15,23,24].

3.2 Inhouse Framework

3.2.1 Overview
KT Lab has put in place the Koossery Technology
Framework (KTF) (illustrated by the Figure 1), a reus-
able design for the development of complex distributed
systems. This framework serves as a guide in building
robust Service Oriented Architecture (SOA) applications,
distributed components, and user interfaces.

The KTF is expressed as a set of abstract classes, ser-

4
Plain Old .NET Objects 3

http://www.koossery-tech.com

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern:
An Approach for a Pragmatic Software Factories

Copyright © 2010 SciRes JSEA

564

Figure 1. Koossery technology framework for n-tier applications5

vice locators, configuration files, and the way all in-
stances of these collaborate for a specific type of soft-
ware. It includes many support programs, code libraries,
and other software to help develop and glue together the-
different components of a software project, using popular
patterns like MVC (Model View Controller), DAO (Data
Access Object), DTO (Data Transfert Object), IoC/DI
(Inversion of Control/Depedency Injection), Service Lo-
cators and other design patterns. It also uses popular tier
software utilities like log4j/log4net6, Ibatis7, Hibernate8,
Spring, Struts, Maverick ... Various parts of the KTF are
exposed though an API. With the KTF in place, develop-
ers spend more time concentrating on the business-spe-
cific problem at hand than on the plumbing code behind
it. Also the KTF limits the choices during development
to a certain extent, so it increases productivity, specifi-
cally in big and complex systems.

3.2.2 Development of .NET Server Components
Now we will describe how server components are de-
veloped. The development of a .NET server component,
for example, is divided into 3 fundamental layers: DAL,
SISV (Simple Service), SVCO (Service Controller). In
the DAL, data can be stored in a Remote DBMS
(RDBMS) or any other medium. To access data, the
DAL uses a framework for O/R mapping, the two most
popular used being iBATIS and NHybernate. Sometimes
ADO.NET9 is used directly, but it is used in a similar

manner as an O/R mapping architecture. The DAL also
possesses a service locator called DAOController which
encapsulates the search for any DAO implementation.

The SISV is the layer for simple services. This layer
manipulates the DAL directly, using the DAOController
service locator to find the required DAO implementation.
It is meant to be a stable layer since it is constituted of
very simple functionalities which are just a combination
of calls to the DAL. The SISV also has a service locator
called SISVFinder to encapsulate the search for any
SISV implementation.

The SVCO is the layer for composed services. This
layer is constituted of very high level services which are
obtained as a combination of services found in the SISV
layer, using the SISVFinder to search the required SISV
service. The SVCO layer should never access the DAL
directly. It also has a SVCOFinder to encapsulate the
search for its SVCO services.

The KTF applies dependency injection using the IoC
pattern. The SISVFinder dependency of the SVCO is
passed as a constructor dependency in an SVCO imple-
mentation, and the DAOController dependency of the
SISV is passed as a constructor dependency in a SISV
implementation. Integration is usually done in an exter-
nal file using the Spring Application Framework10.

The strategy most applied when developing a server
component at KT is to separate the server component
into two distinct software units, the CORE and the 5

VO = Value Object/
6
http://logging.apache.org/log4net/ 9

http://msdn2.microsoft.com/en-us/data/default.aspx 7
http://ibatis.apache.org/ 10

http://www.springframework.org/ 8
http://www.hibernate.org/343.html

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 565
An Approach for a Pragmatic Software Factories

BACKEND. The CORE includes all different interfaces,
exceptions and Data Transfer Objects (DTOs). The
BACKEND includes all concrete implementations of the
CORE. The CORE is the heart of the server component.
It contains the CORE_CONTRACT and the CORE_
BACKEND. CORE_CONTRACT includes all interfaces
of the services offered by the server component to its
clients. The CORE_BACKEND comprises all interfaces
of the DAL and the SISV. The BACKEND contains the
following packages: the DAO, SISV and SVCO. The
DAO package contains all implementations of the DAL
interfaces found in the CORE_BACKEND, the SISV
package contains all implementations of the SISV inter-
faces found in the CORE_BACKEND, the SVCO pack-
age contains all implementations of SVCO interfaces
found in the CORE_CONTRACT.

The framework proposes a method of realizing the
concrete implementations of the DAL, SISV and SVCO.
The services of the server component may be exposed
locally using assemblies, as web services using Spring,
or by using .NET remoting using Spring. Logging is usu-
ally accomplished via a logging framework e.g. Log4Net.
All these layers are organized into separate Visual Studio
projects that generate 6 principal artifacts: the CORE_
CONTRACT, CORE_BACKEND, SVCO, SISV and
DAO assemblies plus a set of configuration files, as
summarized in Figure 2.

3.3 The Need to Industrialize [1]

KT, like most IT services companies, realized that with
their actual methods close to handicraft, a lot of money
was being lost when everything was done manually. The
first approach to reduce the amount of craft was to capi-
talize all of the company’s experience in a framework,
the KTF; and organize methods for the realization of
aproject. However, this first approach just permitted the
engineers to have a working guide to the development of

Figure 2. Koossery technology sample server component
project structure [15]

applications, with still a major part of the application
done manually. There was thus a need for a second ap-
proach that will reduce the amount of manual input, and
which from the modeling phase generates an application
respecting their standards [15,23,24].

We propose the MDA, amongst other software indus-
trialization techniques, because it is the closest approach
to really fulfilling this form of application generation.
We expect the MDA approach from the UML model of
an application, to generate all the application, all techni-
cal services, all configuration files, all CRUD (Create,
Read, Update and Delete) functionalities so that the de-
veloper in the end will only have to complete with spe-
cific algorithms for only the most complicated business
logic.

3.4 Preparations for the MDA: Identification of
PIM, PSM and CM in KTF

To apply the MDA pattern to the KTF, let us identify
what we will use as PIM, PSM and CM. Let us also de-
fine how our models will be marked, so as to perform
automatic transformations from a higher level of abstrac-
tion (the PIM) to a lower level of abstraction (the CM).
 The choice of PIM has been natural: UML. Various

enterprise UML tools are already used in KT in-
cluding Rational Rose from IBM, Poseidon for
UML from GentleWare and Enterprise Architect
from Sparx Systems.

 The choice of PSMs has been limited to the various
technologies used in KT at the present moment.
Webservices or .NET remoting for exposing ser-
vices, Hybernate or iBATIS for O/R mapping,
Spring for Dependency Injection and exposure of
PONOs and POJOs11 as services, Log4J/Log4Net
for logging etc.

 The CM can either be in Java, C# or CORBA/C++
for source code, and XML for configuration files.

Now that we have identified the various models, we
have to perform automatic transformations from the ab-
stract models to the code models. The strategy we have
used to aid in this automatic transformation is by using
marks, and the possible use of OCL to produce models of
higher quality. So how could we mark UML diagrams
for the KTF?

There are some standards respected in all modeling
done in KT. All DAO, SISV, and SVCO interfaces are
prefixed with “I” and suffixed with DAO, SISV and
SVCO respectively e.g. IUserDAO, IUserSISV and IUs-
erSVCO. All DAO, SISV and SVCO concrete imple-
mentations are suffixed with DAOImpl, SISVImpl and
SVCOImpl respectively e.g. UserDAOImpl, User-SIS-
VImpl, and UserSVCOImpl. All DTOs are suffixed with

11
Plain Old Java Objects

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 566
An Approach for a Pragmatic Software Factories

DTO, e.g., UserDTO and all relational database tables
are stereotyped with entity.

With this level of detail in the UML models, a choice
was made to use UML classifier suffixes as a means of
marking our models. These marks help us perform the
automatic transformations from PIM (the UML model) to
CM (the resultant code). e.g. a classifier that inherits
from no other classifier and marked with the DAOImpl
suffix in the PIM will, in the resultant CM (C# or Java
code), inherits from the AbstractDataAccessObject ab-
stract class defined in the KTF. Another method of
marking will be the use of stereotypes; e.g. classifiers
marked with the entity stereotype will be transformed
into Data Definition Language (DDL) statements in
Structured Query Language (SQL). Finally, we use the
OCL to add some elements of business logic to the mod-
els, like saying “an employee’s age must be between 18
and 65”.

Now that we have identified the PIM, PSM and CM in
the KTF and stipulated how the models will be marked,
the framework is ready for MDA Transformations. The
next step is using an MDA tool that performs the auto-
matic transformations between models.

4. Designing a Lightweight MDA Engine

4.1 Motivation

So we have the problem of applying the MDA pattern in
a company. Creating some custom software that will
perform specific and not general automatic transforma-
tions from PIM to CMs will be more beneficial to the
company on one hand, but may cost the company more
time and money developing such software on the other
hand. The custom software can be tuned to extract
maximum benefit from the MDA pattern. It is to help
create custom MDA tools that the idea of designing a
lightweight MDA Engine sprung up. This MDA Engine
will serve as a guide for the creation of custom MDA
tools, which can be tuned for the specific enterprise, con-
sistent, and uses as much as possible standard file for-
mats, thus increasing the Return On Investment (ROI) for
the creation of the custom MDA tool. It was designed to
be lightweight so that the custom MDA tool developer
will be able to start his/her project very rapidly.

4.2 Custom MDA Tool

4.2.1 Pragmatic Approach
To be pragmatic, we cannot possibly model every aspect
of the business logic in UML. Maybe with the arrival of
Executable UML this will be possible. But why should
everything be modeled in UML? An argument in favor of
modeling everything in UML is the ability to generate
full working application only from the UML model. Ar-
guments against relate the complexity and heaviness of

these models. A pragmatic approach will involve some
hybrid of UML and a 3GL. When computers were in-
vented, everyone thought that paper usage in offices
would reduce. Just the opposite is complete taking place
today, with computers printing out more and more paper
every day. Likewise, will the MDA eliminate the need
for programmers? Not necessarily.

With present and near future technology, some parts of
a software application will always require low-level
coding. It just doesn’t have to be a lot of very low-level
coding. It is only by creating custom software that we
can respect these criteria for each particular enterprise.
The main reason why software developers sometimes
react very critical on MDA is that MDA automates the
heart of their profession. The generated code is not sim-
ply like how they code. This has prompted the develop-
ment of a lightweight MDA Engine, from which devel-
opers can produce generated code from abstract models,
their way.

4.2.2 The Broad View
The mere fact that we are trying to automatically trans-
form a visual language like UML to some code may
sound like a daunting task. Do we have to write Com-
puter-aided design (CAD)-like software that understands
shapes? That would be a very difficult thing to do. What
would help is if we had an electronic format that repre-
sents these visual models, and permit us to access parts
of these models. There exists such an electronic format:
the XMI (ML Metadata Interchange) format.

XMI: Now that our visual models can be transformed
to electronic formats, we have to be able to perform
MDA transformations on these models. Is there any
standard for the transformation of XMI files? The QVT12
exists, but does not suit our case since it cannot generate
source code and no concrete implementation exists at the
time of writing. So there is yet no implemented standard
for transforming XMI files to any other type, but the
problem can be solved indirectly. Since XMI files are
XML files, we can address the problem by looking for a
standard for transforming XML files. Fortunately, the
XML format already has a standard for transformations
from XML to any desired format, the XSLT (Extensible
Stylesheet Language Transformations). Since XMI is an
XML file, we can thus define a mapping between MDA
transformations and XSL Transformations.

ESLT: So to conclude, the proposed approach is sim-
ply to export UML models (our PIM) to the XMI format,
then perform XSLT transformations to obtain specific
code, configuration files or other text files(the CM). No
need to depend on a proprietary format, or tool.

Now that we have a view of how transformations will
12

http://smartqvt.elibel.tm.fr/, http://en.wikipedia.org/wiki/QVT;
http://umtqvt.sourceforge.net/;
http://www.omg.org/docs/ptc/07-07-07.pdf (accessed 24/103/2009).

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern:
An Approach for a Pragmatic Software Factories

Copyright © 2010 SciRes JSEA

567

be performed, we can build an MDA Engine that will
help us do these transformations.

4.2.3 Architecture of the Lightweight MDA Engine
Since we have an XMI document that has to be trans-
formed to various code models, it seemed natural to use
the Visitor Design Pattern, where each visitor will visit
the XMI document containing our UML model and gen-
erate corresponding code. We may have a visitor for the
generation of each specific interface, configuration file,
concrete class implementation or even other XMI files.
Sometimes the order in which the visitors visit is impor-
tant. The MDA Engine has to take care of that. The main
concepts are illustrated by the Figure 3.

The Figure 4 shown below illustrates the UML Class Figure 3. MDA engine main concepts

Figure 4. MDA engine

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 568
An Approach for a Pragmatic Software Factories

Diagram of the MDA Engine.
The participants of the UML Class Diagram are:

 IGeneratable: Interface that represents any generat-
able document. All generatable documents accept a
visitor. In this particular case, all generatable docu-
ments accept an IXMIVisitor.

 IXmiVisitor: Interface that represents a visitor for
an XMI document. Every visitor has a name. The
visitor’s operation is defined in the visit method.

 IXmiTransformationEngine: Interface that defines a
common contract for all XSLT processors. There
are two methods. One that transforms an XMI
document to a text document, and another that spe-
cifically transforms an XMI document to another
XML document.

 SimpleXmiTransformationEngine: A concrete XS-
LT processor that implements IXmiTransforma-
tionEngine.

 MDATransformationInfo: A data structure that
holds a list of visitors for a particular generatable
document.

 MDACoreEngine: This contains a list of MDAT-
ransformationInfos. It has a Generate method that
calls each visitor sequentially as defined in each
MDATransformationInfo object.

 XmiDocument: Data structure that represents a
“generatable” XMI document. It has two properties
that expose the DOM representation of the XMI file.
One that is editable XmlDoc, and another that is not
editable (but faster) XPathDoc. As soon as an
XmiDocument accepts an IXmiVisitor, it calls this
visitor’s visit method on itself.

 AbstractXmiDocumentVisitor: All visitors can de-
rive from this base class to facilitate their work. It
has a reference to an IXmiTransformerEngine for
XSLT processing, a dictionary of namespaces used
in the XSLT files, a dictionary of Parameters that
can be passed to the XSLT processor. It also has a
utility function that maps an XMI ID to a classifier
name called mapXmiToClassifier. Each visitor may
use the XSLT processor for MDA Transformations.
The AbstractXmiDocumentVisitor may also pos-
sess a log object based on a logging framework like
log4J/log4Net for logging purposes.

 ConcreteVisitor1 and ConcreteVisitor2: These are
concrete transformations to be performed in the
IXmiDocument. Each operation is defined in the
concrete class’s visit method

This engine is distributed as a third party library, in the
form of a .NET assembly or Java jar file. All the devel-
oper has to do now is to write visitors based on the Ab-
stractXmiDocumentVisitor, and define a set of XSLT
templates. The MDACoreEngine is then filled with a list
of MDATransformationInfo objects, which in turn are

filled with visitors either programmatically or using de-
pendency injection (one may use the Spring IoC Frame-
work for depency injection). To perform transformations,
simply call the Generate() method of the MDACoreEn-
gine object. The next section presents Optimadev, an
application usage/case of the MDA Engine.

5. OptimaDev: A Prototype for MDA Engine

Creating a prototype for the MDA Engine will consist of
creating an incomplete model of the future full-featured
MDA Engine, which can be used to let the users have a
first idea of the completed program. This prototype is
called OptimaDev.

5.1 Preliminary Specification

The preliminary specification for OptimaDev was to cre-
ate, automatically from the UML model, a set of artifacts.
These included, but are not limited to artifacts needed for
the CORE_CONTRACT, CORE_BACKEND, DAO,
SISV and SVCO components. Some of the artifacts to be
generated are displayed in Figure 5 below.

5.2 Analysis

In order to fulfill the preliminary specifications, Optima-
Dev was designed as a custom MDA Engine that will
perform MDA transformations for us, creating artifacts
that respect the KTF. The choice of a custom MDA tool
was taken because of the incapability of current MDA
tools [13] in generating artifacts that respect the KTF.
Based on the architecture in Subsection 5.1 and illustrate
by the Figure 5, we created 9 visitors. All visitors inherit
from the AbstractXMIDocumentVisitor base class as
found in 4.2.3, and are listed in Table 1. OptimaDev was
also furnished with a Graphical User Interface to ease the
transformation process (see Figure 6).

Figure 5. OptimaDev: Preliminary specifications

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 569
An Approach for a Pragmatic Software Factories

5.3 Implementing the Prototype

The user interface permits the user to input his XMI file
representing his model, and choose an output directory
where OptimaDev will serialize results. The XMI file is
obtained by exporting from a UML design tool. After
generation, OptimaDev provides visual feedback on the
status of the generation, like the number of files success-
fully generated. As shown in Figure 6, OptimaDev is
cautious enough to detect if there was an error during
transformations, and robust enough to continue func-
tioning after having signaled the error. Finally, the gen-
erated artifacts are serialized in directory structures that
closely resemble what is expected in a KT project.

5.4 Case Study or Application of OptimaDev:
SoNetSec

5.4.1 Context
SoNetSec is a Real Estate Servicing company located in
Cameroon. To ameliorate its services, SoNetSec has de-
cided to have at its disposal an Information System in the
form of a family of software that will guarantee at the
same time its agility and its global competivity. Without
entering into the details of the functional specifications, we
will briefly list some of its non functional specifications:
 The principal application, which will serve to show-

cast, promote and ecommerce its products and ser-
vices will be a transactional web based Internet ap-
plication, capable of supporting high visiting rates.

 Some applications may have to be implemented
using rich clients.

 The application will be conceived and implemented
as a set of autonomous services.

 Scalability, security, robustness, response time, ma-
intenance issues have to be considered in the concep-
tion and implementation of the different applications.

Fortunately enough, the KTF already facilitates the
creation of software applications and software compo-
nents with such non functional specifications. Some por-
tions of the Information System to be realized were given
to two software engineers and a senior software architect.
What is interesting to recall is that within KT, most en-
gineers communicate via UML models.

In the course of prototyping, a study of how the engi-
neers and the senior architect modeled the Information
System was done, including a study of how these models
were implemented. It was the job of the prototype MDA
Engine, OptimaDev, to automatically produce source
code respecting the KTF from these visual representa-
tions. The feedback of the engineers, obtained through
agile methods, was indispensable in perfecting the 9
visitors listed in Table 1 below. This helped create
source code and configuration files that were to be com-
pared with what was done manually.

5.4.2 Preliminary Results and Benefits
The autogenerated code improves on quality, consistency,
productivity and abstraction compared to manual code

Figure 6. OptimaDev: Automatic error detection

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 570
An Approach for a Pragmatic Software Factories

Table 1. Visitors for the OptimaDev (MDA transformation
visitors used in the OptimaDev)

 Visitor Description

1 DTOVisitor

From the PIM, it extracts all DTOs
from class diagrams and serializes each
DTO in a separate file in the choice
programming language. This visitor is
meant to generate 100% of the code.

2 DAOImplVisitor

From the PIM, it extracts all DAO
Implementations from class diagrams
and serializes each implementation in a
separate file in the choice programming
language. This visitor is meant to gen-
erate stubs for the implementations
with support of very common CRUD
method signatures. This accounts for
95% of the code.

3 DAOInterfaces-
Visitor

From the PIM, it extracts all DAO
Interfaces from class diagrams and
serializes each implementation in a se-
parate file in the choice programming
language. This visitor is meant to gen-
erate 100% of the code.

4 SISVImplVisitor

From the PIM, it extracts all SISV
Implementations from class diagrams
and serializes each implementation in a
separate file in the choice programming
language. This visitor is meant to gen-
erate stubs, accounting for 75% of
code.

5
SISVInterfaces-

Visitor

Same as DAOInterfacesVisitor, but for
SISV interfaces. This visitor is meant to
generate 100% of the code.

6 SVCOImplVisitor
Same as SISVImplVisitor, but for
SVCO implementations. This visitor is
meant to generate 75% of the code.

7
SVCOInterfaces-

Visitor

Same as DAOInterfacesVisitor, but for
SVCO interfaces. This visitor is meant
to generate 100% of the code.

8 SpringVisitors

From the PIM, it extracts all DAO,
SISV and SVCO Implementations from
class diagrams and setups spring con-
figuration files for Inversion of Control.
It also sets up the service locators of
each of these layers. This visitor is
meant to generate 100% of the code.

9
IbatisRequestsVisi-

tor

From the PIM, it extracts all DAO and
DTO Implementations from class dia-
grams and creates iBatis request con-
figuration files which are each serial-
ized in a separate file in the choice
programming language. This visitor is
meant to generate stubs for the imple-
mentations with support of very com-
mon CRUD method signatures. This
accounts for 95% of the code.

6. Conclusions and Perspectives

approaches which simply provides flexibility and control.
Equally, Knowledge Base was a great benefit. The proc-
ess of adopting the MDA pattern has forced the extrac-
tion of the best of individual KT experts into the MDA
Engine, OptimaDev.
The approach we adopted helps us create pragmatic
software factories that boost the industrialization of
software development. We have particularly emphasized
on the MDA pattern as a form of MDD and as a software
factory. The best approach will be to create some custom
tool that adapts the MDA pattern for each company. The
MDA Engine is a proposal for a framework to create
custom MDA tools, based on XMI, XSLT and the Visitor
Pattern. It serves as a starter kit to help develop MDA
tools that are tuned to a company’s business logic, or
software development strategies.

We have also described the use of this MDA Engine to
build a prototype custom MDA tool (internal code name:
OptimaDev) for Koossery Technology (KT). For Opti-
maDev, the KT MDA tool prototype, we realized some
visitors based on the MDA Engine proposed. These visi-
tors are designed to generate code for the development of
a server side component following the KT Framework.
Together with the addition of other visitors for the pres-
entation layer, the support of the Object Constraint Lan-
guage (OCL) especially for visitors targeting the business
layer, we are very confident that with time the custom
MDA tool’s roadmap will be from code generator, to
software component generator, and finally to a complete
software application generator.

For the perspective point of view, there are many
things we can add to this basic MDA Engine. Let’s men-
tion some here.
 Multi Agent System (MAS), where we will have

intelligent agents instead of visitors that perform
transformations.

 Expert System (ES), where the MDA Engine may
instead be conceived as an inference engine with a
set of inference rules that transform models. This
permits the transformation process to be more de-
clarative than imperative (see [7]).

 OCL Support, to be able to produce models of even
higher quality.

 xUML or Executable UML support, to describe the
dynamics of a domain [20].

 Round-trip engineering, to synchronize changes
between model and code.

 AI/Fuzzy Logic: because the model itself can have
some errors which some Artificial Intelligence or
Fuzzy Logic can help.

 And others e.g. Velocity template language support,
because it closely resembles the output code, unlike

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 571
An Approach for a Pragmatic Software Factories

XSLT.

7. Acknowledgements

Special thanks go to Professor Jean Claude Derniame of
Institut Polytechnique de Loraine at Nancy France, to
have reviewed this paper, and also to Koossery Tech-
nology Cameroon to have provided us with a real test
environment.

REFERENCES

[1] J. Greenfield and K. Short, “Moving to Software Factories.”
http://www.softwarefactories.com/ScreenShots/MS-WP-0
4.pdf

[2] DoFactory.com, “Design Patterns in C#, VB.NET WPF,
WCF, LINQ, PATTERNS,” Data & Object Factory™,
http://www.dofactory.com/Patterns/Patterns.aspx

[3] Microsoft, “Domain-Specigic Language Tools.”
http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx

[4] P. V. Hoof, “Code-Gen–about and technical documentation.”
http://forgeftp.novell.com//codegen/docs/Technical%20do

cumentation/codegen_doc.pdf

[5] AndroMDA, “Extensible Code Generator.” http://www.
andromda.org

[6] Code Generation Network, “Code Generation Network.”
http://www.codegeneration.net/tiki-index.php?page=Mod
elsIntroduction

[7] ExpertCoder, “Code Generation Libraries for .NET, Mono and
dotGNU.” http://expertcoder.sourceforge.net/en/index.html

[8] A. Kleppe, J. Warmer and W. Bast, “MDA Explained: The
Practice and Promise of the Model Driven Architecture.”
Addison Wesley, Massachusetts, 2003.

[9] J. Miller and J. Mukerji, “MDA Guide Version 1.0.1.”
http://www.omg.org/docs/omg/03-06-01.pdf

[10] A. Kleppe, J. Warmer and W. Bast, “MDA Explained: The
Model-Driven Architecture: Practice and Promise,”
Addison Wesley Professional, Massachusetts.

[11] J. S. Mellor, S. Kendall, A. Uhl and D. Weise, “MDA
Distilled: Principles of Model-Driven Architecture.”

Addison Wesley Professional, Massachusetts, 2003.

[12] S. Sewall, “Executive Justification for Adopting Model
Driven Architecture (MDA).”

http://www.omg.org/mda/mdafiles/11-03_Sewall_MDA_p
aper.pdf

[13] Equipe SoftFluent, “Livre Blanc CodeFluent L’approche
de Génie Logiciel de SoftFluent.”

http://www.softfluent.com/codefluent_home_en.aspx

[14] “What is MDA?” http://www.modelbased.net/mdi/mda/
mda. html

[15] E. E. Fritz, “Pragmatic Software Factories: Industrializa-
tion of the Development of Software,” Masters of Thesis
of the National Advanced School of Engineering, Univer-
sity of Yaounde 1, 2007.

[16] J. M. Embe, “MDA: Applications de la Trans- formation
des Modèles à la Génération d’Applications Trois Tiers,”
Ecole Nationale Supérieure Polytechnique, Université de
Yaoundé 1, 2005.

[17] D. Pilone and N. Pitman, “UML 2.0 in a Nutshell,”
O’Reilly, 2005.

[18] S. Mellor and M. Balcer, “Executable UML: A Foundation
for Model-Driven Architecture,” Addison Wesley Pro-
ssional, 2002.

[19] J. Warmer and A. Kleppe, “Object Constraint Language,
Getting Your Models Ready for MDA,” Addison Wesley
Professional, Massachusetts, 2003.

[20] 20nUML. http://numl.sourceforge.net/index.php/MainPage

[21] openArchitectureWare.organization, “Official Open Archi-
tectureWare.” http://www. openarchitectureware.org

[22] S. Cook, J. Gareth, S. Kent and A. Cameron, “Domain-
Specific Development with Visual Studio DSL Tools,”
Addison Wesley Professional, Massachusetts, 2007.

[23] M. Yacoubou, “Développement Industrialisé d'Appli-
cations n-tiers: Partie FrontEnd,” Master’s Thesis of the
National Advanced School of Engineering, University of
Yaounde 1, 2007.

[24] P. Djomga, “Développement Industrialisé d'Applications
n-tiers: Partie BackEnd,” Master’s Thesis of the National
Advanced School of Engineering, University of Yaounde
1, 2007.

Copyright © 2010 SciRes JSEA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.66667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.66667
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 807.874]
>> setpagedevice

