
J. Software Engineering & Applications, 2010, 3: 81-90
doi:10.4236/jsea.2010.31010 Published Online January 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes JSEA

Analysis and Comparison of Five Kinds of Typical
Device-Level Embedded Operating Systems

Jialiang WANG, Hai ZHAO, Peng LI, Hui LI, Bo LI

School of Information Science and Engineering, Northeastern University, Shenyang, China.
Email: wjl123321@163.com

Received September 1st, 2009; revised September 21st, 2009; accepted September 27th, 2009.

ABSTRACT

Today, the number of embedded system was applied in the field of automation and control has far exceeded a variety of
general-purpose computer. Embedded system is gradually penetrated into all fields of human society, and ubiquitous
embedded applications constitute the "ubiquitous" computing era. Embedded operating system is the core of the em-
bedded system, and it directly affects the performance of the whole system. Our Liaoning Provincial Key Laboratory of
Embedded Technology has successfully developed five kinds of device-level embedded operating systems by more than
ten years’ efforts, and these systems are Webit 5.0, Worix, μKernel, iDCX 128 and μc/os-II 128. This paper mainly
analyses and compares the implementation mechanism and performance of these five kinds of device-level embedded
operating systems in detail.

Keywords: Embedded System, Operating System Core, Real-Time Ability, I/O Delay and Jitter, Pervasive Computing
and Internet of Things

1. Introduction

Embedded system has played a significant role in the
field of industrial manufacture, process control, instru-
mentation, consumer electronics and military devices and
so on. Embedded operating system has a wide range of
space not only in the traditional industrial control and
business applications, but also in the field of information
household electrical appliances, which has brought much
convenience to us [1,2].

The using scope of industrial automation devices
based on embedded singlechip has been greatly expanded
in recent years. The network is the mainly method not
only to improve production efficiency and product qual-
ity but also to reduce the cost of human resources, such
as the application of industrial control, digital machine
tool, grid power system, security power system, device
inspection, system monitoring and petrochemicals and so
on. Embedded system originated in the age of micro-
computer, however the size, price and reliability of a
microcomputer are unable to meet the need of majority
of embedded system applications. Therefore, embedded
system must follow the way of independent development,
and this way is just the way of the singlechip. Singlechip
has enhanced the fast improvement of embedded tech-
nology. Among the field of almost traditional process
control, 8-bit singlechip is widely used, but the device

-level embedded operating systems can be used for them
are very few. So the developing of device-level embed-
ded operating system is very necessary.

2. Embedded Operating System

Embedded operating system is mainly used to monitor
and control devices, and general desktop operating sys-
tem is largely based on the orders of keyboard and mouse.
Relatively speaking, the movement of device has very
strict timing requirements, but the timing of human ac-
tion and reflection are not so strict. So for many applica-
tion fields of device-level control environment, the gen-
eral desktop operating system is not well competent.
Comparing to the micro-computers and large-scale gen-
eral-purpose computer operating systems, the embedded
operating system has the basic features of real-time per-
formance, small core code, preemptive kernel, being
configured, reduction and high reliability and so on.

The technology of EI (Embedded Internet) makes it
possible of a large number of traditional devices and
home electrical appliances instruments achieving net-
work interconnection. It has become a trend for RTOS
(real-time operating system) is used in EI applications,
and it mainly due to the RTOS not only improves the
reliability of the system, but also it can reduce the diffi-
cult of development of embedded software and improve

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems 82

development efficiency. Different from general embed-
ded applications, EI applications require RTOS not only
has good real-time kernel, but also can provide the capa-
bilities of network protocol stack and certain document
management. For most of the existing commercial and
free RTOS, they are either very expensive or not having
network protocol stack modules, especially for the 8-bit
microcontroller with a network of RTOS functions are
very few.

Our Liaoning Provincial Key Laboratory of Embedded
Technology has successfully developed five kinds de-
vice- level embedded operating systems running on 8-bit
singlechip, and these systems are Webit 5.0, Worix,
μKernel, iDCX 128 and μc/os-II 128. The experimental
platform used to develop and test is ATmega 128L
manufactured by the United States ATMEL corporation.
ATmega 128L is one of the most powerful singlechip in
the series of AVR, and AVR singlechip is the first gen-
eral RISC architecture singlechip, so its process speed
and performance has greatly improved than the MCS-51
series singlechip of CISC architecture.

3. Introduction of Five Kinds of Typical
Device-Level Embedded Operating System

3.1 Webit 5.0 Embedded Operating System

Webit is an embedded internet device, which has been
successfully embedded into the fieldbus devices and can
successfully access to devices through the internet. Webit
takes full advantage of singlechip system’s limited re-
sources, and combined with TCP/IP protocol and high-
performance network to process data. Webit has been
successfully developed and manufactured by our Liaon-
ing Provincial Key Laboratory of Embedded Technology,
and it has passed the appraisal of national science and
technology department, and it has also achieved the new
product patent of state intellectual property office.

Webit 5.0 operating system directly runs on the device
driver, and it mainly achieves the functions of task man-
agement, synchronization and communication between
tasks. The modules of network file system, protocol stack
and I/O management are running outside of system core.
The design of task scheduling strategy of Webit 5.0 sys-
tem adopting the multi-tasking kernel based on priority
scheduling, thus the time performance of the kernel is
better, and it makes the tasks with high real-time ability
can well gain the system resources and have the ability of
quick response. The system uses the mechanisms of
mailbox and semaphores to achieve synchronization and
communication for inter-task, while it also provides ef-
fective mechanism of network authentication and user
rights so as to ensure the safety of the system. Webit 5.0
is developed in accordance with the method of modular
design, using the micro-kernel technology. TCP/IP pro-
tocol suite, I/O interface and user interface are separated

from the kernel, so it results in the architecture of hierar-
chy. Each layer corresponds to a module respectively,
and each module is separated designed. The call between
modules is given interface specification, so it can realize
the purposes of flexible reduction based on user demands,
and the system is well applied in the field of industrial
control.

3.2 WORIX Embedded Operating System

WORIX operating system has the following features:
1) System can accomplish a variety of concurrent op-

erations through multi-task. If the user's application re-
quires more additional tasks, they can modify the con-
stant value of kernel THREAD_NUMS to reset the max-
imum number of tasks that the system supports;

2) Scheduling algorithm of the system is based on
static priority preemptive scheduling, so that system can
ensure that high-priority task can have the ability of fast
response;

3) The system can support different network protocol
stack, and users can develop their own network protocols
by wireless modules driver interface supported by the
operating system, so it can be well applied in the field of
wireless sensor networks;

4) WORIX kernel implements the mechanism of
semaphores and mutual semaphores so as to let the task
to access to exclusive resources;

5) The clock beat of WORIX kernel was set by the in-
ternal timer /counter Timer 0. The timer runs interrupt
service program every time interval, thus sleep task and
wake-up function were handled in the timer interrupt
service.

3.3 μKernel Embedded Operating System

The core of the μKernel operating system retains the
most basic and important system services, which includ-
ing the functions of task management, task scheduling,
mutual exclusion semaphores and clock management.
Other specific system function modules can be selected
in the application part so as to minimize the kernel code
size. Time management mechanism is designed as fol-
lows: set the time of delay with the unit of clock beat,
when the system delays a task for some time, it gets the
task from the task ready table, and puts it into the waiting
list. This mechanism allows the task can be delayed for a
number of clock beat, and it also provides the basis to
judge whether waiting tasks exceed their timeout. The
design of semaphore aims at establishing a sign of
whether the shared resource is occupied. Thus while ac-
cessing to shared resource; task may check the sign to
know whether the shared resource is occupied. The
processing of shared data uses semaphores doesn’t in-
creasing the amount of interrupt delay time. If the inter-
rupt service program or the current task activates a
high-priority task, the high-priority task will be immedi-

Copyright © 2010 SciRes JSEA

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems

Copyright © 2010 SciRes JSEA

83

ately started.

3.4 iDCX 128 Embedded Operating System

A real-time system must have the ability to respond to
the external random events quickly, and the iDCX 128
kernel was used the design method of modular while
being designed, and it was implemented by AVR assem-
bler language, so its core code size is relatively smaller.
The core mainly realizes the functions of task manage-
ment, task inter-communication, interrupt handling and
timing services, and these services enable users can eas-
ily respond to external asynchronous events. The four
categories of services are described as follows:

1) Task management provides services as follows: cre-
ate a user task; delete a task; know function value of task;
suspend a task.

2) The service of inter-task communication allows
tasks can transmit information each other by exchanging
data. By using this service it can achieve synchronization
between tasks and shared system resources well. It pro-
vides the following services: allocate memory buffer;
send information to other tasks; hang a task to let it wait
for messages; release the memory buffer.

3) The service of interrupt handling enable tasks to
communication with the various types of peripherals,
which provides the following services: set interrupt
source for task while initialization; disable some inter-
rupts; enable certain interrupts; synchronize task with
interrupt.

4) The service of timing is implemented by using of
Timer 0 to provide a soft clock for each task in the sys-

tem, and the soft clock provides time interval (it allows a
task perform some functions at a particular time interval)
and time out (it gives a task longest limit time allowing
the task to wait for), which provides to users the follow-
ing services: set up time interval; wait for coming of time
interval; wait for report of timeout.

The iDCX 128 operating system always let one task to
run at certain time and other tasks to wait for the arrival
of some incidents or to be in the ready state. Owing to its
unique mechanism of time slice, it can mask multiple
tasks share the CPU well, and it seems several tasks are
running synchronously. Due to the unique communica-
tion mechanism of task 0, it can well be applied in the
task parallel communication of multiple singlechips.

3.5 μc/os-II 128 Embedded Operating System

The design method of μc/os-II 128 system is similar to
the famous μc/os-II operating system. It is the preemp-
tive real-time kernel, which means that μc/os-II 128 is
always ready to run the highest priority task in the condi-
tion of ready, and μc/os-II 128 can manage 64 tasks or-
derly with less core code, which retains eight tasks to the
system, so it can support 56 tasks for application grog-
ram, and the priority of these tasks is not the same. Be-
cause the application of μc/os-II 128 only use those ser-
vices that system requires, it can reduce the memory
space (RAM and ROM) that system required. This scal-
ability is achieved through conditional compilation.
μc/os-II 128 allows each task to have a different stack
space in order to reduce the application program require-
ment about the RAM. The μc/os-II 128 can deter-

Table 1. Comparison of mechanism of the five kinds of embedded operating systems

 Webit 5.0 WORIX μKernel iDCX 128 μc/os-II 128

Preemptive Kernel Yes Yes No Yes Yes

Number of priority 16 6 8 5 64

Change of priority Static Dynamic Dynamic Static Dynamic

Method of task
scheduling

Time slice
around scheduling

Time slice
around scheduling

Fixed priority pre-
emptive scheduling

Time slice
around scheduling

Fixed priority pre-
emptive scheduling

Support same prior-
ity scheduling

Yes No No Yes No

Number of tasks 32 16 8 8 64

Determinability of
time

Yes Yes Yes Yes Yes

Mechanism of syn-
chronization

Message queue、
Incident sign

Semaphore、
Exclusive sema-

phore、Incident sign

Semaphore、
Exclusive sema-

phore、Incident sign

Message queue、
Incident sign

Semaphore、
Exclusive sema-

phore、Incident sign

Mechanism of com-
munication

Message queue
Mailbox、Message

queue
Mailbox、Message

queue
Message queue

Mailbox、Message
queue

Method of avoid
priority reversion

Priority inherit、
Priority top

Priority inherit
Priority inherit、

Priority top
Priority inherit Priority top

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems 84

mine the stack of each task by the unique handling me-
chanism of stack space validation function. If the higher-
priority task is waked up by interrupt; the high-priority
task will run immediately after the withdrawal of all in-
terrupts.

The comparison analysis of the mechanism about the
above five kinds of typical device-level embedded oper-
ating systems are shown in Table 1.

The determinability of time means that the execution
time of embedded real-time system functions has the
feature of determinability, which means the implementa-
tion time of system service does not depend on the num-
ber of application tasks running in the system. Therefore,
basing on this feature, the time of system completes cer-
tain task can be predicted.

4. Test and Analysis of System Real-Time
Ability

The real-time performance is the most critical perform-
ance indicators to all control systems. The real-time per-
formance of embedded operating system is measured
primarily by the response time that is the time of com-
puter recognizes an external event and before reacting it.
The response time is an important indicator for running
system. The specific response factors of RTOS are: in-
terrupt delay time and task switching time. The two time
factors are described as follows:

4.1 Test and Analysis of System Interrupt Delay

While the real-time operating system running on the state
of kernel or performing certain system calls, it will not
respond to the interrupt once it arrivals. Only when the
real-time operating system returns to the user state, and it
can respond to external interrupt requests, so the maxi-
mum time required for this process is called the maxi-
mum interrupt prohibition time [3–7].

maximum interrupt prohibition time = TcloseINT + TdoISR

+ TsaveReg + TstartService, all parts are introduced as follows:

TcloseINT: The maximum time of closing interrupt;

TdoISR: The beginning time of executing the first in-
struction of interrupt service program;

TsaveReg = The time of saving CPU internal registers;
TstartService = The execution time of kernel runs system

call.
The test tool is oscilloscope (TDS5054B), which has

following features: three kinds of bandwidth of 1 GHz,
500 MHz, 350 MHz; 2 and 4 channel; the rate of collect-
ing date is 5 GS/s; the record length can reach to 16 MS,
and the capture rate of maximum waveform is 100,000
wfs/s and so on.

The test method is as follows: at the key location of
program, set the output instruction of I/O, and make the
state of I/O output level exchanges between high and low,
so the time can be calculated by the waveform collected

1 2 3 4 5 6 7 8
10

15

20

25

30

35

40

45

50

55

60

Number of running tasks

T
e

st
 v

a
lu

e
 o

f m
a

xi
m

u
m

 in
te

rr
u

p
t p

ro
h

ib
iti

o
n

 ti
m

e
 (
μ

s)

Worix
Webit 5.0
μc/os- 128Ⅱ

iDCX 128
μKernel

Figure 1. Comparison of the maximum interruption delay
time of the five embedded operating systems

by oscilloscope. The test results are shown in Picture 1.

The maximum interrupt prohibiting time of the
WORIX is the timer interrupt. The execution time of
timer interrupt service program is related with the num-
bers of tasks in the task sleep queue. So the maximum
interrupt prohibiting time is not stable. We should calcu-
late the average value by many experiments, and use the
average value to reflect the interrupt service program in
the timer.

The maximum interrupt prohibiting time of Webit 5.0
also in the timer interrupt. Different from the WORIX
system, the processed incident is not sleep queue in the
timer interrupt of Webit 5.0, but the timer_info queue of
timer. The corresponding timing information is stored in
the timer_info queue. In addition to set the sleep time, it
also can set the numbers of task sleep. Therefore, Webit
5.0 will handle more related interrupt information, so the
timer interrupt time of Webit 5.0 system is longer than
WORIX system.

The maximum interrupt prohibition time of μKernel is
mainly related with the execution time of timer interrupt
service program, and the execution time of timer inter-
rupt service program is related with the numbers of tasks
whose sleep time will decrease to 0 in this timer interrupt
service program. So the maximum interrupt prohibiting
time is also not stable, and we should calculate the aver-
age value by many experiments like the WORIX system.
The maximum interrupt prohibiting time for iDCX 128 is
also in the timer interrupt, and the two ways of handing
interrupt are Timer 0 server (handling Timer 0 interrupt)
and common server (handing the others interrupt). The
handing information of common server are event vector
(identify the information that the task is waiting for),
event coming (identify the information that the task is
waiting for has come) and time out and so on, and deter-
mining whether to switch tasks. Timer 0 server mainly

Copyright © 2010 SciRes JSEA

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems 85

finishes the time interval and the handling of task ready
table, and it also determines whether to switch tasks.

The maximum interrupt prohibition time of μCOS-II
128 is the most optimal among the five kinds of operat-
ing systems. Because the μCOS-II 128 only to wake up
the tasks in the sleep queue, and it does not need to clear
the task from the sleep tab and put it into the task ready
tab, it only needs to modify corresponding bit of task
priority identification can complete change of the task
priority status. Because the time complexity about oper-
ating linear form is O(1), the task switching time of
μCOS-II 128 is basically stable, and it is not related with
the number of tasks running on the system, task status
and task priority. So it also reflects the good real-time
ability of μCOS-II 128. However, μCOS-II 128 obtains a
very small interrupt prohibition time basing on the use of
more data structures and taking up more memory space.

4.2 Test and Analysis of System Task Switching
Time

The task switching time means that while a task out of
running, the real-time operating system will save its run-
ning information, and put it into information queue, and
then choose a new task to let it run, so the needed time of
this progress is named task switch time. It actually means
the time that CPU stops a task and switches to run an-
other task [8–13].

Task switching time=Tto Do B Task Time–Tto Pause A Task:
Tto Do B Task Time=The beginning time of running task B;
Tto Pause A Task=The time of stopping running task A.
The test results are shown in Picture 2.
The task switching time mainly consists of three parts:

time of accessing to interrupt, saving and recovering re-
lated information and running system call. As the proc-

1 2 3 4 5 6 7 8
15

20

25

30

35

40

45

Number of running tasks

T
e

st
 v

a
lu

e
 o

f t
a

sk
 s

w
itc

h
in

g
 ti

m
e

 (
μ

s)

Worix
Webit 5.0
μc/os- 128Ⅱ
iDCX 128
μKernel

Figure 2. Comparison of the task switching time of the five
embedded operating systems

essor platform of the five kinds of operating system are
same, so the time of accessing to interrupt, saving and
recovering related information is basically same. There-
fore, the difference of task switching time is due to the
difference of system call time. By analyzing the sched-
uling mechanism of these five kinds of operating systems
can explain the reasons about the different task switching
time of these operating systems.

The ready queue of WORIX operating system using a
pointer array, and the elements of the array points to the
pointer of the beginning of correspondingly priority
ready queue. While the system schedules tasks, it will
traverse the ready_queue from beginning, if the content
pointed by the current element location is empty, it will
continuously traverse to later elements of the ready_queue;
if the content pointed by the current element location is
not empty, then it will fetch the task in the beginning of
the ready_queue pointed by the current element, and this
task will be run as the next task. We can know that the
scheduling time of WORIX is related with the priority of
the ready task from the scheduling mechanism. While
there has tasks whose priority are 0 among the tasks in
the state of ready, the scheduling time of the system is
shortest; and while priority of all the tasks is lower, the
scheduling time of the system is longest, so the schedul-
ing time is not stable. Due to the scheduling time towards
higher tasks is shorter for WORIX, so it can well be used
in the wireless sensor network. Because the wireless re-
ceiving and sending task with higher priority can be
switched quickly, the wireless receiving and sending
ability of the system is well.

The ready_queue of Webit 5.0 operating system is a
single-linked list sorted by priority. The tasks in the
ready_queue are listed strictly in accordance with the
priority order from high to low. While each time creates
some new tasks or tasks from other states to switch to the
state of ready, and the tasks becoming ready state will
insert into the appropriate position of the ready queue.
Thus, at any time, the tasks in the ready_queue of Webit
5.0 is strictly sorted in accordance with the priority order
from high to low, and every time system schedules task.
The scheduling program only needs to fetch the task in
the beginning of the ready_queue can complete the
scheduling progress, so the scheduling time of Webit 5.0
is relatively shorter, and the time of scheduling is stable.

For the scheduling of the μCOS-II 128 operating sys-
tem, it firstly makes certain the position of the group with
the highest priority ready task, and then finds the highest
priority task within the group. By this way it can easily
obtain the highest priority task. The priority of μCOS-II
128 is in correspondence with the related task, so by
finding the priority of the task it can find task control
blocks of the task to be run. Only by this way can com-
plete the process of scheduling. As the scheduling me-
chanism of μCOS-II 128 is the way of "table-driven", the

Copyright © 2010 SciRes JSEA

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems 86

overhead of the scheduling time is little smaller and the
system has very good predictability, thus the ability of
real-time can be guaranteed. From the test results we can
know that the scheduling time of μCOS-II 128 is very
stable, and the scheduling time is relatively little lower in
the five kinds of operating systems. However, due to the
scheduling way of this "table-driven" requires additional
storage space of RAM and ROM, it does not apply to
resource-limited applications.

For the μKernel operating system, while it happens
task switching each time, the time of saving context of
running task and recovering the context of waiting task is
always similar. As μKernel system uses the fast localiza-
tion algorithm, the system has a very good predictability,
and the real-time ability also can be guaranteed. From the
test results we can know that the scheduling time of
μKernel is also very stable, but the task switching time is
little larger than μCOS-II 128. The difference of task
switching time is due to the difference of selecting task
to be run from the task ready_queue. As the function of
system scheduling function OSSched() in the μKernel
operating system is to save context of current running
task, and also choose a new task and recover the context
task of new task, the running time of scheduling function
OSSched() to be tested is just the time of task switching
task of μKernel.

For the iDCX 128 operating system, its tasks are
sorted by priority in the task_ready_tab, and every task is
sorted in accordance with the order of priority from high
to low. Each memory unit of task_ready_tab stores the
ITD and priority of tasks’ at the same time. While creat-
ing some new tasks or some tasks becoming the state of
ready, these tasks will insert into the task_ready_tab by
the order of priority, Thus, at any time, the task_ready_
tab of iDCX 128 is sorted by the order of priority. While
it schedules tasks, the scheduling program only needs to
fetch the task in the beginning of the task_ready_tab can
complete the scheduling process, so the scheduling time
is the most smaller among these five kinds of operating
systems, and the scheduling time is also stable.

4.3 Test of System Core Size

The minimum operating system kernel code space means
the program space of the system needed to complete the
most basic functions. Minimum kernel code space is also
an important factor to evaluate an operating system. As
the operating system kernel loads different basic func-
tions each times, the minimum value of the kernel code is
not exclusive, which means the smallest value of the
kernel code is relative.

The testing tool is the AVR STUDIO software pro-
vided by ATMEL corporation, and it is integrated de-
veloping environment that used to program AVR series
singlechip. The software has the following features: pro-
ject manager; source code editor; assembler compiler;

Table 2. The test of kernel of the five kinds of embedded
operating system (Unit:KB)

system
iDCX
128

Webit5.0 Worix μKernel
μc/os-II

128

core 3.11 3.81 3.32 3.58 3.91

software simulation function (support assembly and
high-level language); ICE real-time simulation function
(with using simulator); supporting the AVR Prog serial
programmer and STK500/AVRISP/JTAG ICE tools and
so on. Using the AVR Studio 4 software to test the core
size of the five kinds of operating system, and the test
results are shown in Table 2.

The size of core code is an important factor to measure
an operating system code, as the storage resource of de-
vice-level singlechip is very limited. So the less core
code can accommodate more application program, and
can also leave more code room for users to program.

5. Analysis and Comparison of System I/O
Delay and Jitter

The feature of physical in the hard real-time system re-
flects that there are inevitable phenomenon of I/O (In-
put/Output) delay and jitter in the process of device
starting, and this phenomenon mapped to the real-time
system is that there are inevitable exists I/O delay and
jitter in the real-time scheduling. The existing of the I/O
delay and jitter may effect the synchronous of different
devices controlled by the operating system, and also the
stability and reliability of the system. How to control I/O
delay and jitter of hard real-time task has become a hot
research issue for the real-time scheduling of device-
level operating system.

For the following period task model, every period task
is a series of basic working units that can be scheduled
and run by system, and it is expressed by τi. Period Ti of
task τi is the smallest value of tasks releasing time inter-
val, and the controlling time Ci is the maximum running
time of all tasks. Di is the relative deadline of task, and it
means the tasks of τi in the releasing time of t must be
finished in the time unit of Di after the time of t [14,15].
The period and controlling time of system is known for
all the following analysis.

5.1 Test and Analysis of I/O Delay of Fixed
Priority Operating System

The task critical time means while a task τi (1≤i≤n) and
all other tasks hp(i) that having higher priority than it are
released synchronously, and the task τi has maximum
responding time at that moment. So the critical time of
maximum I/O delay for task τi can be described that the
task is just beginning to run and it was immediately be
interrupted by high priority task hp(i), and all higher
tasks are released at this moment. We use the scheduling

Copyright © 2010 SciRes JSEA

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems

Copyright © 2010 SciRes JSEA

87

Li
(b)pree is the maximum solution that meets (4), and it

can be calculated with the original value of Li
(b)pree(0)=Ti

by iterative calculation.

method with preemptive threshold value, and allow a
time threshold value, and calculate it by the preemptive
and not preemptive parts respectively.

The maximum I/O delay of preemptive part of task τi
is:

The minimum I/O delay of not preemptive part of task
τi is:

()

p
p i
i i

k hp i k

L
L TH C

T

 k

i

 (1)

Li
p is the least solution that meets (1)，it can be calcu-

lated with the original value of Li
p (0) = THi by iterative

calculation.
The maximum I/O delay of not preemptive part of task

τi is:
np
i iL C TH (2)

So the maximum I/O delay of task τi based on fixed
priority scheduling is:

()

max p np
i i i

p
i

i k
k hp i k

L L L

L
C C

T

 (3)

hp(i) is the task set whose priority is higher than the
task τi, and Li

max is the least solution that meets (3), and it
can be calculated with the original value of Li

max (0)=Ci by
iterative calculation.

5.2 Test and Analysis of I/O Jitter of Fixed
Priority Operating System

The minimum I/O delay is the least responding time for
fixed priority scheduling, so the minimum I/O delay of
preemptive part of task τi (1≤i≤n) is:

()
()

()

min(,)
b p

b p b bi k
i i i

k hp i k

L T
L C TH

T

 kC

i

i

 (4)

() max(,)b np b
i i iL C TH TH (5)

So the minimum I/O delay of the task τi based on the
fixed priority scheduling is:

() () () max(,)min b p b np b p b
i i i i i iL L L L C TH TH (6)

The maximum I/O jitter of not preemptive task τi

based on the fixed priority scheduling can be calculated
by the combination of (3) and (6):

max max min
i i iJ L L (7)

The operating system of iDCX 128 and Webit 5.0 are
both based on fixed priority, testing the I/O delay and
jitter while there are 7 tasks running on the system, and
the test results are shown in Figure 3.

As we can see from the Figure 3, the Webit 5.0 oper-
ating system can well optimize the I/O jitter than iDCX
128 operating system under the condition of the system
can be scheduled. But with the increasing of system pay-
load, the optimized effect of Webit 5.0 is decreasing con-
tinuously, and the cost of this strategy is that the average
I/O delay time of Webit 5.0 is much larger than iDCX
128 while system payload exceeds 0.4.

5.3 Test and Analysis of I/O Delay of Dynamic
Priority Operating System

Allocate preemptive time threshold THi (0≤THi≤Ci) for
task τi (1≤i≤n), and the value of I/O delay created by EDF
scheduling needed to be calculated by the preemptive
and not preemptive part respectively.

The maximum I/O delay of preemptive of task τi is:

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

Payload

T
es

t
va

lu
e

of
 I

/O
 d

el
ay

 (
μ

s) Webit 5.0

iDCX 128

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

Payload

T
es

t
va

lu
e

of
 I

/O
 ji

tt
er

Webit 5.0

iDCX 128

Figure 3. The test of I/O delay and jitter of iDCX 128 and Webit 5.0

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems 88

 () max , ()p p
i i iL a TH I a a (8)

And among it includes:

() (,) max()
j i

p
i i i i j

D D
i

a
jI a W a t C TH C TH

T

 (9)

Li
pree(a) is the least solution that meets (9), and it can

be calculated with the original value of Li
pree(0)=0 by it-

erative calculation. For a job of task τi at the time of a, its
payload of higher job is:

()

()

:

min ,
(,) 1

b p
j i

b p
i i j b

i j
j D L j

L D D
W a t C

T

)i

a t

iTH

 (10)

And the maximum I/O delay of not preemptive part of
task τi is:

(np
i iL C TH (11)

So the maximum I/O delay of task τi based on EDF
scheduling is:

()

max , () ()

max p np
i i i

p
i i i i

L L a L

TH I a a C TH

 (12)

5.4 Test and Analysis of I/O Jitter of Dynamic
Priority Operating System

The value of least I/O delay of EDF scheduling is equal
to the least responding time, so the minimum I/O delay
of preemptive part of task τi(1≤i≤n) is:

() min(,) (,)b p b
ii i iL C TH W (13)

Li
(b)pree is the maximum solution that meets (13), and it

can be calculated with the original value of Li
(b)pree(0)=Ti

by iterative calculation.

The minimum of I/O delay of not preemptive part of
task τi is:

() max(0,)b np b
i iL C (14)

So the minimum I/O delay of task τi based on the EDF
scheduling is:

()

() ()

()

:

min(,) max(0,) (,)

min ,
1

b p
j i

min b p b np
i i i

b b
ii i i i

b p
i i jb b

i j
j D L j

L L L

C TH C TH W a t

L D D
C C

T

 (15)

The maximum I/O jitter of task τi based on EDF sched-
uling can be calculated from (12) and (15):

max max min
i i iJ L L (16)

The operating systems of Worix, μKernel and μc/os-II
128 are all based on the dynamic priority scheduling,
testing the I/O delay and jitter while there are 7 tasks
running on the system, and the test results are shown in
Figure 4.

Compared with other operating systems, the Worix
can well optimize the I/O jitter, and the I/O delay will not
increasingly obviously, and the ability of scheduling can
also be guaranteed. The I/O jitter count of μKernel is
middle, but the delay time is much longer. But the
μc/os-II 128 operating system achieves less delay at the
cost of having much I/O jitter count.

6. Future of Embedded Operating System –
Pervasive Computing and Internet of
Things

Pervasive computing was first proposed by American
Mark Weiser in 1991. It refers to a new ubiquitous

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

Payload

T
es

t
va

lu
e

of
 I

/O
 d

el
ay

 (
μ

s)

μKernel

Worix

μc/os- 128Ⅱ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

Payload

T
es

t
va

lu
e

of
 I

/O
 ji

tt
er

μKernel

Worix
μc/os- 128Ⅱ

Figure 4. The test of I/O delay and jitter of Worix, μKernel and μc/os-II 128

Copyright © 2010 SciRes JSEA

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems 89

method of computing can be applied to various informa-
tion devices. In the era of pervasive computing, comput-
ing devices and the computing environment emerges
together closely, and people can access to information
and processing at any time and any place, and they will
not fell the process of computing at all while using it. It
was also considered as the next generation computing
model, and the ubiquitous computing devices used are
mobile computing devices mostly. Mobile computing
devices are essentially part of embedded devices, so it
can be said that ubiquitous computing constitutes the
indispensable operating platform of the embedded sys-
tem. The rapid development of embedded systems is also
a strong impetus to the fast development of pervasive
computing. While all physical objects of real world are
linked by the internet and can be managed intelligently, it
means the age of Internet of Things is coming, and peo-
ple can access to appliances information easily through
the internet, but this process is inseparable from the large
support of operating system. So the device-level embed-
ded operating system is the indispensable key technology
to the coming of Internet of Things.

7. Conclusions

Embedded operating system with stable performance has
played a very crucial role to the normal operation of de-
vices. So the embedded operating system is considered as
the cornerstone in the field of device control. This paper
describes the features and implementation mechanisms
of the five typical device-level embedded operating sys-
tems that are independently developed by our laboratory,
and also tests and analyzes the real-time performance,
I/O delay and jitter. The five kinds of operating systems
has well applied in the fields of Chunlanjing air-condi-
tioning, Taiwan Guanyu uninterruptible power supply,
network intelligent devices, and monitoring devices and
so on. As the five kinds of operating system cores all
have good portability and performance by long-term us-
ing, and the most important is that they have the advan-
tages that they can be easily operated in other device-
level singlechip platforms in the fields of automation and
device control, etc. So it brought broad application pros-
pects for users to choose device-level embedded operat-
ing systems.

8. Acknowledgments

This work is supported by the Cultivation Fund of the
Key Scientific and Technical Innovation Project, Minis-
try of Education of China (NO708026).

REFERENCES
[1] H. Zhao, “Embedded Internet [M],” Beijing: Tsinghua

University Press, pp. 27–40, 2002.

[2] F. Robert, “Embedded Internet systems come home [J],”
IEEE Internet Computing, Vol. 40, No. 14, pp. 52–53,
2001.

[3] Jacek W. “Embedded Internet technology in process con-
trol devices [J],” IEEE Internet Computing, Vol. 34, No.
3, pp. 301–308, 2000.

[4] R. Bergamaschi, S. Bhattacharya, and R. Wagner, “Auto-
mating the design of SoCs using cores [J],” IEEE Design
&Test of Computers, , Vol. 18, No. 5, pp. 32–45, 2001.

[5] A. Garcey, and V. Lessey, “Design to time real-time
scheduling [J],” IEEE Transcations on Systems, Man and
Cybernetics, Vol. 23, No. 6, pp. 58–67, 1993.

[6] M. Hiroyuki, and E. Thomas, “An improved randomized
on-line algorithm for a weighted interval selection prob-
lem [J],” Journal of Scheduling, Vol. 7, No. 4, pp.
293–311, 2004.

[7] D. L. Liu, X. B. S. Hu, D. L. Michael, et al. “Firm
real-time system scheduling based on a novel QoS con-
straint [J],” IEEE Transactions on Computers, Vol. 55,
No. 3, pp. 320–333, 2006.

[8] J. P. S L. Lehoczky, “Performance of real-time bus sched-
uling algorithms [J],” ACM Performance Evaluation Re-
view, Vol. 14, No. 1, pp. 44–53, 1986.

[9] E. Tavares, P. Maciel, and B. Silva, “Modeling hard
real-time systems considering inter-task relations, dy-
namic voltage scaling and overheads [J],” Microproces-
sors& Microsystems, Vol. 32, No. 8, pp. 460–473, 2008.

[10] Y. Zou, M. Li, and Q. Wang, “Analysis for scheduling
theory and approach of open real-time system [J],” Jour-
nal of Software, Vol. 14, No. 1, pp. 83–90, 2003.

[11] C. L. Liu, and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment [J],”
Journal of the ACM. Vol. 20, No. 1, pp. 46–61, 1973.

[12] M. Sabeghi, P. Deldari, and S. Khajouei, “A fuzzy algo-
rithm for scheduling periodic tasks on multiprocessor soft
real-time systems [C],” Proceedings of the 17th IASTED
international conference on modelling and simulation,
May, Montreal, Canada, pp. 436–442, 2006.

[13] D. Liu, W. Y. Xing, R. Li, C. Y. Zhang, et al. “A
fault-tolerant real-time scheduling algorithm in software
fault-tolerant module [C],” Proceedings of the 7th inter-
national conference on Computational Science, Part IV.
Beijing, China, pp. 961–964, May, 2007.

[14] D. D. Luo, “Optimizing scheduling for hard real- time
tasks in embedded systems [D],” Shenyang: Northeastern
University, 2008.

[15] M. Caccamo, G. Buttazzo, and D. C. Thomas, “Efficient
reclaiming in reservation-based real-time systems with
variable execution times [J],” IEEE Transactions on Com-
puters, No. 2, pp. 198–213, 2005.

Copyright © 2010 SciRes JSEA

javascript:%20callShowRecordDetail(rec1005005,'');
javascript:%20callShowRecordDetail(rec1005005,'');
javascript:%20callShowRecordDetail(rec1005005,'');
javascript:%20callShowRecordDetail(rec1112769,'');
javascript:%20callShowRecordDetail(rec1112769,'');
javascript:%20callShowRecordDetail(rec1112769,'');
javascript:%20callShowRecordDetail(rec1457075,'');
javascript:%20callShowRecordDetail(rec1457075,'');
javascript:%20callShowRecordDetail(rec1457075,'');
javascript:%20callShowRecordDetail(rec1167191,'');
javascript:%20callShowRecordDetail(rec1167191,'');
javascript:%20callShowRecordDetail(rec1167191,'');
javascript:%20callShowRecordDetail(rec1418671,'');
javascript:%20callShowRecordDetail(rec1418671,'');
javascript:%20callShowRecordDetail(rec1418671,'');

Analysis and Comparison of Five Kinds of Typical Device-Level Embedded Operating Systems 90

Research Background

The appearance of embedded internet technology enables
a large number of traditional devices and home electrical
appliances to achieve network interconnection. Powerful
performance and strong stability of the embedded oper-
ating system will effectively control and make use of
embedded devices. Some of existing RTOS having the
function of network are very few especially for the 8-bit

microcontroller RTOS. Therefore, Our Liaoning Provin-
cial Key Laboratory of Embedded Technology has suc-
cessfully self-developed five kinds device-level embed-
ded operating systems running on 8-bit singlechip, these
systems are Webit 5.0, Worix, μKernel, μc/os-II 128 and
iDCX 128. These five systems bring broad selection and
apply space for the device-level operating system.

Copyright © 2010 SciRes JSEA

