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Abstract 
Quantum cryptography exploits the quantum mechanical properties of communica-
tion lines to enhance the security of the so-called key distribution. In this work, we 
explain the role played by quantum mechanics in cryptographic tasks and also inves-
tigate how secure is quantum cryptography. More importantly, we show by a simple 
security proof that for any state sent by the sender, the eavesdropper can only guess 
the output state with a probability that will allow her not to learn more than half of 
the classical Shannon information shared between the legitimate parties. This implies 
that with high probability, the shared key is secure. 
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1. Introduction 

Quantum key distribution (QKD), one aspect of quantum cryptography, provides a se-
cure method for distributing cryptographic keys between two parties conventionally 
known as Alice (sender) and Bob (receiver), who are connected by a quantum channel 
and an authenticated classical channel in the presence of an extremely competent mali-
cious party, an eavesdropper, Eve [1]. The security of a QKD protocol is mainly based 
on the laws of quantum mechanics, which state that (1) one cannot make a measure-
ment without perturbing the system unless the quantum state is compatible with the 
measurement. If there is no disturbance in the system, then no measurement was made, 
which implies that there was no eavesdropping. Therefore, Eve cannot intercept the in-
formation being transmitted in the communication channel without introducing dis-
turbances that would reveal her presence; this is also known as quantum indetermina-
cy; (2) it is impossible to duplicate an unknown quantum state with perfect fidelity. 
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This means that Eve cannot intercept the channel and get hold of the quantum system, 
make a copy of the system and send the copy to Bob without being detected. Therefore, 
quantum mechanics guarantees that two parties can exchange a secret key securely be-
cause the key always remains uncompromised. However, the security of QKD is guar-
anteed providing that the implementation is perfect i.e. all parties perform as expected 
or provided; all the imperfections of the implementation have been correctly characte-
rised. 

Based on Wiesner’s idea of conjugate coding [2], Bennett and Brassard in 1984 pro-
posed a first established and operable QKD protocol now commonly known as the 
BB84 protocol [3]. In 1991, Ekert [4] extended the idea by introducing quantum entan-
glement and the violation of Bell’s theorem [5]. Since then, several protocols have been 
proposed by both theorists and experimentalists. These include: Bennett 1992 (B92) [6], 
six state [7]; Phoenix, Barnett and Chefles 2000 (PBC00) [8], the Scarani, Acn, Ribordy, 
Gisin 2004 (SARG04) protocol [9]. These protocols belong to a family called Discrete- 
Variable (DV) protocols. However, there exists another family of protocols called con-
tinuous-variable protocols and Distributed-Phase-Reference (DPR) protocols [10]. 

The aim of this work is to present a simple security proof for a quantum protocol 
based on measurements performed on a maximally entangled state. In particular, we 
demonstrate how the laws of quantum mechanics afford security especially which 
properties are important in providing security for QKD protocols. This article is orga-
nized as follows. In Section 2 we briefly describe the quantum communication proce-
dure. In Section 3, we provide a short review of QKD security. In Section 4, we give a 
description of the operation principle for our proposed entanglement-based protocol, 
which we are going to study. In this section we also outline the security requirements 
for QKD. Our main result is that the success guessing probability, p for the eavesdrop-
per to guess the state sent by Alice or received by Bob will always result in Eve gaining 
less than half of the information being transmitted i.e., ( ) Pr 1 2,H p G A E = = ≤   
where ( ) ( ) ( )2 21 1log logH p p p p p= − − − −  is the classical Shannon information and 
G is the guess for output A (Alice) when given E (Eve). This means that the eavesdrop-
per can only learn less of the transmitted information and this forbids her from trying 
to reconstruct the original message shared by the legitimate parties with high accuracy. 
This implies that the exchanged secret key is always secure. Lastly, Section 5 is the con-
clusion. 

2. Quantum Communication Procedure 

Alice and Bob first use the quantum channel to distribute quantum states and then ap-
ply a quantum key distillation scheme to generate a common string of secret correlated 
data which are later transformed into a secret key. The eavesdropper can freely interact 
with the transmitted states while the two parties communicate and try to extract infor-
mation. However, Eve can only perform the most general attack allowed by the laws of 
quantum mechanics. The quantum channel is used to transmit quantum signals while 
the classical channel is used to transmit classical information. The classical channel is 
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authenticated so that Eve cannot learn the information that is being transmitted. 
In a real world, at the end of the protocol, Alice outputs the key SA while Bob outputs 

the key SB. The output keys must be identical, but because of the presence of an eave-
sdropper and errors in the channel, the keys are almost identical. However, in the ideal 
world, Eve’s access of the key is detected and also there are no errors in the communi-
cation channel, therefore Alice and Bob generate a perfect secret key S which is of 
length l. This is shown in Figure 1. This perfect secret key is then used for sending pri-
vate messages by means of the one-time pad. 

3. Review of QKD Security 

In the last two decades, a lot of progress has been realized in the study of QKD security. 
Today, the unconditional security i.e., security guaranteed in an information-theoretical 
sense has been established for many protocols. The first unconditional security proof of 
QKD was proposed by Mayers in 1996 [11]. Since then, various techniques for proving 
the security of QKD protocols have been developed [10]. The security proofs generally 
depend on the construction of the protocol and also on its practical implementation. 
For example, the unconditional security proofs for the BB84 based protocols have long 
since been realized [12]. This is mainly because they share a common property of being 
symmetrical. On the side, the security proofs for the class of DPR protocols still remain 
unrealized [10] [13], mainly because their construction and encoding deviates from the 
usual symmetry that exist in BB84-type based protocols. Moreover, the previous secu-
rity proofs could provide bounds only in the asymptotic limit of infinitely long keys, 
which is not realistic. But recently, the tools for studying QKD security in the finite-size 
limit have now become available [14]. This has been followed by various studies on se-
curity in the finite-size limit [14]-[21]. In these papers, it was shown that the bits which 
are processed in QKD are indeed of finite length. 

However, one of the greatest challenges that still remain in QKD implementations is 
a mismatch between the theoretical security proofs to real devices. This is because 
 

 
Figure 1. Comparison between what happens in a real and ideal quantum cryptographic world. 
Alice and Bob use the quantum and classical authenticated channel in the presence of Eve. At the 
end of communication; in the real world, Alice and Bob share two correlated secret keys SA and 
SB, respectively. In an ideal world, the access of Eve is broken; therefore Alice and Bob share a 
perfect secret key S. 
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several assumptions are usually made when proving the security of QKD protocols. 
These assumptions are; devices do what they are supposed to do (according to a speci-
fied model) and not more, there should be access to perfect or almost perfect random-
ness (locally), there should be no side-channels and quantum theory is correct. 

In order for a QKD protocol to be secure, it has to satisfy a number of security re-
quirements. These requirements are [22]; 

a) correctness—a QKD protocol is called εcor-correct if, for any strategy by the eave-
sdropper [ ] corPr A BS S ε≠ ≤ , where SA and SB are Alice’s and Bob’s output classical 
keys, respectively. 

b) secrecy—if S ≠⊥ , then S is uniform { }0,1 l  and independent of Eve. 
c) Robustness—a QKD protocol is said to be “robust” if it’s guaranteed that it does 

not abort as long as the eavesdropper is inactive. When an eavesdropper is inactive, the 
protocol would continue to generate a secret key, otherwise if an adversary tampers 
with the quantum channel, the protocol recognises the attack and aborts the computa-
tion of the key. 

d) Finally, a QKD is secure if it is correct and secret, that a protocol is ε-secure, if it is 
εcor-correct and εsec with cor secε ε ε+ ≤ . 

4. Operation of Our Proposed QKD Protocol 

A source prepares and distributes a maximally entangled quantum state where one sys-
tem is sent to Alice and another to Bob. This is shown in Figure 2. Alice and Bob then 
perform measurements in two mutually unbiased bases on their system respectively. In 
the absence of an eavesdropper, if they measure in the same basis they obtain perfectly 
correlated outcomes, which are completely random. The three parties will then share a 
quantum state 

ABE
ψ . An example of this protocol is the E91 protocol [4]. 

If the authorized parties notice some errors in Bob’s measurements, this implies that 
Eve has measured some of the photon polarizations. Therefore, QKD is secure because 
either of the following happens; if the error rate observed by Alice and Bob is lower  
 

 
Figure 2. The operation principle of the proposed QKD protocol. An entanglement source pro-
duces a pair of entangled signals, which are randomly measured in certain bases chosen by Alice 
and Bob separately. Alice and Bob generate outcomes A and B respectively. 
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than a critical value usually referred to as quantum-bit-error rate (QBER), in which 
case a secret key can be extracted by using techniques of classical information theory. 
However, if the error rate is larger than QBER, Alice and Bob throw their data away 
and never use them to encode any message. Therefore, the eavesdropper is prevented 
from learning any messages being communicated from Alice to Bob. 

Our proposed protocol is executed by the following steps: 
a) Alice chooses to measure photons in a certain basis and also the measurement di-

rection of the polarisation e.g., Alice chooses αφ  and Bob chooses βφ . 
b) Repeat this experiment many times and check whether the statistics are compati-  

ble with the law of physics 2cos
2

p α βφ φ− 
=  

 
, where the angle αφ  and βφ  denotes  

the measurement direction of the polarisation [23]. 
c) If the statistics are compatible, then they may choose a particular basis 0α βφ φ= =  

and take AS A=  and BS B= , if not then A BS S= =⊥  i.e., they abort the protocol. 
Theorem: Let G: guess for output A or B (on input 0αφ = ). We prove that for the 

classical random variable α , β  and є corresponding respectively to Alice, Bob and 
Eve’s measurement outcomes, the joint entropy between Alice and Eve is always less 
than half, i.e., ( ), 1 2I α ε ≤ . 

Proof: In the protocol, Alice and Bob test the presence of an eavesdropper by pub-
licly comparing polarizations of a random subset of the photons on which they think 
they should agree. The probability that a photon sent by Alice is detected by Bob is  

[ ] 2Pr cos
2

p A B α βφ φ− 
= ≠ =  

 
. This means that 2Pr 0,A B α βφ φ δ δ ≠ = = =  . In  

Table 1, if αφ  and 0βφ = , Then [ ] [ ]Pr PrA G B G p= = = = . However, if α βφ φ δ= =  
then the probability of choosing [ ]Pr B G=  is 2p δ≥ −  while the [ ]Pr A G=  be-
comes 1 p− . This can be generalized for 2αφ δ=  and 3αφ δ= . 

As mentioned above, let α, β and є be the classical random variables obtained by 
Alice, Bob and Eve, respectively, when they perform measurements on their quantum  
 
Table 1. Example of transmission of qubits between Alice and Bob showing some various possi-
bilities and the result of the inferred bits. The probability that the eavesdropper makes a correct 
guess on the output held by Alice and Bob is written as p A G= =    and p B G= =   , respec-

tively, and δ  is any value between 0 to 1. 

 Pr A G=    Pr B G=     

0αφ =  p p 0β =  

αφ δ=   2p δ≥ −  β δ=  

2αφ δ=  22p δ≥ −    

3αφ δ=   23p δ≥ −   

1
2αφ =   

21
2

p δ
δ

≥ −  1
2

δ =  
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systems. The joint probability of the distribution for all the parties is expressed as 
( )Pr , ,єα β . By using only error correction and privacy amplification, Alice and Bob 

can extract a sent key from ( ), ,P єα β  if and only if 

( ) ( ),I єα α≥                            (1) 

or 

( ) ( ), , ,I I єα β β≥                          (2) 

where ( ) ( ) ( ),I H Hα β α α β= −  is the mutual information between Alice and Bob 
and ( )H ⋅  is the Shannon entropy. Physically, this means that Bob must possess more 
information about Alice’s bits than Eve does. 

For such a source, the preparation quality [18] is given by 

{ },max ,єq єβ β=                         (3) 

where є  and β  are the eigenvalues corresponding to α  and β  then, 

( ) ( ) ( )2, , 2 ,logI є I Nqα α β+ ≤                     (4) 

where ( ) ( ) ( ),I Hє H єα α α= −  and ( ) ( ) ( ),I H Hα β α α β= −  are the entropies 
that correspond to the probability of the eigenvalues α  priori to and deduced from 
any measurement by Eve and Bob, respectively, N is the dimension of the Hilbert space 
and in this case, N = 2n and n is the number of bits. So, it follows that 

( ) ( ) ( )2
2, , 2 2 .log n nєI I nα α β −+ ≤ =                   (5) 

Therefore, one can deduce that the secret key rate is obtained when ( ), 2I nα β ≥ . 
Since, ( ) ( ) ( ),I H Hα β α α β= − , then 

( ) ( ) ( )2 2, 1 1 1 .log logI n p p p pα β  = − − − −                 (6) 

which gives us the sufficient condition 

( ) ( )2 21 1 1 2,log logp p p p+ − − ≤                    (7) 

on the error rate p. Because a key can only be extracted if ( ) ( ), ,єI Iα β β≥ , it follows 
that ( ), 1 2I єβ ≤  and this together with Equation (7) satisfies our theorem. Thus, the 
amount of information that Eve can gain about Bob’s or Alice’s bit is always less than 
half. A similar result has also been demonstrated in Ref [24]. This demonstrates that 
always, the eavesdropper has some limited knowledge of knowing the output from 
Alice or from Bob. Therefore, QKD provides a kind of security that is very secure. 

5. Conclusion 

We have demonstrated the principle of operation of QKD. We have shown how one 
can use the properties of the laws of quantum mechanics to allow the legitimate parties 
to share a secret key. In particular, we have shown that the eavesdropper cannot guess 
the output or outcome from the legitimate parties and gain more than half of the in-
formation being transmitted. This means that the key generated by quantum crypto-
graphy is always secure, thus showing the power of quantum mechanics in securing in-
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formation. 
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