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  Abstract 
Paraconsistent logic (PL) is a non-classical logic that accepts contradiction in its 
foundations. It can be represented in the form of paraconsistent annotated logic with 
annotation of two values (PAL2v). When used to model quantum phenomena, 
PAL2v is called paraquantum logic (PQL). In this work, the concept of PQL is ap-
plied to create a logical model presenting the fundamental principles of quantum 
mechanics that support particle-wave theory. This study uses the well-known 
Young’s double-slit experiment, wherein quantum phenomena appear when a mo-
nochromatic light beam passes through the two slits. We focused on a reference point 
located between the slits, where we observed the effects of two types of wave interfe-
rences in a region defined as a two-wave region (2W region). Considering that the 
effect in this 2W region is very similar to that studied by Huygens, we adopt a para-
quantum logical model in which a particle (or quantum) is represented by two wave 
functions. The two wave functions result in four State Vectors (Ket, Bra, ⌐Ket, ⌐Bra) 
in the PQL Lattice that express the symmetry and the entanglement of Quantum 
Mechanics. The constructed model adapts well to the quantum phenomena, is 
strongly consistent, and can be considered as an innovative form of analysis in the 
field of quantum mechanics. Based on this model, we present in two parts (Part I and 
Part II) the comparative analysis of values found in Schrödinger’s equation and 
probabilistic models of wave-particle theory using Bonferroni inequality. 
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1. Introduction 

By the end of the 17th century, several scientists supported the wave theory of light that 
affirmed the pure wave character of light. However, Newton’s corpuscular theory de-
scribing light as a particle already existed and was well accepted within the scientific 
community [1]. In 1801, the English physicist and physician Thomas Young demon-
strated the phenomena of interference of light with solid experimental results that fur-
ther supported the wave theory of light [2]. It was found that, while light appeared to 
behave as a particle flow, there were cases where it exhibited wave characteristics, such 
as in an interference phenomenon. This contradiction between corpuscular and wave 
theory was addressed by other scholars, culminating in the development of quantum 
mechanics from 1900 to 1925 [3]. One of the most important theories in Physics today, 
quantum mechanics has its main concepts based on postulates of difficult adaptability 
to the classical models observed in our Newtonian reality [3] [4]. 

1.1. Paraconsistent Logic (PL) 

Classical or Aristotelian logic, which today supports our technology, was created in an-
cient Greece as a tool to describe a perfect world; its strictly binary laws exclude situa-
tions that occur in reality, such as contradictory, incomplete, or uncertain information. 
Over time, an alternative logic to the classical logic, known as non-classical logic, was 
developed for obtaining models that better suited such situations. Therefore, non-clas- 
sical logics oppose the rigid binary laws that support classical logic and were created to 
better express our reality, especially at measurement limits and borders where, for var-
ious reasons, ambiguous, contradictory, and incomplete values render the classical logic 
inoperative. Among non-classical, non-binary logics, paraconsistent logic (PL) has 
shown to be promising for applications in physical science. 

The precursors of Paraconsistent Logic are the Polish logician J. Lukasiewicz and the 
Russian philosopher N.A. Vasilev that independently suggested the possibility of a logic 
that restricts, for example, the principle of contradiction [5]. The initial systems of Pa-
raconsistent Logic containing all logical levels, involving propositional calculations, of 
predicate and descriptions, as well as logic from superior order are due to N. C. A. Da 
Costa (1954 onwards) [6]-[8]. 

1.2. Paraconsistent Logic Definitions 

In formal way [5] [8], we can define Paraconsistent Logic as any deductive theory. T is 
based on a given logic L, and we suppose that all logics considered here contain a con-
nective for negation, symbolized. If two formulas of the language of T, one of which is 
the negation of the other, are both theorems of T (i.e. for some formula A, both A and 
Aare theorems of T), then T is said to be inconsistent, otherwise T is consistent. If all 
formulas of the language of T (or all closed formulas) are theorems of T, then T is 
called trivial; otherwise it is said to be non-trivial. A logic L is paraconsistent if it can be 
the underlying logic of inconsistent, but non-trivial theories. If the theory T is incon-
sistent and non-trivial, then T is called a paraconsistent theory [5] [8]. The usual sys-
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tems of logic, for instance classical and intuitionistic logics, are not paraconsistent. 
As shown in [5] [6], PL’s main characteristic is its revocation of the classical logic 

principle of non-contradiction, allowing it to deal with inconsistencies without triviali-
zation. Further, we will show that PL can be applied to the analysis of physical systems 
via a special setting called the paraconsistent annotated logic (PAL) [6]-[8]. 

The aim of this paper is to present a new way of modeling quantum mechanics con-
cepts in its wave-particle theory through the PL, a non-classical logic that tolerates con-
tradictions in its foundations. To this effect, we present a model supported by Young’s 
double-slit experiment, where quantum phenomena appear when a monochromatic 
light beam is focused on two slits [9]. 

We applied Huygens’ principle—proposed in the late 17th century by Christiaan 
Huygens as the wavefront method—where every point on a wavefront may be consi-
dered as a source of elementary waves that propagate at the same frequency beyond the 
region previously hit by the original wave [2] [4]. In the double-slit experiment, we 
highlighted a reference point located between the two slits where the effects of two 
types of wave interference are observed in a region defined as a two-wave region (2W 
region). The later resulted in a paraquantum logical model, where a particle or quan-
tum is represented by two wave functions. 

The first of part of our work is described below. 
In Section 2, we present the fundamental principles of paraconsistent annotated logic 

with annotation of two values (PAL2v) for applications in physical phenomena, called 
paraquantum logic (PQL), from which a logic model is derived. In Section 3, we show 
the study and interpretation of Young’s experience and the relation of equations on the 
phenomena of wave interferences. As a result, we obtain equations of PQL evidence 
degree and a paraquantum logical model for quantum. In Section 4, we study the 
quantum paraquantum logical model in one spatial dimension using quantum me-
chanics concepts. In Section 5, we elaborate conclusions about the obtained model. In 
Part II, we test this model in relation to Schrödinger’s equation values and compare 
values using both probability theory and Bonferroni inequality. 

2. Paraconsistent Annotated Logic with Annotation of Two Values 
(PAL2v) 

Paraconsistent Logic (PL) is a propositional and evidential non-classical logic which 
revokes the principle of non-contradiction and admits the treatment of contradictory 
signals in its theoretical structures [5]. The characteristics of an evidential logic are 
suitable for treating Uncertain Knowledge, mainly because, in an analysis, the argu-
mentations are restrained to assert that the premises constitute only partial evidences 
for their conclusions [6]. 

When used to model quantum phenomena, the Paraconsistent Logic (PL) is called 
paraquantum logic (PQL) [10]-[14]. PQL is based on a special type of PL called Para- 
consistent Annotated Logic with annotation of two values (PAL2v). Based on these 
considerations, we present PAL2v and the basics of paraquantum logical model [15]. 
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The paraconsistent annotated logic (PAL) is an evidential logic (ετ) that can be 
represented by a lattice of four vertices (Lattice FOUR) [7] [8]. Intuitively, the annota-
tion constant in its vertex provides the connotation of the logical state related to propo-
sition P [10]. 

An atomic proposition of PAL logic language can be represented by P(μ, λ), where μ 
and λ are elements in a closed interval [0, 1] belonging to a set of real numbers. When 
applied, these two values are considered information signals and represent evident 
measures of proposition P, thus called evidence Degree. Among several intuitive read-
ings, P(μ, λ) can be read as (μ), a favorable evidence to proposition P, and λ, an unfa-
vorable evidence to it. Therefore, the annotation represented in the lattice associated to 
PAL2v is formed by pairs of values (μ, λ) [10] [11]. Each degree of evidence is extracted 
from different sources and independent, but both sources are related to the same prop-
osition P, and are therefore considered as Observable Variables in the physical world 
[8]. 

In this representation, an operator is fixed ~: |τ| → |τ| where: τ = {(µ, λ)|µ, λ ∈ [0, 1]} 
⊂ ℜ. 

The pair consisted of favorable evidence Degree (μ) and unfavorable evidence Degree 
(λ) provides logic connotation to proposition P [5] [8]-[10]. 

For the PAL2v Lattice, extreme logical states represented in the four vertices are: 
True (t), False (F), Inconsistent (T), and Undetermined (┴). Additionally, the equidis-
tant point between vertices is considered an undefined logical state (I). Figure 1 illu-
strates the PAL2v lattice with logical states represented by each of its four vertices re-
lated to pair values, favorable evidence Degree (μ) and unfavorable evidence Degree (λ). 

2.1. Paraconsistent Transformations 

Paraconsistent Transformations (PT) are linear transformations conducted between a 
Unitary Square in the Cartesian Plane USCP-Lattice κ (Figure 2(a)) and another lattice 
similar to a four-vertex PAL2v (PAL2v-τ Lattice). Through PTs, logic values represented  
 

 
Figure 1. Lattice FOUR with PAL2v logical states (Hasse Diagram). 
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Figure 2. (a) Unit square on Cartesian plane USCP—Lattice κ; (b) Scale expansion with 2Sx =  
and 2Sy = . 
 
in PAL2v-τ Lattice can be obtained from USCP-Lattice κ [10] [11]. Three stages are 
required to obtain paraconsistent transformations: 1) scale expansion, 2) rotation; 3) 
axis y rotation [11]. 

2.1.1. Expansion 
Expansion consists of a scale change that allows resizing objects from a reference point. 
Consider point P(x, y) and P'(X, Y) as being point coordinates after scaling. Scaling en-
tails multiplying each point Pi of an object by both a horizontal (Sx) and a vertical (Sy) 
scale factor. 

Function T is defined as ( ) ( ) ( ), ,T P T Xp Yp xp Sx yp Sy= = ⋅ ⋅ . 
In paraconsistent transformations, scale is increased in USCP-Lattice κ, as shown in 

Figure 2, so that: 2Sx =  and 2Sy = . Therefore, with: xp µ=  and yp λ= , the 
scale increase of USCP-Lattice κ is given by the first transformation:  

( ) ( )1 1 1, 2, 2T X Y µ λ=                        (1) 

From Equation (1) we have: 1 2X µ=  and 1 2.Y λ=  

2.1.2. Rotation 
The mathematical expression for an object’s rotation from its origin to angle θ, is con-
sidered from a point P(xp, yp), such as the point P’(Xp, Yp) is obtained by: 

( )cos cos cos sin sinXp r Xp r rφ θ φ θ φ θ= ⋅ + → = ⋅ ⋅ − ⋅ ⋅  

( )sin sin cos sin cosYp r Yp r rφ θ φ θ θ φ= ⋅ + → = ⋅ ⋅ + ⋅ ⋅ . 

Function T can thus be defined as follows: 

( ) ( ) ( ) ( ), , cos sin , sin cosT P T Xp Yp T Xp Yp xp yp xp ypθ θ θ θ= → = ⋅ − ⋅ ⋅ +  

Figure 3 shows a 45˚ rotation in relation to the origin. 
For paraconsistent transformation, 45˚ rotation is made in the USCP-Lattice κ from 

its origin, therefore:  

( ) ( )2 2 2 1 1 1 1, cos sin , sin cosT X Y X Y X Yθ θ θ θ= ⋅ − ⋅ ⋅ +            (2) 



J. I. Da Silva Filho 
 

148 

 
Figure 3. (a) Expanded Lattice; (b) 45˚ Rotation from origin. 
 

From Equation (2) we have: 

( )2 1 1cos sinX X Yθ θ= ⋅ − ⋅  and ( )2 1 1sin cosY X Yθ θ= ⋅ +  

For a 45˚ rotation: 

( )2 2 2 1 1 1 1
1 1 1 1, ,
2 2 2 2

T X Y X Y X Y = ⋅ − ⋅ ⋅ + 
 

             (3) 

From Equation (1), we have: 1T ; 1 2X µ=  and 1 2Y λ= . 

( )2
1 12 2
2 2

X µ λ µ λ = − = − 
 

 and ( )2
1 12 2
2 2

Y µ λ µ λ = + = + 
 

 

( ) ( )2 2 2, ,T X Y µ λ µ λ= − + , therefore: 2X µ λ= −  and 2Y λ µ= + . 

2.1.3. Translation 
Consider a geometric object represented by a set of points Pi belonging to R2. The 
translation is made by adding all quantities to the coordinates. With a translation per-
formed from a point P(x, y) and P’ being the point coordinates after translation, func-
tion T is defined as follows: 

( ) ( ) ( ) ( ), , ,T P T Xp Yp T Xp Yp xp dx yp dy= → = + +  

where: total amounts are dx and dy. 
For paraconsistent transformations, a translation in USCP-Lattice κ is made on its 

axis y, as follows: ( ) ( )2 2 2, ,T X Y µ λ µ λ= − + ; thus: xp µ λ= −  and yp µ λ= + . 
With: 0dx =  and 1dy = − , the final transformation is 

( ) ( )3 3 3, , 1T X Y µ λ µ λ= − + −                    (4) 

Therefore, 3X µ λ= −  and 3 1Y µ λ= + − . 
Equation (4) converts USCP-Lattice κ points into PAL2v τ Lattice points (Hasse dia-

gram), which also represents the lattice associated with PQL [10] [12]. Figure 4 shows 
the steps needed for this last paraconsistent transformation. 
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Figure 4. (a) Rotation around origin (45˚); (b) Translation, Lattice is associated with PAL2v. 

 
The first term X3 of the ordered pair obtained in the final transformation represented 

in Equation (4) is called certainty degree (DC), and calculated by: 

CD µ λ= −                              (5) 

where: μ is a Favorable evidence Degree. 
λ is an Unfavorable evidence Degree. 
Their values belong to a set of real numbers ℜ, vary in the closed interval −1 to +1, 

and are located on the horizontal axis of the PAL2v Lattice τ, called Certainty Degree 
Axis [4]. 

The second term Y3 obtained in the ordered pair of the final transformation Equa-
tion (4) is called contradiction degree (Dct), and is calculated by:  

1ctD µ λ= + −                         (6) 

Values resulted from Dct belong to a set of real numbers ℜ, vary in the closed interval 
+1 and −1, and are located on the vertical axis of the PAL2v Lattice τ, called Contradic-
tion Degrees Axis [10]. 

In the Lattice τ of the PAL2v, when DC equals +1, the Paraconsistent logical state (ετ) 
resulting from the Paraconsistent analysis is True (t); when DC equals −1, the logical 
state is False (F). Likewise, if Dct equals +1, the Paraconsistent logical state (ετ) resulting 
from the Paraconsistent analysis is inconsistent (T), and if Dct equals −1, it is Undeter-
mined (⊥). 

Paraconsistent transformations establish two paraconsistent mathematical operators 
for measurements of the observable physical environment [10] [12]. The first, 

2xpµο = , acts on measurements related to favorable evidence Degree; and the 
second, 2ypλο = , acts on measurements related to unfavorable evidence Degree. 

The performance of both Operators on Observable measurements of the physical 
world allows standardization and containment in a [0, 1] interval of measurements 



J. I. Da Silva Filho 
 

150 

taken from real numbers. 
With geometric change introduced through paraconsistent transformations, values 

formerly represented by two-dimension Unitary Squares are now represented in one- 
dimension Open Unitary Square on the Cartesian Plane (USCP Open), where its rep-
resentative line separates the physical world from the paraconsistent universe (see Fig-
ure 5).  

2.2. Logical Negation 

In PAL2v annotation, the first evidence Degree is represented by μ, which favors prop-
osition P, and the second evidence Degree is represented by λ, which is unfavorable to 
preposition P. Therefore, the logical negation is achieved by changing evidence Degrees 
in annotation [4] [6] such that: 

( ) ( ), ,P Pµ λ λ µ¬ =                        (7) 

Through Equation (5) and Equation (9) we observe that the effect of the Logic Nega-
tion Operator on the Lattice of the PAL2v is the change in sign of the Certainty Degree 
(DC). 

2.3. Logical Reversibility Property 

Another important application of logic models in quantum mechanics is PAL2v’s re-
versibility [10] [11]. From the Certainty Degree (DC) and the Contradiction Degree 
(Dct), we obtain each annotation values represented by a pair, Favorable evidence De-
gree (μ) and Unfavorable evidence Degree (λ). This is done as follows: 

From Equation (5) and Equation (6) we obtain the system 

1

1ct

C

D
S

D
µ λ
µ λ

= + −
 = −

 

 

 
Figure 5. PAL2v lattice with values and line separates the physical world from the paraconsistent 
universe. 
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Solving S1, we obtain evidence Degree from both Certainty and Contradiction De-
grees: 

1 1 1
2 2 2C ctD Dµ = + +                          (8) 

and 

1 1 1
2 2 2C ctD Dλ = − + +                         (9) 

Paraconsistent transformations can then convert Lattice of the PAL2v annotations 
into USCP annotations. With Equation (5) and Equation (6) it is possible to relate 
physical environment measurements to behaviors of logical states of the Lattice of the 
PAL2v, the paraconsistent universe.  

The reversibility of PAL2v expressed by Equation (8) and Equation (9) allows, 
through behaviors predicted from logical states in the Paraconsistent Universe, the 
forecast of amplitude values represented in USCP. They are obtained from Observable 
measurements in the physical world and for our study we will name Paraconsistent 
logic (PAL2v) of Paraquantum Logic (PQL). Figure 6 depicts reversibility conditions of 
PQL. 

3. Paraquantum Logic and Wave Theory 

A paraquantum logical state (ψ) is created in the Lattice of the PQL as a pair of values 
formed by a certainty degree (DC) and contradiction degree (Dct). Both values depend 
on measurements of variables observed in the physical environment, represented by μ 
and λ. 

Equation (5) and Equation (6) can be can expressed in terms of μ and λ, obtaining a 
paraquantum logical state (ψ) [11]-[14] such as 

( ) ( ) ( )( ), ,,PQ C ctD Dµ λ µ λψ =                       (10) 

 

 
Figure 6. Conversion of values between USCP and Lattice of the PQL. 
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For each measurement of μ and λ conducted in the physical world, we obtain a single 
pair ( ) ( )( ), ,,C ctD Dµ λ µ λ  that represents a paraquantum logical state (ψ) as a point within 
the lattice of the PQL. 

We can represent the Vector of State P(ψ) in a Lattice of the PQL, with its origin in 
one of the two vertices that compose the horizontal axis of Certainty Degrees. In the 
vertex of the Vector of State P(ψ), we have a point formed by the pair indicated by the 
paraquantum function [13]-[15]. ( ) ( ) ( )( ), ,,PQ C ctD Dµ λ µ λψ = . 

Vector of State P(ψ) will always be equal to the sum of its two vectors: 

CX


 Vector with the same direction of the Certainty Degree axis (horizontal), whose 
module equals the intensity complement of the Certainty Degree: 1C CX D ψ= −  

ctY


 Vector with the same direction of Contradiction Degree axis (vertical), whose 
module equals the intensity of the Contradiction Degree: ct ctY D ψ=  

Given a paraquantum logical state (ψcur) defined by the pair ( ) ( )( ), ,,C ctD Dµ λ µ λ , we can 
calculate the module of Vector of State P(ψ) according to the Equation (11): 

( ) ( )( ) ( )( )2 2

, ,1 C ctMP D Dµ λ µ λψ = − +                  (11) 

where: ( ),CD µ λ  = Certainty Degree calculated by (5); 

( ),ctD µ λ  = Contradiction Degree calculated by (6). 

Figure 7 shows the point (DCψ, Dctψ) where ( ),CD fψ µ λ=  and ( ),ctD fψ µ λ=  
represent the paraquantumlogical state (ψ) in the Lattice of the PQL [13]-[15]. 

In the Lattice of the PQL, the angle formed by the module of Vector of State M(ψ) 
and axis x of the Certainty Degree is equal to the Vector of State inclination angle (αψ), 
which is calculated by: 
 

 
Figure 7. Vector of state P(ψ) representing a paraquantum logical state (ψ) on the paraquantum 
Lattice of states on point (DCψ, Dctψ). Therefore, DC > 0. 
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( )

( )( )
,

,

arctan
1

ct

C

D

D

µ λ
ψ

µ λ

α
 
 =  −  

                    (12) 

and: 

( ),cos 1 CDψ µ λα = −                       (13) 

( ),sen ctDψ µ λα =                          (14) 

The increase or decrease of the inclination angle αψ triggers the appearance of logical 
states along the vertex of Vector of State P(ψ) within the limits of the PQL Lattice. We 
may say that these paraquantum logical states are superposed (ψsup) [13]-[15]. 

When the Vector of State P(ψ) has a unit module (MP(ψ) = 1), the superposed para-
quantum logical states have a defined trajectory in which the logical state will be at the 
equidistant lattice point given a null inclination angle, with Certainty and contradiction 
degrees equals to zero. 

3.1. Wave Interferences 

The wave theory of light resulted in several studies that relate wave interference phe-
nomena with phenomena that occur in quantum mechanics. We will use quantum 
phenomena information to interpret experimental results that consider the duality 
wave-particle. This will allow us to apply the paraquantum logic analysis [16]-[18] to 
those studies. 

We start by classifying two types of interference [15] [16], as described below. 

3.1.1. Type I Interference—Phenomenon with Two Waves in the Same Direction 
We considered two waves traveling in the same direction and with the same frequency, 
same wavelength, same amplitude, but a lag. The first wave has phase constant equal to 
zero and the second wave has phase constant equal to φ [16]-[18]. For a particular wave 
case in which both are typified as progressive harmonic of sinusoid shaped, we obtain 
the respective wave equations: 

( ) ( )1 , sinmY x t Y Kx wt= −  and ( ) ( )2 , sinmY x t Y Kx wt φ= − + . 

where the wave number K is defined as 2πK
λ

=  where, λ  is the wave length. 

The angular frequency is defined as 2πw
T

= , where T is the wave period. Phase  

( ),x tφ  is the sinusoid’s argument, therefore: ( ) ( ),x t Kx wtφ = − . For harmonic 
waves of the same amplitude, the superposition principle [12] [14] is expressed by: 

( ) ( ) ( )1 2, , ,Y x t Y x t Y x t= +  

( ) ( ) ( ), sin sinmY x t Y Kx wt Kx wtφ= − + + −    

The relationship ( ) ( )sin sin 2sin 2 cos 2α β α β α β+ = + −        results in: 

( ) ( ) ( ), 2 cos 2 sin 2mY x t Y Kx wtφ φ= − +                (15) 
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Therefore, interference is constructive if phase 0φ = , and destructive if phase 
πφ = . In the case of different amplitudes, the effect of partial interference is partial. 

3.1.2. Type II Interference—Phenomenon with Two Waves in Opposite 
Directions 

If both waves have the same frequency, same wavelength and same amplitude, then for 
a particular wave case where both are progressive harmonics and sinusoid shaped, we 
have [12]-[18]: 

( ) ( )1 , sinmY x t Y Kx wt= −  and ( ) ( )2 , sinmY x t Y Kx wt= +  

The relationship ( ) ( )sin sin 2sin 2 cos 2α β α β α β+ = + −        results in: 

( ) ( ) ( ), 2 sin cosmY x t Y Kx wt=                        (16) 

The resulting wave equation originated from the interference phenomenon of inte-
raction between two waves propagating in opposite directions, indicates that the re-
sulting pulse is made of a static wave where each medium particle oscillates in Simple 
Harmonic Motion (SHM), with an amplitude whose magnitude depends solely on posi-
tion, meaning, x [17]-[21]. 

3.1.3. Two-Wave Region (2W Region) in Young’s Double Slit Experiment 
When approaching the quantum phenomena with PQL, studies and analysis will be 
made considering the events that occur in a given area, located in the region between 
the two slits and the screen, as in Young’s experiment [9] [22]. 

The reference point is located between the two slits, which is the origin of the refer-
ence line that cuts and separates the regions of interest between the two slits and the 
screen, given that the limits of final dimensions are set by Range of Interest, or Dis-
course Universe used in the analysis. 

The wave interference phenomena that will be analyzed by the PQL occur beyond the 
two slits, called two-wave region (2W region). 

In Figure 8 the 2W region, the focus of the analysis by the paraquantum logical 
model, is signaled in a representation of Young’s experiment. 

3.1.4. Interference Phenomena in the 2W Region 
Based on Figure 8, we can consider that when the wavefront pulse generated by a mo-
nochromatic light source is projected onto the two slits, they behave as two punctiform 
wave sources in relation to 2W region. Likewise, each slit presents a new pulse in which 
a wavefront propagates uniformly, inflationarily expanding within the 2W region. 

Each pulse generated by monochromatic light source produces two identical twin 
pulses when it hits the slits, therefore indistinguishable and of identical physical proper-
ties. After the two slits, the identical twin pulses that were generated simultaneously will 
have their waves, or wavefronts, propagating as in an inflation process. During propaga-
tion, pulses interact with each other, as well as with wavefronts of remaining pulses 
within the 2W region.  

The interaction between composed forces of wavefront particles in different pulses  
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Figure 8. Young experiment (double-slit) with emphasis on the propagating waves originated 
from the two slits in the 2W region. 
 
generates Type I and Type II Interference phenomena. The closer the amplitudes of the 
two pulses in interaction, the greater the influence of Type II Interference. On the other 
hand, the greater the amplitude difference, the larger is the gap between interacting 
pulses, and as a consequence, the greater the effect of Type I Interference. 

3.1.5. Generation of Oscillation Energy Pocket (Quantum) in the 2W Region 
Figure 8 and Figure 9 show that Type II Interference occurs when two identical and 
indistinguishable twin pulses, generated by two slits, meet. This phenomenon results 
from the interaction of two waves propagating in opposite directions. Simultaneous 
generation places the meeting point of identical twin pulses of Type II Interference 
along the axis of the reference line located in the average distance between the two slits. 

The addition the effect of Type II Interference to the inflationary effect in identical 
twin pulses results in oscillatory wave pulse propagation in 2W region. 

The resulting wave pulse concentrates oscillatory energy and, as a consequence, be-
haves like an energy “pocket” or particle traveling, in a straight line, along the reference 
line axis. It is mathematically represented by the stationary wave in Equation (16). Us-
ing quantum mechanics nomenclature [2] [9] [23]-[27], this pulse of concentrated 
energy moving along the 2W region is called Quantum. 

Due to the effect of composing two types of interference phenomena, energy quanta 
(resulting from such composition) do not move in a straight line; instead, they move 
away from the reference axis as the lag increases. Details are shown in Figure 9. 
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Figure 9. Two types of interference occur in the 2W region resulting in inflationary behavior due 
to pulse propagation generated by double slit. 
 

Figure 9 shows that for the largest phase difference, the effect of Type I interference 
is greater than that of Type II interference. This indicates that the smaller the phase 
difference between identical and indistinguishable twin pulses, the greater is the 
amount of wavefront and remaining pulses propagating in the 2W region. No phase 
difference indicates that the same wave is spreading in the 2W region. 

4. Paraquantum Logical Model for Wave Theory 

The application of PL in its special form that uses two annotation values (PAL2v) al-
lows the determination of evidence Degrees extracted from measurements in the Ob-
servable in the real world [12] [13]. 

Measured and Normalized values allow for the determination of the paraquantum 
logical state represented in its associated lattice (lattice of the PQL) that may be related 
to the Quantum. Therefore, paraquantum logical states are represented in the lattice of 
quanta’s paraquantum universe, or wave pulses of concentrated oscillation energy, that 
propagate in the 2W region of Young’s experiment. 

4.1. Extraction of Evidence Degrees from the Interference Phenomenon 
in the 2W Region 

In the Paraquantum Logical Model we will consider that the Observable is already 
represented in Type I and Type II Interference equations. 

4.1.1. Evidence Degrees Extraction from Type I Interference 
We can analyze the case in which function variations of evidence Degrees are always 
equal or above 0.5. The analysis will thus focus only on the upper right triangle of Lat-
tice of the PQL (Quadrant I). Hence, Equation (15) is divided by 4, and then accrued by 
1/2. Therefore, a favorable evidence Degree represented by the wave function when on-
ly Type I Interference occurs is obtained by Equation (17): 
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( ) ( ) ( )1 1, cos 2 sin 2
2 2mx t Y Kx wtµ φ φ= − + +              (17) 

Comparing Equation (8) to Equation (17), we note that since two waves propagate in 
identical directions, this equation is valid only if the conflict degree is zero: 

( ) ( ) ( )1 1 1 1 1 1, cos 2 sin 2 0
2 2 2 2 2 2C ct mD D x t Y Kx wtµ µ φ φ= + + → = − + + × +    

Equation (17) adapts perfectly to the Paraquantum Logical Model in cases where on-
ly Type I interference, which is related to two waves in the same direction, is studied. 

Comparing the unit magnitude Ym to Equation (8), the certainty degree of its wave 
equation for a Contradiction Degree equals zero is calculated as follows: 

( ) ( ) ( ), cos 2 sin 2C x tD Kx wtφ φ= − +                  (18) 

For imposition ( ), 0ct x tD = , the value of unfavorable evidence Degree (λ) will always 
be the Complement of the favorable evidence Degree (μ), thus represented by Equation 
(6): 

( ) ( ) ( )1 1, cos 2 sin 2
2 2mx t Y Kx wtλ φ φ= − − + +              (19) 

Figure 10 shows the division between the Paraquantum and physical universes, us-
ing the favorable evidence Degree in the upper right triangle of Lattice of the PQL 
(Quadrant I) with extraction of evidence Degrees from type I Interference. 
 

 
Figure 10. Extraction of evidence degrees from Type I interference within the PQL Lattice (Quadrant I). 
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It is noted that for 1mY =  when ( )π cos π 2 0φ = → =  

The Favorable evidence Degree obtained through Equation (17) is ( ) 1,
2

x tµ =  

The Unfavorable evidence Degree obtained through Equation (19) is ( ) 1,
2

x tλ =  

The Certainty Degree obtained through Equation (18) is ( ), 0C x tD =  

when: ( )π 2cos π 4
2 2

φ = → =  

The Favorable evidence Degree obtained through Equation (17) is 
( ), 0.85355339x tµ ≅  
The Unfavorable evidence Degree obtained through Equation (19) is  
( ), 0.1464466x tλ ≅  
The Certainty Degree obtained through Equation (18) is ( ), 2 2.C x tD =  
For the wave equation with type I interference characteristics, where the function has  

a lag angle of 
π0
2

φ≤ ≤ , the favorable evidence Degree interval is 
1 1
2

µ≤ ≤  and the 

unfavorable evidence Degree interval is 
10
2

λ≤ ≤ . The Paraquantum Logical Model  

indicates that this lag will only occur in Quadrant I of the Lattice of the PQL. 

4.1.2. Evidence Degrees Extraction from Type II Interference 
As before, the analysis is conducted in such way that the function variation always re-
mains equal or above 0.5, so that the results will focus only on the upper right triangle 
of the lattice of the PQL [7] [12] (Quadrant I). For this to happen, Equation (16) is di-
vided by 4 and then accrued by 0.5. Therefore, the favorable evidence Degree, represented 
by a wave function only for Type II Interference, is obtained by the equation: 

( ) ( ) ( )1 1, sin cos
2 2mx t Y Kx wtµ = +                 (20) 

In Type II Interference, quantum propagates only along the axis of the Contradiction 
Degree, with a certainty degree of zero. In this condition, comparing Equation (8) to 
Equation (17), we have: 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1, sin cos , 0 ,
2 2 2 2 2 2 2ct ctx t Kx wt x t D x t Dµ µ µ= + → = + + → = +    

Since we are studying only Type II Interference (two waves in opposite directions), 
Equation (20) perfectly adapts to the Paraquantum Logical Model. Thus, considering 
Equation (8) and the unit magnitude Ym, we define the Contradiction Degree for Type 
II Interference wave function as 

( ) ( ) ( ), sin cosct x tD Kx wt=                     (21) 

For this condition, the unfavorable evidence degree is obtained by Equation (9), on 
the condition that the certainty degree is zero and the contradiction degree is given by 
Equation (21). 

( ) ( ) ( )1 1, sin cos
2 2mx t Y Kx wtλ = +                  (22) 
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Figure 11 shows the split between the Paraquantum and the physical universes with 
a favorable evidence degree on the upper right triangle of the Lattice of the PQL (Qua-
drant I) with the extraction of evidence degrees from Type II Interference. 

Imposing the condition ( ), 0C x tD = , the favorable evidence degree (μ) is always equal 
to the unfavorable evidence degree (λ). 

For 1mY = , then ( )π sin π 0Kx = → =  

The favorable evidence degree obtained through Equation (19) is ( ) 1,
2

x tµ =  

The unfavorable evidence degree obtained through Equation (22) is ( ) 1,
2

x tλ =  

The contradiction degree obtained through Equation (21) is ( ), 0ct x tD =  

when ( )π sin π 2 1
2

Kx = → =  

The favorable evidence degree obtained through Equation (19) is ( ), 1x tµ =  
The unfavorable evidence degree obtained through Equation (22) is ( ), 1x tλ =  
The contradiction degree obtained through Equation (21) is ( ), 1.ct x tD =  

 

 
Figure 11. Extraction of evidence degrees from Type II interference within Lattice of the PQL (Quadrant I). 
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Therefore, for a wave equation with Type II Interference, where the function has a 

Kx value between 
π0
2

Kx≤ ≤ , the favorable evidence degree varies 
1 1
2

µ≤ ≤  and the 

unfavorable evidence degree varies 
1 1
2

λ≤ ≤ .  

With such variation range of Kx, the Paraquantum Logical Model occurs only in 
Quadrant I of the Lattice of the PQL. 

4.1.3. Extraction of Evidence Degrees from Type I and Type II Interference 
Phenomenon 

In the composition of Type I and Type II Interference phenomena, there will be con-
centrated oscillation energy pulses. Quanta will thus exist traveling both along the 2W 
region beyond the reference line axis, as well as along non-rectilinear trajectories. This 
indicates that, under non-extreme conditions in the Paraquantum Logical Model, con-
tradiction and certainty degrees coexist. By combining Equation (5) and Equation (6) 
with Equation (18) and Equation (20), we obtain equations of the two observables, 
which provide evidence degrees for Paraquantum analysis in the physical world. As a 
result, the two wave functions observed in the 2W region of the double-slit experiment 
will be mixed. Equation (17) must then be shown in its complete form that covers Type 
I and Type II Interferences, accounting now the contradiction degree: 

( ) ( ) ( ) ( ) ( )1 1 1, cos 2 sin 2 sin cos
2 2 2

x t Kx wt Kx wtµ φ φ= − + + +          (23) 

The unfavorable evidence degree involving the two Quantum-wave equations prop-
agating in the 2W region is 

( ) ( ) ( ) ( ) ( )1 1 1, cos 2 sin 2 sin cos
2 2 2

x t Kx wt Kx wtλ φ φ= − − + + +         (24) 

In Equation (23) and Equation (24), evidence degrees are determined by two wave 
functions characteristic of Quantum. In Paraquantum analysis, these two wave func-
tions allow the representative values of the observable behavior to produce results that 
will be displayed in the Lattice of the PQL. Figure 12 shows the evidence degrees in the 
upper right triangle of the PQL (Quadrant I) where the two wave functions were ex-
tracted from the composition of Type I and Type II Interference in the 2W region. 

4.2. Vector of State P(ψ) of Unitary Module Related to Two Wave 
Functions 

Considering the two wave functions, the Vector of State of module P(ψ) represented in 
Equation (11) is calculated by: 

( )( ) ( ) ( )22 21 C ctMP D Dψ = − +  

( )( ) ( ) ( )
2 22

, ,1 C x t ct x tMP D Dψ    = − +     

( )( ) ( ) ( ) ( ) ( )
2 22

1 cos 2 sin 2 sin cosmMP Y Kx wt Kx wtψ φ φ   = − − + +             (25) 
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Figure 12. Extraction of degrees of evidence from the composite Type I and Type II interferences within PQL Lattice (Quadrant I). 

4.3. The Tangent of the Inclination Angle ψα  of the Vector of State 

Equation (12), Equation (18) and Equation (21), calculate the tangent to the Vector of 
State P(ψ) inclination angle: 

( ) ( ) ( )
( ) ( )
sin cos

tan
1 cos 2 sin 2

Kx wt
Kx wtψα φ φ

  =
− − +  

 

where, for: ( )π tan 1
4ψ ψα α= → = , given that the module of Vector of State P(ψ) is a 

unit, through Equation (18) we have: ( ),
11
2C x tD− =  that results in: 

( ) ( ) ( ),
1cos 2 sin 2 1
2C x tD Kx wtφ φ  = − + = −      

 

Therefore, through Equation (21) we have: ( ) ( ) ( ),
1sin cos
2ct x tD Kx wt= =    

By using the complement of the certainty degree, the phase difference angle of the 
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two waves in the 2W region is 2ψα φ= . These considerations allow us to study the 
inclination angle of Vector of State P(ψ) of unitary module through its tangent. 

( ) ( ) ( )
( ) ( )

sin cos
tan

1 1 cos sin

Kx wt

Kx wt
ψ

ψ ψ

α
α α

  =
  − − − +  

              (26) 

The contradiction degrees equated in Equation (21) can be expressed in the Lattice of 
the PQL solely by the inclination angle of Vector of State P(ψ), such that: 

( ) ( ), sinct x tD ψα=                           (27) 

Therefore, under the condition of a Vector of State of unitary module, we can calcu-
late, using the phase angle, the contradiction degree on the wave pulse of the concen-
trated oscillation energy that propagates through the 2W region. 

In the two wave functions that characterize the Quanta in the 2W region, the cer-
tainty degree must be complemented. Therefore, Equation (23) and Equation (24) can 
be formulated as 

( ) ( ) ( ) ( )1 1 1, 1 cos sin sin
2 2 2

x t Kx wtψ ψ ψµ α α α    = − − + + +          (28) 

( ) ( ) ( ) ( )1 1 1, 1 cos sin sin
2 2 2

x t Kx wtψ ψ ψλ α α α    = − − − + + +         (29) 

The phase difference angle of the waves in Type I and Type II Interferences equals 
twice the inclination angle ψα  of Vector of State P(ψ) [7] [8]. The relation between 
the two angles may be described as 

2 ψφ α=                             (30) 

where: φ  is the phase difference angle of the waves in the physical environment cor-
responding to the 2W region of Young’s experiment. 

ψα  is the inclination angle of Vector of State P(ψ) in the Lattice of the PQL. 

4.4. Superposed Paraquantum Logical States in the Paraquantum 
Logical Model 

The trajectory of a wave pulse with concentrated oscillation energy, what we call 
Quantum, through the 2W region, where Type I and Type II Interferences phenomena 
occur, can be related to the vertex trajectory of Vector of State P(ψ) in the Lattice of the 
PQL. With some restrictions, the forecast of Paraquantum logical states (ψPQL) locations 
in PQL may correspond to the behavior of Quanta propagation in the 2W region. 

Paraquantum logical states (ψPQL), represented by the Vector of State P(ψ) vertex of 
unitary module, are superimposed and their locations are related to Quantum characte-
ristics through two wave functions shown in Equation (28) and Equation (29). Super-
posed Paraquantum logical states can be represented through Equation (10), such that: 

( )( ) ( ) ( )( ) ( ) ( )( )( ), , , , , , ,,PQ x t C x t x t ct x t x tD Dµ λ µ λψ =  

( )( ) ( ) ( ) ( ) ( )( ), cos sin ; sin cosPQ x t Kx wt Kx wtψ ψψ α α = − +            (31) 
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where the Vector of State P(ψ) module must be a unit. 
In Figure 13 we observe the vertex trajectory of Vector of State P(ψ) of unitary mod-

ule, indicating superposed Paraquantum logical states (ψPQL). 
Paraquantum Logical Model equations are defined in the upper triangle of Lattice of 

the PQL (Quadrant I). The analysis in these two Observables, whose values are added in 
equations of interference phenomena, will result in Paraquantum logical states (ψ) in 
the Lattice of the PQL located in Quadrant I. Their variations are defined in Equation 
(23) and Equation (24) and can be studied using Equation (28) and Equation (29). 
From the two intrinsic functions of wave equations, we can detect the effect of such 
measurements through the behavior of Logical states in Lattice of the PQL by 
representing the particles, or Quanta, that propagate in the 2W region. 

4.5. Paraquantum Symmetry in PQL Model 

The Paraquantum symmetry can be mathematically expressed by wave functions Equa-
tion (23) and Equation (24), regarded as evidence degrees, such that: 
 

 
Figure 13. Trajectory of the Paraquantum logical states and values involved in the upper-right corner of the PQL Triangle Lattice. 
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a) Given the equation for the favorable evidence degree in Quadrant I of the Lattice 
of the PQL; 

( ) ( ) ( ) ( ) ( )1 1 1, cos 2 sin 2 sin cos
2 2 2

x t Kx wt Kx wtµ φ φ= − + + +        

the certainty degree can be isolated such that:  

( ) ( ) ( )( ) ( ) ( )cos 2 sin 2 2 , sin cos 1Kx wt x t Kx wtφ φ µ  − + = − +           (32) 

Comparing Equation (5) to (32), we have for Quadrant I: 

( ) ( ) ( ), cos 2 sin 2C x t IaD Kx wtφ φ= − +   , 

( ) ( )( ), 2 ,x t I x tµ µ=  and ( ) ( ) ( ), sin cos 1x t I Kx wtλ  = +    . 

The Paraquantum logical state will be ( ) ( )( ), ,;Ia C x t ct x tD Dψ =  with 

( ) ( ) ( ), cos 2 sin 2C x t ID Kx wtφ φ= − +    and ( ) ( ) ( ), sin cosct x tD Kx wt=    . 

Therefore, a Paraquantum logical state with positive certainty degree indicates that the 
latter is within quadrant I of the Lattice of the PQL. 

b) Given the equation of the unfavorable evidence degree in Quadrant I of the Lattice 
of the PQL; 

( ) ( ) ( ) ( ) ( )1 1 1, cos 2 sin 2 sin cos
2 2 2

x t Kx wt Kx wtλ φ φ= − − + + +       , 

the certainty degree can be isolated, such that: 

( ) ( ) ( )( ) ( ) ( )cos 2 sin 2 2 , sin cos 1Kx wt x t Kx wtφ φ λ  − − + = − +           (33) 

Comparing Equation (5) to Equation (33), we have for Quadrant I: 

( ) ( ) ( ), cos 2 sin 2C x t ID Kx wtφ φ− = − − +   , 

( ) ( )( ), 2 ,x t I x tµ λ=  and ( ) ( ) ( ), sin cos 1x t I Kx wtλ  = +    . 

The Paraquantum logical state is ( ) ( )( ), ,;I C x t ct x tD Dψ = −  with 

( ) ( ) ( ), cos 2 sin 2C x t ID Kx wtφ φ− = − − +    and ( ) ( ) ( ), sin cosct x tD Kx wt=     

In this case, the favorable evidence degree (µ(x,t)) was exchanged by the unfavorable 
evidence degree (λ(x,t)) which sets a logical negation operation in PQL, as defined by 
Equation (7). 

The Paraquantum logical state with a negative certainty degree obtained in analysis b 
indicates that it is located within Quadrant II of the Lattice of the PQL, which confi-
gures a symmetry (mirror) Paraquantum logical state in the model. 

This analysis indicates how the entanglement of several concentrated energy pockets, 
or quanta, is modeled by PQL in the 2W region in the double slit experiment. When a 
logical state of two-wave functions is created, a mirror logical state occurs, thus creating 
an intertwine of models by evidence degrees represented in the two wave functions. 
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4.6. Complete Paraquantum Logical Model Represented in One Spatial 
Dimension 

When studying the Quantum, the Paraquantum Logical Model is considered complete 
in a one spatial dimension when the quantum interference phenomenon is represented 
in all four quadrants of the PQL. 

As seen in the previous figure, Vector of State P(ψ), represented by its inclination 
angle αψ ranging from 0 to π/4 according to the variation of two wave functions, was 
restricted to Quadrant I (upper triangle located to the right of PQL). However, the 
analysis can be done in one spatial dimension, but in a reference line that bisects the 
2W region and creates another Vector of State P(ψ)II, of unitary module, whose origin 
in PQL coincides with the False Paraquantum logical state vertex. This Vector of State 
is formed in Quadrant II (upper triangle to the left of PQL). 

For the complete model, we consider a particle, or Quantum, with inflationary ex-
pansion to be represented in four directions (up, down, right, left) of a geometric plane. 
Thus, in PQL, for each Vector of State P(ψ)I created in the upper right triangle, there 
will be another Vector of State P(ψ)IV formed in the lower right triangle. Likewise, for 
each Vector of State P(ψ)II created in the upper left triangle, there will be another Vec-
tor of State P(ψ)III formed in the lower left triangle. 

To obtain the values corresponding to these mirror Vector of States P(ψ) (located in 
the lower triangles), an operator must be created to multiply the contradiction degree 
by −1. Therefore, this representation of a Paraquantum state in PQL can be described 
using Dirac’s bra-ket notation [23], in which while creating a Ket, the Vector of State 
P(ψ)I in Quadrant I imposes the creation of its vertex bra, Vector of State P(ψ)IV, 
through a Paraquantum Logical Operator. Figure 14 shows the Paraquantum Logical 
Model of concentrated oscillation energy pulse wave, called Quantum, with the Vector 
of States and representations of their two wave functions. 

4.7. PQL Lattice Representation in the Set of Complex Numbers 

Complex numbers have infinite applications and may, in many cases, facilitate calcula-
tions and shorten notations. To adapt PQL concepts to quantum mechanics, it is possi-
ble to use complex numbers to represent values in Lattice of the PQL. This work only 
summarizes the key properties necessary for one spatial dimension Paraquantum Logi-
cal Models. 

A complex number is expressed as z x yi= + , where x and y are real numbers and i, 
the imaginary unit, satisfies the property 2 1i = − . 

Number ( )Rex z=  is the real part of z, and ( )Imy z= , its imaginary part. 
Following the Paraquantum Logical Model, in the representation of complex num-

bers via PQL Lattice, the real part z is related to the certainty degree (DC), and the im-
aginary part is related to the contradiction degree (Dct). Therefore, complex number 
expressions such as z x yi= +  are then formulated as C ctPQLz D D i= + . 

Given two Paraquantum complex numbers 

1 1 1C ctPQLz D D i= +  and 2 2 2C ctPQLz D D i= + , 
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Figure 14. Paraquantum Logical Model of Oscillation energy pulse-quantum relations between the PQL Lattice triangles and the 2W 
regions locations represented in 4 directions on the geometric plane. 

 
the sum is given by 

( ) ( )1 2 1 2 1 2C C ct ctPQLz PQLz D D D D i+ = + + +  

with the restriction that the values stay within the Lattice.  
The product of z1 and z2 is given by: 

2
1 2 1 2 1 2 2 1 1 2z z x x x y i x y i y y i= + + +  

( ) ( )1 2 1 2 1 2 1 2 2 1z z x x y y x y x y i= − + +  

If z x yi− = −  is the conjugate of a complex number z x yi= + , then the conjugate 
of a complex Paraquantum number C ctPQLz D D i= +  is C ctPQL z D D i− = − . 

The norm of Z is Z V z z−′= ⋅  which is equal to 2 2Z Vx y= + . 
The norm of a Paraquantum complex number is 2 2

C ctPQL Z D D= + . 
The norm of a complex number is always a non-negative real number. 
Complex numbers can be geometrically represented using a Cartesian plane. 
The complex number z x yi= +  is represented by point (x, y) in the Cartesian 
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plane, with |z| being the Euclidean distance between point (0,0) and (x, y). From this 
representation, we observe that r = |z| and θ is the angle between the line that connects 
points (x, y) and (0, 0) and the x-axis, then ( ) ( )( )cos sinz r iθ θ= + . Therefore, a com-
plex Paraquantum number can be represented by: 

( ) ( )( )cos sinzPQL r iθ θ= +  

( ) ( ) ( )( )2 2 cos sinz C ctPQL D D iθ θ= + +  

In the geometric representation of complex numbers, we obtain the polar representa-
tion: 

( ) ( )( )cos sin e iz r i r θθ θ= + =  

The Paraquantum complex numbers can thus be represented only by: 

( )2 2 e i
z C ctPQL D D θ= +  

Representing the lattice of the PQL by a set of complex numbers, contradiction de-
grees, which are arranged along the vertical axis, are represented by imaginary numbers 
(i); and degrees of certainty, which are arranged along the horizontal axis, are 
represented by real numbers. The function of superposed Paraquantum logical states is 
represented in Equation (31) can be described as 

( )( ) ( ) ( ) ( ) ( ), cos sin sin cosPQ x t Kx wt Kx wt iψ ψψ α α = − + +            (34) 

The Paraquantum logical state represented in Equation (10) is now represented by a 
complex number: 

( ) ( ) ( ), ,PQLz C ctD D iµ λ µ λψ = +                     (35) 

Through Equation (7) we obtain the logic negation of the Paraquantum logical state, 
such that: 

( ) ( ) ( ), ,PQLz C ctD D iλ µ λ µψ¬ = +                    (36) 

Similarly, for the Paraquantum logical state ( ) ( ) ( ), ,PQz C ctD D iµ λ µ λψ = +  its complex 

conjugate is ( ) ( ) ( ), ,PQz C ctD D iµ λ µ λψ ∗ = − . Considering the configuration of the Lattice of  

the PQL for a set of complex numbers, we can find ψPQ4, using a complex conjugate op-
erator, which is its symmetrical in ψPQ1 in relation to the contradiction degree. 

The amplitude of Vector of States P(ψ)I and P(ψ)I components are represented by the 
contradiction degree in both the imaginary vertical axis ( ),PQL ctY D iµ λ=



 and the real 
horizontal axis ( ),1PQL CX D µ λ= −



. 
The set of complex numbers of Vector of State P(ψ)I in Quadrant I, is represented by 

its horizontal component ( ),1 CX D µ λ= −


 and vertical component ( ),ctY D iµ λ=


, where 
the module is found by:  

( ) ( ) ( )
2 2

, ,1PQL C ctM I D Dµ λ µ λψ    = − +                  (37) 

with: ( ) ( ) ( ), 1 cos sinCD Kx wtψ ψµ λ α α = − − +   and ( ) ( ), sin .ctD ψµ λ α=
 By similar reasoning, the representation in the set of complex numbers of Vector of 
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State P(ψ)IV in Quadrant IV is given by its complex conjugate; thus by its horizontal 
component ( ),1 CX D µ λ= −



 and its vertical component ( ),ctY D iµ λ= −


 and the module 
that is obtained by the previous equation. In this case, the norm of the Paraquantum 
complex number in Quadrant I is 

( )( ) ( )( )2 2

| | , ,1 e i
z C ctPQL D D ψα

µ λ µ λ
 = − +  

              (38) 

where: ( ) ( ) ( ) ( )e cos sin sin cos .i Kx wt Kx wt iψα
ψ ψα α = − + +      

4.8. Vector Representation in the PQL Lattice in a Set of Complex 
Numbers 

Using the set of complex numbers applied in the Lattice of the PQL, we can obtain a 
complete Quantum model with a one spatial dimension representation. Thus, we use 
the Bra-ket notation, or Dirac’s notation [24] to represent Vector of State—the closest 
nomenclature in quantum mechanics [2] [3]. 

4.8.1. The Bra-ket Notation 
In quantum mechanics, the physical state of a system is identified as a unitary radius in 
a separable Hilbert space complex H, or equivalently, by a point in Hilbert’s space pro-
jected by a system. Each vector within the radius is called a “ket” and represented ψ . 
To every ket ψ  corresponds a line vector of n dimension called bra and represented 
by φ , whose components are given by the conjugate of the corresponding compo-
nent ket. 

Using Dirac’s notation [24] in the fundamentals of PQL, we consider in the first qu-
adrant: 

( ) ( )( ) ( ), ,1PQL C ctP I D D iµ λ µ λψ ψ ψ= → = − +
 

  

which is the vector ψ , represented by the Vector of State of unitary module P(ψ)I, in 
Quadrant I, called Ket. 

Normalized values corresponding to this Vector of State P(ψ)I for an inclination an-
gle π 4ψα =  are: 

Evidence degrees: 1 1µ =  and 1 1 2λ =  

Paraquantum logical state: ( ) ( )( )1 1 1 2 ,1 2PQL Iψ = − −  

Complex Paraquantum logical state: ( ) ( )( ) ( )1 1 1 2 1 2PQL I iψ = − − +  
Vector Ket ψ  is then: ( ) ( )1 2 1 2 iψ = +

  

( ) ( )( ) ( )
* *

, ,1PQL C ctP IV D D iµ λ µ λψ ψ ψ= → = − −  is the vector φ  represented by the 
Vector of State of unitary module P(ψ)IV, in Quadrant IV, called Bra. 

Normalized values corresponding to a Vector of State P(ψ)IV for inclination angle 
7π 4ψα =  are: 

Evidence degrees: ( )2 1 1 2µ = −  and 2 0λ =  

Paraquantum logical state: ( ) ( ) ( )( )1 1 1 2 , 1 2PQL IVψ = − − −  

Complex Paraquantum logical state: ( ) ( )( ) ( )1 1 1 2 1 2PQL IV iψ = − − −  
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Vector Bra φ  is then: ( ) ( )* 1 2 1 2 iψ = −
  

( ) ( )( ) ( ), ,1PQL C ctP II D D iµ λ µ λψ ψ ψ= →¬ = − − +  is the vector ψ¬  represented 
by the Vector of State of unit module P(ψ)II, in Quadrant II, called ⌐Ket. 

Normalized values corresponding to this Vector of State P(ψ)II, for inclination angle 
3π 4ψα =  are: Evidence degrees: 3 1 2µ =  and 3 1λ =  

Paraquantum logical state: ( ) ( )( )1 1 2 ,1 2PQL IIψ = − −  

Complex Paraquantum logical state: ( ) ( ) ( )1 1 2 1 2PQL II iψ = − − +  

Vector ⌐Ket ψ¬  is then: ( ) ( )1 2 1 2 iψ¬ = − +
  

( ) ( ) ( )
* *

, ,PQL C ctP III D D iµ λ µ λψ ψ ψ= ¬ →¬ = − −  which is the Vector φ¬  repre- 
sented by the Vector of State of unit module P(ψ)III, in Quadrant III, called ⌐Bra. 

Normalized values corresponding to this Vector of State P(ψ)III, for inclination angle  
5π 4ψα =  are: 

Evidence degrees: 4 0µ =  and ( )4 1 1 2λ = −  

Paraquantum logical state: ( ) ( )( )1 1 2 ,1 2PQL IIψ = − −

 Complex Paraquantum logical state: ( ) ( ) ( )1 1 2 1 2PQL III iψ = − − −  

The vector ⌐Bra φ¬  is then: ( ) ( )* 1 2 1 2 iψ¬ = − −
  

Figure 15 shows the representation of the Lattice of the PQL, with Paraquantum 
logical states defined by complex numbers. The same graph shows the amplitude varia-
tion of wave functions as well as lag angles resulting from inclination variations αψ of 
four Vector of States. 

A complete model of a Quantum is represented in one dimensional space, where 
correlations are conducted between variations of the two representative wave functions 
of the Quantum in the 2W region and the corresponding variation of lag angle ϕ and 
inclination angle αψ of Vector of States. 

With this correlation we can determine numerical values in the Lattice of the PQL, 
which enables to identify logical states and to draw analogies with energy levels and 
probabilities regarding particles location in the 2W region. Figure 15 shows that for the 
point where wave functions meet, the lag angle is zero (ϕ = 0) and the vectors with in-
clination angle αψ = 0 have all their vertices on the point equidistant from the four cor-
ners of the Lattice of the PQL, what is considered an Undefined Logical state (I). 

A vectors exchange then takes place—vector Ket becomes a Bra vector; the latter in 
turn, becomes a Ket. The same behavior applies to vectors under logic negation. This 
change, however, refers to an observation from Quadrant I, but what occurs is a transi-
tion which establishes that both vectors (Ket and Bra), suffer a 90˚ variation in their in-
clination angle. 

4.8.2. The Paraquantum Correlation 
Paraquantum interlace is represented through the two wave functions that generate the 
Logical State of each State vector, therefore also the superposed logical States that ap-
pear in its vertices. As can be seen in Figure 15, each State vector in the quadrants  
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Figure 15. Representation of Vector of States in the PQL Lattice; and variations of evidence degrees characteristic of the two Quantum- 
wave functions. 

 
of the PQL Lattice presents in its vertex the Logical State that is the result of the para-
quantum correlation between two wave functions. Representing the symbol ◊ as para-
quantum correlation we have to: 

The logical State ( )PQL Iψ  is a result of Paraquantum correlation ( ) ( )PQL I PQL Iµ λ◊  
(Black wave) that builds the Ket Vector whose symbol is ψ . 

The logical State ( )PQL IIψ  is a result of Paraquantum correlation ( ) ( )PQL II PQL IIµ λ◊  
(Blue wave) that builds the ⌐Ket Vector whose symbol is ψ¬ . 

The logical State ( )PQL IIIψ  is a result of Paraquantum correlation ( ) ( )PQL III PQL IIIµ λ◊  
(Red wave) that builds the ⌐Bra Vector whose symbol is φ¬ . 

The logical State ( )PQL Vψ  is a result of Paraquantum correlation ( ) ( )PQL V PQL Vµ λ◊  
(Yellow wave) that builds the Bra Vector whose symbol is φ . 

We can see that at equilibrium: 
a) For the vectors ψ  and ψ¬  wave functions are complementary, such that: 
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( ) ( )PQL I PQL IIµ λ=  and ( ) ( )PQL I PQL IIλ µ=  

b) For the vectors φ  and φ¬  wave functions are complementary, such that: 

( ) ( )PQL III PQL IVλ µ=  and ( ) ( )PQL III PQL IVµ λ=  

The symmetry between the four Vectors of States at equilibrium results in equality of 
wave functions: 

( ) ( ) ( ) ( )1 1PQL I PQL II PQL IV PQL IIIµ λ λ µ= = − = −  

( ) ( ) ( ) ( )1 1PQL I PQL II PQL IV PQL IIIλ µ µ λ= = − = −  

In this way, all the functions of the waves Energy package are in paraquantum inter-
lace and maintains the equilibrium of the four State vectors in the Lattice of LPQ. 

The collapse of the wave functions happens when there is a disturbance in the equili-
brium of the system and thus leads to destruction of vectors. This imbalance causes the 
cancellation of the degree of contradiction and results in the logical State in two related 
vertex points t (true) and F (false) the Lattice of LPQ. The symmetry and entanglement 
are not maintained and the occurrence of the collapse of the Wavefunction. 

For condition true (t):  

( ) 1PQL Iµ =  and ( ) 0PQL Iλ =  → ( ) 0PQL IIIµ =  or ( ) 1PQL IVµ =  most likely to happen 
between 0 and π/2. 

For condition false (F):  

( ) 0PQL Iµ =  and ( ) 1PQL Iλ =  → ( ) 1PQL IIIµ =  or ( ) 0PQL IVµ =  most likely to happen 
between 0 and 3π/2. 

4.9. Frequency f of Wave Functions in Paraquantum Analysis 

In a physical medium, the increase in frequency f on wave functions implies a decrease 
in lag angle ϕ and, consequently, the maximum inclination angle αψmax of Vector of 
States will be smaller than the fundamental, as shown in Figure 15. This increased fre-
quency in wave functions causes the Vector of States to vibrate closer to the equidistant 
point between the Lattice of the PQL vertices, where we find the Undefined Logical 
state (I). 

This means that the smaller the slope angle αψmax—the closer the vertex of Vector of 
State P(ψ) is to the Undefined Logical state I represented by PQL—the greater energy E; 
however, the lower will be its definition represented by a lower certainty degree (DC). In 
Equation (15) and Equation (16), which express Type I and Type II Interference phe-
nomena, it is possible to observe that while frequency f increases, wavelength λ de-
creases, wave number K increases, period T reduces, and angular frequency w increases 
[25] [26]. In terms of PQL concepts, this means that in the Paraquantum Logical Mod-
el, Quantum Energy E is related to the increased intensity of the contradiction degree 
and to the uncertainty of its route or location; its Momentum thus relates to the inten-
sity of the certainty degree. Therefore, energy can be related to the contradiction de-
gree, such that: 
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( ),1 ctE D µ λ= −                         (39) 

And a relation between momentum and certainty degree, such that: 

( ),CM D µ λ=                          (40) 

The two previous equations are confirmed by the fact that, due to characteristics of 
the two wave functions that form the concentrated oscillation energy pulse (quantum), 
vibrations of the Vector of State P(ψ) around an Undefined I logical state can happen 
only with certain maximum inclination angles αψmax. This gives intensities contradiction 
and certainty degrees their discrete characters, respectively related to its energy E and 
Momentum M. 

Evidence degrees represented by the two wave functions in the physical medium (2W 
region) have values reduced by a fraction determined by wavelength λ, therefore from 
wave frequencies within the envelope, which in turn, is considered fundamental and 
has its own wavelength λF. After the fundamental frequency—of evidence degree equal 
to a unit (μ = 1.0) and the maximum inclination angle αψmax = π/4—the only possible 
frequency f of an internal wave will be the one with an evidence degree of µ = 0.75. Si-
milarly, the only possible following frequency will be the one with a evidence degree of 
µ = 0.625. This evidence degree decreases as the internal wave frequency increases 
within the fundamental frequency’s envelope. Figure 16 depicts this condition in which 
signals having higher frequencies and higher energy produce smaller evidence degrees 
when introduced into a concentrated oscillation energy pulse. 
 

 
Figure 16. Representation of the two wave functions in the physical environment, where higher frequency signals produce smaller evi-
dence degrees determined by wavelengths. 
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4.10. Energy (E) and Momentum (M) in the Lattice of the PQL 

As seen in Figure 16, given a certain wave length λ in the Paraquantum Logical Model, 
the next possible larger wave length within the concentrated oscillation energy envelope 
may only be twice the value of λf. Similarly, the next possible lower wavelength can only 
be half of λf. 

For increased frequency f, with a unit favorable evidence degree and its next maxi-
mum value of μ = 0.75, we can calculate through Equation (23) the certainty degree 
(DC) given a contradiction degree Dct = 0: 

( ) ( ) ( ) ( ) ( )1 1 1, cos 2 sin 2 sin cos
2 2 2

x t Kx wt Kx wtµ φ φ= − + + +        

( ) ( )1 10.75 cos 2 sin 2
2 2

Kx wtφ φ = − + +     

( ) ( ) ( ) ( )10.75 2 cos 2 sin 2 cos 2 sin 2 0.5
2

Kx wt Kx wtφ φ φ φ − = − + → − + =         
 

In the Lattice of the PQL, the diagonal angle π 4α =  also meets the axis of contra-  

diction degrees at Dct = 0.5. The line equation is 
1
2

y x= − , and the contradiction de-  

gree function is given by: 

( ) ( ), ,
1
2ct CD Dµ λ µ λ= −                          (41) 

The intensity of the contradiction degree that relates to energy is found through the 
Lattice of the PQL analysis, as shown in Figure 17. 

The relation between a circumference equation ( )2 21 1x y− + =  → ( )22 1 1y x= − −  
and the trajectory of superposed Paraquantum logical states, resulting in: 

( )( ) ( )( )2 2

, ,1 1ct CD Dµ λ µ λ= − −                      (42) 

As seen in Figure 17, by intersecting the straight line Equation (41) with the circle 
Equation (42), we obtain the coordinates of the point where the new maximum Para- 
quantum logical state ψ(max2) is located in the Lattice of the PQL, for this frequency. We 
thus have Dct = 0.089820278. 

Inputting this value into Equation (42), we find: ( ), 2 1ctD µ λ = − . These two values 
allow us to calculate the inclination angle → 24.46980 equals to 0.427078586 radψα = .

 For the wave function in the physical environment, shown in the Lattice of the PQL, 
the favorable evidence degree is now calculated by Equation (28):

 
( ) ( ) ( ) ( )1 1 1, 1 cos sin sin

2 2 2
x t Kx wtψ ψ ψµ α α α    = − − + + +      

( ) ( ) ( ) ( )1 1 1, 1 cos 0.427078586 sin sin 0.427078586
2 2 2

x t Kx wt ψµ α = − − + + +         

( ) [ ] [ ]1 1 1, 1 0.910179721 0.414213562
2 2 2

x tµ = − + +  
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Figure 17. Representation of Energy standardized in the Lattice of the PQL, related to intensity of the contradiction degree. 

 

( ) [ ] [ ]1 1 1, 0.089820278 0.414213562
2 2 2

x tµ = + +  

( ) [ ] ( )1, 0.044910139 0.207106781 , 0.752001692
2

x t x tµ µ= + + → =  

which reflects the expected value. Likewise, an unfavorable degree evidence is now cal-
culated by Equation (29): 

( ) ( ) ( ) ( )1 1 1, 1 cos sin sin
2 2 2

x t Kx wtψ ψ ψλ α α α    = − − − + + +      

( ) ( ) ( ) ( )1 1 1, 1 cos 0.427078586 sin sin 0.427078586
2 2 2

x t Kx wt ψλ α = − − − + + +         

( ) [ ] ( )1, 0.044910139 0.207106781 , 0.662196642
2

x t x tλ λ= − + + → =  

Normalized energy value is calculated by Equation (39): 

1 2 1 2 2 0.585786437E E= − − → = − ≅  

Normalized Momentum value is calculated by Equation (40): 

( ), 0.089820278CM D Mµ λ= → ≅  

The Paraquantum logical state, in the vertex of the Vector of State for the maximum 
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inclination angle, is represented by Equation (10), which in Quadrant I is given by: 

( ) ( )0.089820278, 2 1PQL Iψ = − . 

Represented through a set of complex numbers ( ) ( )0.089820278 2 1PQL I iψ = + −  
Represented in the Lattice of the PQL by the Vector of State unit module 

( )0.910179721 2 1 iψ = + −
  

The same procedure is used to determine the remaining three quadrants. 

4.11. Quantum Leap in the Lattice of the PQL 

We can further conduct an analogy between the intensity of the contradiction degree 
(Dct)—a standard value in the imaginary axis of the Lattice of the PQL—and the Quan-  

tum energy. The value shifted from ( ), 0
1
2ct fD µ λ =  in fundamental frequency fF, to  

( ), 1 2 1ct fD µ λ = − , for actual frequency f1, in a quantum leap of 

( ) ( ), 0 , 1
11
2ct f ct fSlpq D Dµ λ µ λ

 = − = − 
 

. This condition is shown in Figure 18 with val-  

ues found in the equations. 
For further increase in frequency, given the previous favorable evidence degree of μ = 

0.75, its next possible maximum value must be μ = 0.625. Calculating the favorable evi-
dence degree through Equation (27), with a contradiction degree Dct = 0, we have: 

( ) ( ) ( ) ( ) ( )1 1 1, cos 2 sin 2 sin cos
2 2 2

x t Kx wt Kx wtµ φ φ= − + + +        

( ) ( )1 10.625 cos 2 sin 2
2 2

Kx wtφ φ= − + +    

From where the certainty degree is obtained: 

( ) ( )

( ) ( )

10.625 2 cos 2 sin 2
2

cos 2 sin 2 0.25

Kx wt

Kx wt

φ φ

φ φ

 − = − +     
→ − + =  

 

The straight line equation is then: 
1
4

y x= −  

( ) ( ), ,
1
4ct CD Dµ λ µ λ= −                      (43) 

By intersecting the straight line Equation (43) with the circle equation Equation (42) 
we obtain the point coordinates for the new maximum Paraquantum logical state 
(ψmax3) at this frequency. Thus: ( ), 0.0256CD µ λ ≅ . 

Inputting this value in Equation (43) gives ( ), 0.2244ctD µ λ ≅ . These two values allow 
us to calculate the inclination angle → 12.9675˚ or 0.22632729 radψα = . In the wave 
function of the physical environment shown in the Lattice of the PQL, the favorable 
evidence degree is now calculated by Equation (28): 

( ) ( ) ( ) ( )1 1 1, 1 cos sin sin
2 2 2

x t Kx wtψ ψ ψµ α α α    = − − + + +      
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Figure 18. Paraquantum Logical Model of the Quantum for an initial frequency below the fundamental. 

 

( ) ( ) ( ) ( )1 1 1, 1 cos 0.22632729 sin sin 0.22632729
2 2 2

x t Kx wt ψµ α = − − + + +         

( ) [ ] [ ]1 1 1, 1 0.974497121 0.2244
2 2 2

x tµ = − + +  

( ) [ ] [ ]1 1 1, 0.025502878 0.2244
2 2 2

x tµ = + +  

( ) [ ] ( )1, 0.012751439 0.1122 , 0.624951439
2

x t x tµ µ= + + → =  

reflects the expected value. 
Likewise, the unfavorable evidence degree is now calculated by Equation (29): 

( ) ( ) ( ) ( )1 1 1, 1 cos sin sin
2 2 2

x t Kx wtψ ψ ψλ α α α    = − − − + + +      

( ) ( ) ( ) ( )1 1 1, 1 cos 0.22632729 sin sin 0.22632729
2 2 2

x t Kx wt ψλ α = − − − + + +         
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( ) [ ] ( )1, 0.012751439 0.1122 , 0.599448561
2

x t x tλ λ= − + + → =  

Normalized energy value is calculated by Equation (39): 

1 0.2244 0.7756E E= − → ≅  

Normalized Momentum value is calculated by Equation (40): 

( ), 0.025502878CM D Mµ λ= → ≅  

The Paraquantum logical state at the vertex of the Vector of State for the maximum 
inclination angle is represented by Equation (10), which in Quadrant I is 

( ) ( )0.025502878,0.2244PQL Iψ =  represented by a set of complex numbers. 

( ) 0.025502878 0.2244PQL I iψ = +  represented in the Lattice of the PQL by the vector 
state unitary module 0.974497121 0.2244iψ = +

 .  
The same procedures apply to the remaining three quadrants of the Paraquantum 

Logical Model. 
Similarly, drawing an analogy between the intensity of contradiction degree (Dct)—a 

standard value along the Lattice of the PQL imaginary axis—and the Quantum energy, 
this value increases from ( ), 1 2 1ct fD µ λ = −  in the fundamental frequency fF, to

( ), 2 0.2244ct fD µ λ = , in a current frequency f1—a quantum leap of 

( ) ( ), 0 , 1 0.189813562ct f ct fSlpq D Dµ λ µ λ= − = . 
This condition is shown in Figure 19, where the equation values are verified. 
The intensity of the contradiction degree (Dct) and its Normalized value compared to 

Quantum energy can be studied in comparison to analysis conducted using Schrödin-
ger’s equation. Such procedures will be discussed in Part II of this work. 

5. Conclusion 

This first part presents a model based on Paraquantum Logic (PQL) where concen-
trated oscillation energy particle, an energy Quantum, can be represented by two wave 
functions. Under this approach, the Quantum was able to be represented both in the 
physical world—through quantum phenomena observed and governed by two wave 
functions—as well as in the Paraquantum universe represented by a Lattice of the 
PQL—where wave theory concepts can be better understood. We hereby present a 
complete Quantum model in a geometric plan where we identified logical states and 
Vector of States similar to those studied by quantum mechanics theory and broached 
by Dirac. The Paraquantum Logical Model presented here has advantages, shown 
mostly in its logic reversibility properties, a premise for conducting studies on par-
ticle-wave theory in two universes, Paraquantum and physical. The PQL Model where 
they operate four State Vectors (Ket, Bra, ⌐Ket, ⌐Bra) with symmetrical features and 
entanglement, is quite interesting for the subsequent studies related to quantum com-
puting. This premise is important to the study of quantum phenomena that allows cal-
culation and observation of the effects as states and energy levels encompassing all the 
terms in Schrödinger’s equation and expanding to probabilistic analysis. These proce-
dures will be studied in Part II of this work. 
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Figure 19. Quantum’s Paraquantum Logical Model, for a second frequency below the fundamental. 
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