Bound States of the Klein-Gordon for Exponential-Type Potentials in D-Dimensions

Sameer M. Ikhdair

Physics Department, Near East University, Nicosia, North Cyprus, Turkey

E-mail: sikhdair@neu.edu.tr

Received May 27, 2011; revised June 9, 2011; accepted June 22, 2011

Abstract

The approximate analytic bound state solutions of the Klein-Gordon equation with equal scalar and vector exponential-type potentials including the centrifugal potential term are obtained for any arbitrary orbital quantum number \(l \) and dimensional space \(D \). The relativistic/non-relativistic energy spectrum formula and the corresponding un-normalized radial wave functions, expressed in terms of the Jacobi polynomials \(P_n^{(\alpha,\beta)}(z) \), \(\alpha > -1, \beta > -1 \) and \(z \in [-1,1] \) or the generalized hypergeometric functions \(_2F_1(a,b;c;z) \) have been obtained. A short-cut of the Nikiforov-Uvarov (NU) method is used in the solution. A unified treatment of the Eckart, Rosen-Morse, Hulthén and Woods-Saxon potential models can be easily derived from our general solution. The present calculations are found to be identical with those ones appearing in the literature. Further, based on the PT-symmetry, the bound state solutions of the trigonometric Rosen-Morse potential can be easily obtained.

Keywords: Approximation Scheme, Eckart-Type Potentials, Rosen-Morse-Type Potentials, Trigonometric Rosen-Morse Potential, Hulthén Potential and Woods-Saxon Potential, Klein-Gordon Equation, NU Method

1. Introduction

The exact solutions of the wave equations (non-relativistic or relativistic) are very important since they contain all the necessary information regarding the quantum system under consideration. However, analytical solutions are possible only in a few simple cases such as the hydrogen atom and the harmonic oscillator [1,2]. Most quantum systems could be solved only by using approximation schemes like rotating Morse potential via Pekeris approximation [3-5] and the generalized Morse potential by means of an improved approximation scheme [6]. Recently, the study of exponential-type potentials has attracted much attention from many authors (for example, cf, [7-39]). These physical potentials include the Woods-Saxon [7,8], Hulthén [9-22], modified hyperbolic-type [23], Manning-Rosen [24-31], the Eckart [32-37], the Pöschl-Teller [38] and the Rosen-Morse [39,40] potentials.

The spherically symmetric Eckart-type potential model [41] is a molecular potential model which has been widely applied in physics [42] and chemical physics [43,44] and is generally expressed as

\[
V(r,q) = V_1 \cosech^2 (\alpha r) - V_2 \coth (\alpha r),
\]

\[
V_1, V_2 > 0, \quad -1 \leq q < 0 \quad \text{or} \quad q > 0
\]

where the coupling parameters \(V_1 \) and \(V_2 \) describe the depth of the potential well, while the screening parameter \(\alpha \) is related to the range of the potential. It is a special case of the five-parameter exponential-type potential model [45,46]. The range of parameter \(q \) was taken as \(q > 0 \) in [47] and has been extended to \(-1 \leq q < 0 \) or \(q > 0 \) or even complex in [46]. The deformed hyperbolic functions given in (1) have been introduced for the first time by Arai [48] for real \(q \) values. When \(q \) is complex, the functions in (1) are called the generalized deformed hyperbolic functions. The Eckart-type potentials (1) can also be written in the exponential form as

\[
V(r,q) = 4V_1 \frac{e^{-2ar}}{(1 - q e^{-2ar})} - V_2 \frac{1 + qe^{-2ar}}{1 - q e^{-2ar}}
\]

The study of both bound and scattering states for the Eckart-type potential has raised a great deal of interest in the non-relativistic as well as in relativistic quantum
mechanics. The s-wave \((l = 0)\) bound-state solution of the Schrödinger equation for the Eckart potential has been widely investigated by using various methods, such as the supersymmetric (SUSY) shape invariance technology [49], point canonical transformation (PCT) method [50] and SUSY Wentzel-Kramers-Brillouin (WKB) approximation approach [51]. The bound state solutions of the s-wave Klein-Gordon (KG) equation with equally mixed Rosen-Morse-type (Eckart and Rosen–Morse well) potentials have been studied [52]. The bound state solutions of the s-wave Dirac equation with equal vector and scalar Eckart-type potentials in terms of the basic concepts of the shape-invariance approach in the SUSYQM have also been studied [34-37]. The spin symmetry and pseudospin symmetry in the relativistic Eckart potential have been investigated by solving the Dirac equation for mixed potentials [38]. Unfortunately, the wave equations for the Eckart-type potential can only be solved analytically for zero angular momentum states because of the centrifugal potential term. Some authors [32-38] studied the analytical approximations to the bound state solutions of the Schrödinger equation with Eckart potential by using the usual existing approximation scheme proposed by Greene and Aldrich [53] for the centrifugal potential term. This approximation has also been used to study analytically the arbitrary \(l\)-wave scattering state solutions of the Schrödinger equation for the Eckart potential [54,55]. The same approximation scheme for the spin-orbit coupling term has been used to study the spin symmetry and pseudospin symmetry analytical solutions of the Dirac equation with the Eckart potential using the AIM [56]. Furthermore, the pseudospin symmetry analytical solutions of the Dirac equation for the Eckart potential have been found by using the SUSY WKB formalism [57]. Recently, for the first time, the approximation scheme for the centrifugal potential term has also been used in [58] to obtain the approximate analytical solution of the KG equation for equal scalar and vector Eckart potentials for arbitrary \(l\)-states by means of the functional analysis method.

This approximation for the centrifugal potential term [9,19,53] has also been used to solve the Schrödinger equation [9,19], KG [10-12,20-22] and Dirac equation [20-22] for the Hulthén potential. Recently, the KG and Dirac equations have been solved in the presence of the Hulthén potential, where the energy spectrum and the scattering wave functions were obtained for spin-0 and spin-(1/2) particles, using a more general approximation scheme for the centrifugal potential [20-22]. They found that the good approximation, however, occurs when the screening parameter \(\alpha\) and the dimensionless parameter \(\gamma\) are taken as \(\alpha = 0.1\) and \(\gamma = 1\), respectively, which is simply the case of the usual approximation [9,19]. Also, other authors have recently proposed an alternative approximation scheme for the centrifugal potential to solve the Schrödinger equation for the Hulthén potential [59]. Taking \(\omega = 1\), their approximation can be reduced to the usual approximation [9,19]. Quite recently, we have also proposed a new approximation scheme for the centrifugal term [13,14].

The Nikonorov-Uvarov (NU) method [60] and other methods have also been used to solve the D-dimensional Schrödinger equation [61] and relativistic D-dimensional KG equation [62], Dirac equation [6,15,39,40,63] and spinless Salpeter equation [64].

Our aim is to employ the usual approximation scheme [53,58] in order to solve the D-dimensional radial KG equation for any orbital angular momentum number \(l\) for the scalar and vector Eckart-type potentials using a general mathematical model of the NU method. This offers a simple, accurate and efficient scheme for the exponential-type potential models in quantum mechanics. We consider the following relationship between the scalar and vector potentials: \(V(r) = V_0 + \beta S(r)\), where \(V_0\) and \(\beta\) are arbitrary constants [51]. Under the restriction of equally mixed potentials \(S(r) = V(r)\), the KG equation turns into a Schrödinger-like equation and thus the bound state solutions are very easily obtained through the well-known methods developed in the non-relativistic quantum mechanics. It is interesting to note that, this restriction include the case where \(V(r) = 0\) when both constants vanish, the situation where the potentials are equal \((V_0 = 0; \beta = 1)\) and also the case where the potentials are proportional [66] when \(V_0 = 0\) and \(\beta = \pm 1\), which provide the equally-mixed scalar and vector potential case \(V(r) = \pm S(r)\). Further, we have obtained an approximate analytic solution of the KG equation in the presence of equal scalar and vector generalized deformed hyperbolic potential functions by means of parameteric generalization of the NU method. Furthermore, for the equally-mixed scalar and vector potential case \(V(r) = \pm S(r)\), we have obtained the approximate bound state rotational-vibrational (ro-vibrational) energy levels and the corresponding normalized wave functions expressed in terms of the Jacobi polynomial \(P_n^{(\nu,\omega)}(x)\), where \(\mu > -1\), \(\nu > -1\) and \(x \in [-1,1]\) for a spin-zero particle in a closed form [67].

The paper is structured as follows. In Section 2, we derive a general model of the NU method valid for any central or non-central potential. In Section 3, the approximate analytical solutions of the D-dimensional radial KG equation with arbitrary \(l\)-states for equally-mixed scalar and vector Eckart-type potentials and other typical potentials are obtained by means of the NU method. Also, the exact s-wave KG equation has also been solved for the Rosen-Morse-type potentials and...
other typical potentials. The relative convenience of the Eckart-type potential (Rosen-Morse-type potential) with the Hulthén potential (Woods-Saxon potential) has been studied, respectively. We make some remarks on the energy equations and the corresponding wave functions for the Eckart and Rosen-Morse well potentials in various dimensions and their non-relativistic limits in Section 4. Section 5 contains the conclusions and the outlook.

2. Method of Analysis

The method of analysis is briefly outlined here and the details can be found in [60]. This method was proposed to solve the second-order differential wave equation of the hypergeometric-type:

\[\sigma^2(z)\psi_n''(z) + \sigma(z)\psi_n'(z) + \bar{\sigma}(z)\psi_n(z) = 0 \quad (3) \]

where \(\sigma(z) \) and \(\bar{\sigma}(z) \) are at most second-degree polynomials and \(\bar{\tau}(z) \) is a first-degree polynomial. The prime denotes the differentiation with respect to \(z \). In finding a particular solution to (3), one needs to decompose the wave function \(\psi_n(z) \) as

\[\psi_n(z) = \phi_n(z) y_n(z) \quad (4) \]

yielding the following hypergeometric type equation

\[\sigma(z)\psi_n''(z) + \bar{\tau}(z)\psi_n'(z) + \lambda y_n(z) = 0 \quad (5) \]

where

\[\lambda = k + \pi'(z) \quad (6) \]

and \(y_n(z) \) satisfying the Rodrigues relation

\[y_n(z) = \frac{A_n(z)}{\rho(z)} \frac{d^n}{dz^n} \left[\sigma^n(z) \rho(z) \right] \quad (7) \]

In the above equation, \(A_n(z) \) is a constant related to the normalization and \(\rho(z) \) is the weight function satisfying the condition

\[\sigma(z)\rho'(z) + [\sigma'(z) - \bar{\tau}(z)] \rho(z) = 0 \quad (8) \]

with

\[\bar{\tau}(z) = \bar{\tau}(z) + 2\pi(z), \quad \bar{\tau}'(z) < 0 \quad (9) \]

Since \(\rho(z) > 0 \) and \(\sigma(z) > 0 \), the derivative of \(\tau(z) \) should be negative [60] which is the essential condition for a proper choice of solution. The other part of the wave function in (4) can be defined as

\[\sigma(z)\phi'(z) - \pi(z)\phi(z) = 0 \quad (10) \]

where

\[\pi(z) = \frac{1}{2} \left[\sigma'(z) - \bar{\tau}(z) \right] \]

*The shortcut is simple and straightforward procedure helping to avoid the difficulty in choosing the physical polynomial \(\pi(z) \) and the root \(k \).

The determination of the root \(k \) is the essential point in the calculation of \(\pi(z) \), for which the discriminator of the square root in the last equation is being set to zero. The results in the polynomial \(\pi(z) \) which is dependent on the transformation function \(\pi(z) \). Also, the parameter \(\lambda \) defined in (6) takes the following form

\[\lambda = \lambda_n = -n\pi'(z) - \frac{1}{2} \left[n(n-1)\sigma^n(z) \right], \quad n = 0, 1, 2, \cdots \quad (12) \]

We may construct a general recipe of the NU method valid for any central and non-central potential model. This can be achieved by comparing the following hypergeometric equation

\[\left[(1 - c_1 z) \right] \psi_n''(z) + \left[(1 - c_2 z)(c_1 - c_2 z) \right] \psi_n'(z) + \left[-(A z^2 + Bz - C) \right] \psi_n(z) = 0 \quad (13) \]

with its counterpart (3) to obtain [67]

\[\bar{\tau}(z) = c_1 - c_2 z, \quad \sigma(z) = z(1-c_2 z), \quad \bar{\tau}(z) = -Az^2 + Bz - C \quad (14) \]

Further, substituting (14) into (11) gives

\[\pi(z) = c_1 + c_2 z \pm \left[(c_1 - c_2 k_{\pm}) + c_2 k_{\pm} + c_2 \right] \quad (15) \]

with parametric constants

\[c_1 = \frac{1}{2} (1 - c_1), \quad c_2 = \frac{1}{2} (c_2 - 2c_3), \quad c_6 = c_3^2 + A \quad (16) \]

\[c_7 = 2c_2 c_3 - B, \quad c_8 = c_4^2 + C \]

The discriminant under the square root sign must be set to zero and the resulting equation must be solved for \(k \); it yields

\[k_{\pm} = -(c_1 + 2c_3 k_{\pm}) \pm \sqrt{c_6 c_9} \quad (17) \]

where

\[c_9 = c_1 (c_1 + c_2 + c_3) + c_6 \quad (18) \]

Inserting (17) into (15) and solving the resulting equation, we make the following choice of parameters:

\[\pi(z) = c_4 + c_2 z - \left[(c_4 + c_2) z^2 \right] \quad (19) \]

\[k_{\pm} = -(c_1 + 2c_3 k_{\pm}) - \sqrt{c_6 c_9} \quad (20) \]

Equation (9) gives

\[\tau'(z) = 1 - (c_2 - 2c_3) z - 2 \left[(c_2 + c_3) z^2 \right] \quad (21) \]

whose derivative must be negative:

\[\tau'(z) = -2c_3 - 2 \left(\sqrt{c_9} + c_1 \sqrt{c_9} \right) < 0 \quad (22) \]
in accordance with essential requirement of the method [60]. Solving (6) and (12), we get the energy equation:

\[
(c_2 - c_1)n + c_1n^2 - (2n + 1)c_1 + c_1 + 2c_2c_4 + (2n + 1)\sqrt{c_9} + c_1\sqrt{c_8} + 2\sqrt{c_6c_4} = 0
\]

(23)

for the potential model under consideration.

In regards of the wave functions. We firstly obtain the solution of the differential equation (8) for the weight function \(\rho(z) \)

\[
\rho(z) = z^{c_{12}}(1 - c_1z)^{c_{13}}
\]

(24)

and hence from (7), the first part of the wave functions can be expressed in the form of the Jacobi polynomials as

\[
y_n(z) = P_n^{(c_{10}, c_{11})}(1 - 2c_1z)
\]

(25)

where \(\text{Re}(c_{10}) > -1, \text{Re}(c_{11}) > -1 \) and

\[
c_{10} = c_4 + \sqrt{c_8}, \quad c_{11} = -c_4 + \frac{1}{c_3}\left(\sqrt{c_9} - c_5\right)
\]

(26)

The second part of the wave functions (4) can be found from the solution of the differential equation (10) as

\[
\phi(z) = z^{c_{12}}(1 - c_1z)^{c_{13}}
\]

(27)

where

\[
c_{12} = c_4 + \sqrt{c_8}, \quad c_{13} = -c_4 + \frac{1}{c_3}\left(\sqrt{c_9} - c_5\right)
\]

(28)

Hence, the general wave functions (4) read as

\[
u_i(z) = N_nz^{c_{12}}(1 - c_1z)^{c_{13}}P_n^{(c_{10}, c_{11})}(1 - 2c_1z)
\]

(29)

where \(N_n \) is the normalization constant.

3. Bound-State Solutions

The \(D \)-dimensional time-independent arbitrary \(l \)-state radial KG equation with scalar and vector potentials \(S(r) \) and \(V(r) \), respectively, where \(r = |\vec{r}| \) describing a spinless particle takes the general form \([3,62]\):

\[
\nabla^2_D\psi^{(l_0, 2l)}_{h_1, \ldots, h_{2l-2}}(\vec{x}) + \frac{1}{\hbar^2c^2}\left[\frac{\left(E_{nl} - V(r)\right)^2}{M^2c^2 + S(r)^2}\right]N_{l_0, 2l-2}^2\psi^{(l_0, 2l)}_{h_1, \ldots, h_{2l-2}} = 0,
\]

(30a)

\[
\nabla^2_D = \sum_{j=1}^{D} \frac{\partial^2}{\partial x_j^2}
\]

(30b)

\[
\psi^{(l_0, 2l)}_{h_1, \ldots, h_{2l-2}}(\vec{x}) = R_i(r)Y^{(l_0, 2l-1)}_{l_0, \ldots, h_{2l-1}}(\theta_1, \theta_2, \ldots, \theta_{2l-1})
\]

(30c)

where \(E_{nl} \), \(M \) and \(V^2_D \) stand for KG energy, mass and \(D \)-dimensional Laplacian, respectively. In addition, \(x \) is a \(D \)-dimensional position vector. Let us decompose the radial wave function \(R_i(r) \) as follows:

\[
R_i(r) = r^{-(D-1)/2}u_i(r)
\]

(31)

we, then, reduce (30a) into the \(D \)-dimensional radial Schrödinger-like equation with arbitrary orbital angular momentum number \(l \) as

\[
\frac{d^2u_i(r)}{dr^2} + \frac{1}{\hbar^2c^2}\left[\left[E_{nl} - V(r)\right]^2 - \left[Mc + S(r)\right]^2\right] - \frac{l'(l' + 1)\hbar^2c^2}{r^2}u_i(r) = 0
\]

(32)

where we have set \(l'(l' + 1) = \left[\left(\tilde{M} - 2\right)^2 - 1\right]/4 \) and \(\tilde{M} = D + 2l \) where \(l = 0, 1, 2, \ldots \). Under the equally mixed potentials \(S(r) = \pm V(r) \), the KG turns into a Schrödinger-like equation and thus the bound state solutions are very easily obtained with the help of the well-known methods developed in the non-relativistic quantum mechanics. We use the existing approximation for the centrifugal potential term in the non-relativistic model \([9,19]\) which is valid only for \(q = 1 \) value \([62, 68]\):

\[
\tilde{V}(r) = \frac{l'(l' + 1)}{r^2} \approx 4\alpha^2r^2(l' + 1)\frac{e^{-2ar}}{1 - qe^{-2ar}}
\]

(33)

in the limit of small \(\alpha \) and \(l' \).

3.1. The Eckart-Type Model

At first, let us rewrite Equation (2) in a form to include the Hulthén potential,

\[
V(r, q) = 4V_1\frac{e^{-2ar}}{1 - qe^{-2ar}} - V_2\frac{1}{1 - qe^{-2ar}} - V_3\frac{qe^{-2ar}}{1 - qe^{-2ar}}
\]

(34)

and then follow the model used in \([62,68,69]\) by inserting the above equation and the approximate potential term (33) into (32), we obtain

\[
\frac{d^2u_i(r)}{dr^2} + \frac{1}{\hbar^2c^2}\left[\left(\frac{E_{nl} \pm Mc^2}{1 - qe^{-2ar}}\right)^2 - \left(V_2 + qV_3\frac{e^{-2ar}}{1 - qe^{-2ar}}\right)\right]u_i(r) = 0
\]

(35)
which is now amenable to the NU solution. We further use the following ansätz in order to make the above differential equation more compact

\[z(r) = e^{-2ar}, \quad Q = 2\hbar \alpha c, \]

\[e_{nl} = \frac{\sqrt{(Mc)^2 - E_{nl}^2}}{Q}, \quad g = \frac{(E_{nl} + Mc^2)}{Q^2} \]

(36)

\[\beta = 8gV_1 + l' (l'+1), \quad \gamma = 2gV_2, \quad \lambda = 2gV_3 \]

Notice that \(|E_{nl}| \leq Mc^2 \). The KG equation can then be reduced to

\[\left[\frac{d^2}{dz^2} + (1-qz) \frac{d}{dz} + \frac{[-A z^2 + Bz - C]}{z^2} \right] u_i(z) = 0, \]

\[A = q^2 (e_{nl}^2 + \lambda), \quad B = q \left(2e_{nl}^2 + \lambda - \gamma - \frac{\beta}{q} \right), \]

(37)

\[C = e_{nl}^2 - \gamma \]

where \(r \in [0, \infty) \rightarrow z \in [0,1] \). Before proceeding, the boundary conditions on the radial wave functions are: \(u_i(r \rightarrow \infty, \text{or} \ z \rightarrow 0) \rightarrow 0 \) and \(u_i(r = 0 \text{ or } z = 1) \) is finite. Comparing (37) with (13), we obtain values for the set of parameters given in Section 2:

\[c_1 = 1, \quad c_2 = c_5 = q, \quad c_4 = 0, \quad c_6 = -\frac{q}{2}, \]

\[c_7 = -q \left(2e_{nl}^2 + \lambda - \gamma - \frac{\beta}{q} \right), \]

\[c_8 = \lambda - \gamma, \quad c_9 = \frac{q}{2} \left(1 + \frac{4\beta}{q} \right), \]

\[c_{10} = 2\sqrt{e_{nl}^2 - \gamma}, \]

(38)

\[c_{11} = \frac{1}{2} \left[1 + \frac{4\beta}{q} \right], \quad c_{12} = \sqrt{e_{nl}^2 - \gamma}, \]

\[c_{13} = \frac{1}{2} \left[1 + \frac{4\beta}{q} \right] \]

and also the energy equation through (23) as

\[e_{nl}^2 = \frac{(\gamma + \lambda)^2}{4(n+\delta)^2} + \frac{(n+\delta)^2}{4} + \frac{\beta - \lambda}{2}, n = 0, 1, 2, \ldots \]

(39)

Making use of (36), the above equation can be rewritten as

\[M^2 c^4 - E_{nl}^2 = (\hbar c\alpha)^2 \left(n + w \right)^2 + \left(\frac{(E_{nl} \pm Mc^2)}{(2\hbar c\alpha)^2} \right)^2 \left(V_2 + V_3 \right)^2 \]

\[+ \left(\frac{(E_{nl} \pm Mc^2)}{(2\hbar c\alpha)^2} \right)^2 \left(V_3 - V_1 \right)^2, \]

\[w = \frac{1}{2} \left[1 + \frac{4l'(l'+1)}{q} + \frac{8(E_{nl} \pm Mc^2)V_3}{q(\hbar c\alpha)^2} \right] \]

(40)

The energy \(E_{nl} \) is defined implicitly by (40) which is a rather complicated transcendental equation having many solutions for given values of \(n \) and \(l \). In the above equation, let us remark that it is not difficult to conclude that bound-states appear in four energy solutions; only two energy solutions are valid for the particle \(E^p = E_{nl} \) and the second one corresponds to the anti-particle energy \(E^a = E_{nl} \) in the Eckart-type field.

Referring to the general parametric model in Section 2, we turn to the calculation of the corresponding wave functions. The explicit form of the weight function becomes

\[\rho(z) = z^{2p} \left(1 - qz \right)^{2w+1}, \]

\[p = \frac{1}{2} \left[n + w - \frac{(E_{nl} \pm Mc^2)(V_2 + V_3)}{2(\hbar c\alpha)^2} \right] \left(\frac{1}{n + w} \right) \]

(41)

which gives the first part of the wave functions in the form of the Jacobi polynomials:

\[y_n(z) \rightarrow P_n^{(2p,2w-1)} (1 - 2qz) \]

(42)

Further, the second part of the wave functions can be found as

\[\phi(z) \rightarrow z^n (1 - qz)^w \]

(43)

Hence, the un-normalized wave functions expressed in terms of the Jacobi polynomials read

\[u_i(z) = N_{nl} z^n (1 - qz)^w P_n^{(2p,2w-1)} (1 - 2qz) \]

(44)

and consequently the total radial part of the wave functions expressed in terms of the hypergeometric functions are

\[R_i(r) = N_{nl} r^{-(D-1)/2} \left(e^{-2ar} \right)^w \left(1 - q e^{-2ar} \right)^w \]

\[\times _2 F_1 \left(-n, n + 2 \left(p + w \right), 2 p + 1; q e^{-2ar} \right) \]

(45)

where \(N_{nl} \) is a constant related to the normalization. The relationship between the Jacobi polynomials and the hypergeometric functions is given by

\[P_n^{(a,b)} (1 - 2qx) = _2 F_1 \left(-n, n + a + b + 1; a + 1; x \right) \]

(46)

Now, in taking \(V_2 = V_3 \), the energy Equation (40) satisfying \(E_{nl} \) for the equally-mixed scalar and vector Eckart-type potentials becomes

\[M^2 c^4 - E_{nl}^2 = (\hbar c\alpha)^2 \left(n + w \right)^2 + \left(\frac{(E_{nl} \pm Mc^2)}{(\hbar c\alpha)^2} \right)^2 \left(V_2 \right)^2 \]

(46)
and the wave functions:

\[u_i(z) = N_m z^v (1 - qz)^w p_{212v+1}^{(2zv)} (1 - 2qz), \]

\[v = \frac{1}{2} \left\lfloor \frac{n + w - \left(\frac{E_{\text{el}} + M e^2}{\hbar c} \right) V_0}{(n + w)} \right\rfloor \] (47)

or the total radial wave functions in (45) are

\[R_i(r) = N_m r^{-(3v-1)/2} (e^{-2ar})^w (1 - qe^{-2ar})^w \times \mathcal{F}_1(-n, n + 2(v + w); 2v + 1; qe^{-2ar}) \] (48)

where \(N_m \) is a normalization factor. The results given in (46) and (47) are consistent with those given in (15) and (18) of [58].

Taking \(q = 1, 2\alpha \rightarrow \alpha, V_1 = V_2 = 0 \) and \(V_\lambda = 0, (34) \) has become the Hulthén potential. Hence, we find bound state solutions for equally-mixed scalar and vector Hulthén potentials in the KG theory with any orbital angular quantum number \(l \) and an arbitrary dimension \(D_r \):

\[\sqrt{M^2 c^4 - E_{\text{el}}^2} = \frac{(\hbar c)(n + v)}{2} - \frac{(E_{\text{el}} + M e^2)V_0}{(\hbar c)^2} \] (49)

and

\[u_i(z) = N_m (e^{-ar})^v (1 - e^{-ar})^w p_{212v+1}^{(2zv)} (1 - 2z), \]

\[\zeta = \frac{n + v}{2} \left(\frac{(E_{\text{el}} + M e^2)V_0}{(\hbar c)^2} \right)^{n + v} \] (50)

The Jacobi polynomial in the above equation can be expressed in terms of the hypergeometric function:

\[R_i(r) = N_m r^{-(3v-1)/2} (e^{-ar})^v (1 - e^{-ar})^w \times \mathcal{F}_1(-n, n + 2(\zeta + v); 2\zeta + 1; e^{-ar}) \] (51)

where \(N_m \) is a constant related to the normalization. The above results are identical to those found recently by [62, 70].

In the non-relativistic limit, inserting the equally mixed Eckart-type potentials (1) into the Schrödinger equation gives

\[\frac{d^2u_i(r)}{dr^2} + \left\{ \frac{2M E_{\text{el}}}{\hbar^2} \left[\frac{8MV_1 + 4\alpha^2 \hbar^2 l'(l' + 1)}{\hbar^2 (1 - qe^{-2ar})^2} e^{-2ar} \right. \right. \right.

\[\left. \left. + \frac{2MV_2 (1 + qe^{-2ar})}{\hbar^2 (1 - qe^{-2ar})^2} \right] u_i(r) = 0 \] (52)

and further making use of the following definitions:

\[\varepsilon_{\text{el}} = \sqrt{-\frac{2M E_{\text{el}}}{T}, E_{\text{el}} \leq 0 \quad \beta = \frac{8MV_1}{T^2} + l'(l' + 1), \]

\[\gamma = \frac{2MV_2}{T^2}, T = 2\hbar \alpha \]

lead us to obtain the set of parameters and energy equation given before in (38) and (39) with \(\gamma = \lambda \). Incorporating the above equation and using (39), we find the following energy eigenvalues:

\[E_{\text{el}} = -\frac{1}{2M} \left[\frac{\hbar^2 \alpha^2}{(n + w_1)^2} + \frac{M^2 V_2^2}{\hbar^2 \alpha^2} \right] \] (54)

In addition, following procedures indicated in (41) - (45), we obtain expressions for the radial wave functions:

\[R_i(r) = N_m r^{-(3v-1)/2} (e^{-ar})^v (1 - e^{-ar})^w \times \mathcal{F}_1(-n, n + 2(l + 1 - l); l, l + 1; e^{-ar}) \]

\[p_i = \frac{1}{2\hbar \alpha} \sqrt{-2M (E_{\text{el}} + V_2)} \]

\[= \frac{1}{2} \left[n + w_1 - \frac{MV_2}{(\hbar \alpha)^2} \frac{1}{n + w_1} \right] \] (55)

3.2. The Rosen-Morse-Type Model

Under the replacement of \(q \) by \(-q\), the Eckart-type potential model (1) will become the Rosen-Morse-type potential model given in (2) of Ref. [52]:

\[V(r, q) = V_1 \sec h^2 (\alpha r) - V_2 \tanh (\alpha r), \]

\[V_1, V_2 > 0 \]

or alternatively [39,40,72]

\[V(r, q) = 4V_1 \frac{e^{-2ar}}{1 + qe^{-2ar}} - V_2 \frac{1 - qe^{-2ar}}{1 + qe^{-2ar}} \] (57)

We may rewrite the above equation in a form to include the Woods-Saxon potential,

\[V(r, q) = 4V_1 \frac{e^{-2ar}}{1 + qe^{-2ar}} - V_2 \frac{1}{1 + qe^{-2ar}} \]

\[+ V_3 \frac{qe^{-2ar}}{1 + qe^{-2ar}} \] (58)

Defining the parameters:
we can easily write the s-wave KG equation with \(S(r) = \pm \tilde{V}(r) \) for the potential (58) as
\[
\left[\frac{d^2}{dz^2} + \frac{(1+qz)}{z} \frac{d}{dz} + \left[-\frac{\alpha^2}{z} + Bz - C \right] \right] u_n(z) = 0,
\]
\[
A = q^2 \left(\epsilon_{q}^2 + \tilde{\lambda} \right), \quad B = q \left(\tilde{\gamma} - \tilde{\lambda} - 2\epsilon_{q}^2 - \tilde{\beta} \right),
\]
\[
C = \epsilon_{q}^2 - \tilde{\gamma}.
\]

Following the steps of solution mentioned in the previous subsection, we may obtain values for the parameters given in Section 2:
\[
c_1 = 1, \quad c_2 = c_3 = -q, \quad c_4 = 0, \quad c_5 = \frac{q}{2},
\]
\[
c_6 = q^2 \left(\epsilon_{q}^2 + \tilde{\lambda} + \frac{1}{4} \right), \quad c_7 = q \left(2\epsilon_{q}^2 + \tilde{\lambda} - \tilde{\gamma} + \frac{\tilde{\beta}}{q} \right),
\]
\[
c_8 = \epsilon_{q}^2 - \tilde{\gamma}, \quad c_9 = q \left(\frac{1}{2} - \frac{4\tilde{\beta}}{q} \right), \quad c_{10} = 2\sqrt{\epsilon_{q}^2 - \tilde{\gamma}},
\]
\[
c_{11} = \sqrt{1 - \frac{4\tilde{\beta}}{q}}, \quad c_{12} = \sqrt{\epsilon_{q}^2 - \tilde{\gamma}},
\]
\[
c_{13} = \delta = \frac{1}{2} \left(1 - \sqrt{1 - \frac{4\tilde{\beta}}{q}} \right)
\]
and the energy equation
\[
\epsilon_{q}^2 = \tilde{\gamma} + \tilde{\lambda}^2 + \frac{(n + \delta)^2}{4} + \frac{\tilde{\gamma} - \tilde{\lambda}}{2}, \quad n = 0, 1, 2, \ldots
\]

Inserting (59) in the above equation, we obtain energy equation satisfying \(E_{q} \),
\[
M^2 c^4 - E_{q}^2 = \left(\hbar c \right)^2 \left(n + \tilde{\omega} \right) + \left(\frac{E_{q} \pm Mc^2}{2\hbar c} \right)^2 \left(V_2 + V_3 \right)^2
\]
\[
+ \left(\frac{E_{q} \pm Mc^2}{\hbar c} \right) (V_2 - V_3),
\]
\[
\tilde{\omega} = \frac{1}{2} \left(1 - \sqrt{1 - \frac{8(E_{q} \pm Mc^2)V_3}{q(\hbar c)^2}} \right)
\]
(62)

The corresponding un-normalized wave functions can be calculated as before. The explicit form of the weight function reads
\[
\rho(z) = z^{2\tilde{\beta}} \left(1 - qz \right)^{2\tilde{\omega}-1},
\]
\[
\tilde{\rho} = \frac{1}{2} \left[n + \tilde{\omega} - \left(\frac{E_{q} \pm Mc^2}{2(\hbar c)^2} \right) (V_2 + V_3) \right]
\]
(64)
which gives the Jacobi polynomials
\[
y_n(z) \rightarrow \tilde{y}_n(z) = z^{\tilde{\beta}} \left(1 + qz \right)^\tilde{\omega}
\]
(65)
as the first part of the wave function. The second part of the wave function can be found as
\[
\phi(z) \rightarrow z^{\tilde{\rho}} \left(1 + qz \right)^\tilde{\omega}
\]
(66)
Hence, the un-normalized wave function reads
\[
u_n(z) = \tilde{N}_n z^{\tilde{\beta}} (1 + qz)^\tilde{\omega} \tilde{y}_n \tilde{z}^{\tilde{\beta}} \left(1 + 2qz \right)
\]
(67)
and thus the total radial part of the radial wave functions in (30) can be expressed in terms of the hypergeometric functions as
\[
R_n(r) = \tilde{N}_n \left(e^{2\tilde{\omega}} \right)^\tilde{\rho} \left(1 + qe^{2\tilde{\omega}} \right)^\tilde{\omega}
\]
(68)
where \(\tilde{N}_n \) is a normalization factor.

Takng \(V_2 = V_3 \) in (63), we find the equation for the potential in (56) satisfying \(E_{q} \) in the s-wave KG theory,
\[
M^2 c^4 - E_{q}^2 = \left(\hbar c \right)^2 \left(n + \tilde{\omega} \right) + \left(\frac{E_{q} \pm Mc^2}{2\hbar c} \right)^2 \left(V_2 \right)^2
\]
(69)
and the wave functions take the form
\[
u_n(r) = \tilde{N}_n(e^{2\tilde{\omega}})^\tilde{\rho} \left(1 + qe^{2\tilde{\omega}} \right)^\tilde{\omega}
\]
(70a)
\[
\times \sum F_i \left(-n, n + 2(\tilde{\rho} + \tilde{\omega}); 2\tilde{\rho} + 1; -qe^{2\tilde{\omega}} \right)
\]
(70b)
where \(\tilde{N}_n \) is a normalization constant. After the following mapping on the potential parameter: \(V_i \rightarrow -V_i \) in (56), the results in (69) and (70) become identical with (13) and (14) of [52].

Also, taking \(q = 1, 2a \rightarrow \alpha, V_1 = V_2 = 0 \) and \(V_1 = -V_0 \), (58) turns to become the Woods-Saxon potential. Hence, we can find bound state solutions in the s-wave KG theory with equally-mixed scalar and vector \(S(r) = V(r) \) for Woods-Saxon potentials as

\[\text{JQIS}\]
and wave functions:

\[u_n(r) = N_n \left(e^{-ar} \right)^{\frac{n}{2}} F_n\left(-n, n+2\tilde{p}_2; 2\tilde{p}_2+1; e^{-ar} \right), \]

or alternatively, it can be expressed in terms of the hypergeometric function as

\[R_n(r) = N_n \left(e^{-ar} \right)^{\frac{n}{2}} F\left(-n, n+2\tilde{p}_2; 2\tilde{p}_2+1; e^{-ar} \right), \]

where \(N_n \) is a constant related to the normalization. Under appropriate parameter replacements, we obtain the non-relativistic limit of the energy eigenvalues and eigenfunctions of the above two equations are

\[E_{so} = -\frac{1}{2M} \left[\frac{nh\alpha}{2} + \frac{2MV_0}{n} \right], \quad n \neq 0, \tag{74} \]

and

\[u_n(r) = N_n \left(e^{-ar} \right)^{\frac{n}{2}} F\left(-n, n+2\tilde{p}_2; 2\tilde{p}_2+1; e^{-ar} \right), \]

\[\tilde{p}_2 = n + \frac{2MV_0}{(h\alpha)^2}, \tag{75} \]

respectively, which is simply the solution of the Schrödinger equation for the potential \(\Sigma(r) = V(r) + S(r) = 2V(r) \). The above results are identical to those found before in [8].

4. Discussions

In this section, at first, we choose appropriate parameters in the Eckart-type potential model to construct the Eckart potential, Rosen-Morse well and their PT-symmetric versions, and then discuss their energy equations in the framework of KG theory with equally mixed potentials.

4.1. Eckart Potential Model

Taking \(q = 1 \), the potential (1) turns to the standard Eckart potential [41]

\[V(r) = V_1 \cos \left(\frac{\alpha r}{2} \right) - V_2 \cosh \left(\frac{\alpha r}{2} \right), \quad V_1, V_2 > 0 \tag{76} \]

In natural units (\(h = c = 1 \)), we can obtain the energy equation (46) for the Eckart potential in 3D space spinless KG theory as

\[M^2 - E_{so}^2 = \alpha^2 \left(n + w' \right)^2 + \frac{V_2^2 \left(E_{so} + M \right)^2}{\alpha^2 \left(n + w' \right)^2}, \]

\[w' = w(q \rightarrow 1) = \frac{1}{2} \left[1 + \sqrt{\left(2l' + 1 \right)^2 + \frac{8\left(E_{so} + M \right)V_1}{\alpha^2}} \right], \tag{77} \]

which is identical with those given in Equation (22) of [52] under the equally-mixed potential restriction given by \(S(r) = \pm V(r) \). The unnormalized wave function corresponding to the energy levels is

\[R_1(r) = N_{sl} r^{-(D-1)/2} \left(e^{-ar} \right)^{\frac{n}{2}} \left(1 - e^{-ar} \right)^{\frac{n}{2}} \times F\left(-n, n+2(v+w'); 2v+1; e^{-ar} \right), \tag{78} \]

where \(N_{sl} \) is a normalization factor.

1) For \(s \)-wave case, the centrifugal term

\[(D+2l-1)(D+2l-3)\frac{\alpha^2 e^{-2ar}}{\left(1 - e^{-2ar} \right)^2} = 0 \]

too. Thus, the energy eigenvalues take the following simple form

\[M^2 - E_{so}^2 = \alpha^2 \left(n + w_1 \right)^2 + \frac{V_2^2 \left(E_{so} + M \right)^2}{\alpha^2 \left(n + w_1 \right)^2}, \tag{79} \]

\[w_1 = \frac{1}{2} \left[1 + \sqrt{\frac{8\left(E_{so} + M \right)V_1}{\alpha^2}} \right]. \]

2) In the non-relativistic approximation of the KG energy equation (potential energies small compared to \(Mc^2 \) and \(E \approx Mc \) Equation (32) reduces into the form [72]

\[-\frac{\hbar^2}{2M} \frac{d^2 u_i(r)}{dr^2} + \left[V(r) + S(r) - \frac{l'(l'+1)\hbar^2}{r^2} \right] u_i(r) = \left(E_{so} - Mc^2 \right) u_i(r). \tag{80} \]

When \(V(r) = S(r) \), the energy spectrum obtained from (80) reduces to those energy spectrum obtained from the solution of the Schrödinger equation for the sum potential \(\Sigma(r) = 2V(r) \). In other words, the non-relativistic limit is the Schrödinger-like equation for the potential

\[\frac{8V_1}{\left(1 - e^{-2ar} \right)^2} - 2V_2 \left(\frac{1 + e^{-2ar}}{1 - e^{-2ar}} \right). \]

This can be achieved by making the parameter replacements \(E_R + M \rightarrow 2M \) and \(E_{so} - M \rightarrow E_{so} \), so the non-relativistic limit of our results in (46) reduces to

\[E_{NR} = \frac{1}{2M} \left[\alpha^2 \left(n + w_2 \right)^2 + \frac{2M^2 V_2^2}{\alpha^2 \left(n + w_2 \right)^2} \right], \tag{81} \]

and the corresponding wave functions in (48) become

\[JQIS \]
region of linear-σ and harmonic-oscillator σ² depend-
educe this it is quite instructive to expand the
potential in a Taylor series which for appropriately small
x takes the form of a Coulomb-like potential with a cen-
trifugal-barrier like term, provided by the csc²(αx)
part [76],
\[V(x) = \frac{V_2}{\alpha x} + \frac{V_1}{(\alpha x)^2}, \quad \alpha x \ll 1, \] (84)
For αx < π/2 we can then take the potential (84)
plus a linear like perturbation
\[\Delta V(x) = \frac{V_r}{3} + \frac{V_i}{3} x, \] (85)
as an approximation of tRM potential. The potential (83)
obviously evolves to an infinite wall as αx approaches
the limits of the definition interval 0 < αx < π, due to the
behavior of the cot αx and csc αx for V₁ > 0.
The potential is essential for the QCD quark-gluon dy-
namics where the one gluon exchange gives rise to an
effective Coulomb-like potential, while the self gluon
interactions produce a linear potential as established by
lattice QCD calculations of hadron properties (Cornell
potential) [77]. Finally, the infinite wall piece of the tRM
potential provides the regime suited for the asymptotical
freedom of the quarks. Now, making the corresponding
parameter replacements in (46), we end up with real en-
ergy equation for the above PT-symmetric version of the
Eckart-type potentials in the KG equation with equally
mixed potentials,
\[(M_0^2)^2 - E^2 = \frac{\left(E_{\pm} \pm M_0^2 \right)^2 V_2^2}{(h\alpha)^2 (n + w)^2} - (h\alpha)^2 (n + w)^2, \] (86)
and the radial wave functions build up as
\[
R_i(r) = N_i r^{-\frac{(D-1)/2}{2}} \left(e^{-2\alpha r} \right)^\frac{1}{2} \left(1 - e^{-2\alpha r} \right)^w \times F_i(-n, n + 2(v + w); 2v + 1; e^{-2\alpha r}
\]
\[v = \frac{1}{2} \left(n + w + \frac{1}{2} \left(E_{\pm} \pm M_0^2 \right) V_2 \right) \left(h\alpha \right)^2 (n + w)^2, \] (87)
\[w = \frac{1}{2} \left(2^2 + \frac{8}{(h\alpha)^2} \left(E_{\pm} \pm M_0^2 \right) V_2 \right) \] .

4.3. Standard Rosen-Morse Well
Taking q=1, V₁ → V₂(\tilde{p} → \tilde{p}), and V₂ → V₂(\tilde{p} → \tilde{p}),
the potential (56) turns to the standard Rosen-Morse well
[39,71]
This potential is useful in discussing polyatomic molecular vibrational energies. An example of its application to the vibrational states of NH\(_3\) was given by Rosen and Morse in [39,71]. Making the corresponding parameter replacements in Equation (69), we obtain the energy equation for the Rosen-Morse well in the s-wave KG theory with equally mixed potentials,

\[
M^2 - E_{20}^2 = \alpha^2 \left(n + \tilde{\delta}_1 \right)^2 + \frac{V_2^2 (E_{10} \pm M)}{\alpha^2 (n + \tilde{\delta}_1)^2},
\]

(89)

where \(\tilde{\delta}_1\) is a normalization constant. The results given in (89) and (90) are consistent with those given in (19) and (20) of [52], respectively. The s-wave energy states of the KG equation for the Rosen-Morse potential are calculated for a set of selected values parameters in Table 1.

When \(V_0 = S_0\), the non-relativistic limit is the solution of the Schrödinger equation for the potential

\[
-8V_1 \frac{e^{-2\alpha r}}{(1 + e^{-2\alpha r})^2} + 2V_2 \frac{(1 - e^{-2\alpha r})}{(1 + e^{-2\alpha r})^2}.
\]

In the non-relativistic limits, the energy spectrum is

\[
E_{NR} = -\frac{1}{2M} \left[\alpha^2 \left(n + \tilde{\delta}_1 \right)^2 + \frac{4M^2V_2^2}{\alpha^2 \left(n + \tilde{\delta}_1 \right)^2} \right],
\]

Table 1. The s-wave energy spectrum of the equally mixed scalar and vector Rosen-Morse-type potentials.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\alpha)</th>
<th>(q)</th>
<th>(V_1)</th>
<th>(V_2)</th>
<th>(M)</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(E_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1.8137(^a)</td>
<td>-1.9140(^a)</td>
<td>-3.3923(^a)</td>
<td>-3.9088(^a)</td>
</tr>
<tr>
<td>2</td>
<td>-2.2117</td>
<td>-3.6791</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.6606</td>
<td>-3.3105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.8879</td>
<td>-2.7697</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.8766</td>
<td>-1.9765</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-2</td>
<td>5</td>
<td>0.9989</td>
<td>-3.7763</td>
<td>-4.7275</td>
<td>-4.9351</td>
</tr>
<tr>
<td>2</td>
<td>-4.1746</td>
<td>-4.7795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-3.3814</td>
<td>-4.5376</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-2.3989</td>
<td>-4.2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1.3083</td>
<td>-3.7529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>1.9558</td>
<td>-3.5288</td>
<td>-3.8460</td>
<td>-3.9773</td>
</tr>
<tr>
<td>2</td>
<td>1.9608</td>
<td>-2.5367</td>
<td>-3.5326</td>
<td>-3.9216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.2294</td>
<td>-0.5126</td>
<td>-3.0732</td>
<td>-3.8358</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-2.4823</td>
<td>-3.7191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1.7822</td>
<td>-3.5695</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>-1</td>
<td>4</td>
<td>1.5783</td>
<td>-3.2245</td>
<td>-3.6502</td>
<td>-3.9258</td>
</tr>
<tr>
<td>2</td>
<td>1.9995</td>
<td>-1.5367</td>
<td>-2.9520</td>
<td>-3.7496</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1.9529</td>
<td>-3.4736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.7335</td>
<td>-3.0839</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.5489</td>
<td>-2.5528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)The present results are identical to the ones given in [52].
\[
\tilde{\delta}_2 = \frac{1}{2} \left(1 - \sqrt{1 + \frac{16MV_1}{\alpha^2}} \right),
\]
and the wave functions are
\[
R_n(r) = \tilde{N}_n \left(e^{-\alpha r} \right)^{\tilde{\delta}_2} \left(1 + e^{-2\alpha r} \right)^{\frac{\tilde{\delta}_1}{2}} P_n^{(2\tilde{\delta}_2-1)} \times \left(1 + 2e^{-2\alpha r} \right),
\]
\[
\tilde{\eta}_2 = \frac{1}{2} \left[n + \tilde{\delta}_2 + \frac{2MV_2}{\alpha^2 (n + \tilde{\delta}_2)} \right].
\]

5. Conclusions and Outlook

A parametric generalization short-cut derived from the NU have been used to carry out the analytic bound states (real energy spectrum and wave functions) of the KG equation with any orbital quantum number \(l \) for equally mixed scalar and vector Eckart-type potentials. The present solutions include energy equation and un-normalized wave functions which have been expressed in terms of the Jacobi polynomials (or hypergeometric functions). Additionally, in making appropriate changes in the Eckart-type potential parameters, one can easily generate new energy spectrum formulas for various types of the well-known molecular potentials such as the Rosen-Morse well \[39\], the Eckart potential, the Hulthén potential \[7\] and the Manning-Rosen potential \[31\] and others. It is also noted that under the PT-symmetry property, the exponential potentials can be reduced to the trigonometric potentials with real bound energy spectrum formulas for various types of the well-known molecular potentials such as the Rosen-Morse well \[39\], the Eckart potential, the Hulthén potential \[7\], the Woods-Saxon potential \[8\] and the Manning-Rosen potential \[31\] and others. It is also noted that under the PT-symmetry property, the exponential potentials can be reduced to the trigonometric potentials with real bound state solutions. Also, the KG equation with equally mixed scalar and vector Rosen-Morse-type potentials can be solved exactly for s-wave bound states \((l = 0)\) case. The calculated energy equations of these potentials are seen to be complicated transcendental equations in the relativistic model \[39\]. The non-relativistic limit can be easily reached by making a mapping on the parameters and/or solving the original Schrödinger equation. It is found that the relativistic and non-relativistic results are identical with those ones obtained in literature through the various methods.

6. Acknowledgements

The author thanks the kind referees for their invaluable suggestions which greatly helped in improving the manuscript.

7. References

[40] G.-F. Wei and S.-H. Dong, “Pseudospin Symmetry for Modified Rosen-Morse Potential Including a Pekeris-

