Model Predictive Control Circuit of the Current Source Matrix Converter

Grzegorz Tadra, Zbigniew Fedyczak, Paweł Szcześniak

Power Electronics Department, Institute of Electrical Engineering, University of Zielona Góra, Zielona Góra, Poland
Email: G.Tadra@iee.uz.zgora.pl, Z.Fedyczak@iee.uz.zgora.pl, P.Szczesniak@iee.uz.zgora.pl

Received January 2015

Abstract

In this paper, a new predictive control strategy for current source matrix converter (CSMC) is presented. Proposed predictive control strategy allows for creating output voltages with boost type voltage transfer ratio and desired frequency. The description of predictive control circuit of the CSMC is presented. Furthermore the simulation test results to confirm functionality of the proposed control strategy and converter properties under this strategy are shown.

Keywords

AC/AC Frequency Converters, Current Source Matrix Converter, Predictive Control Strategy

1. Introduction

An alternative for commonly used indirect (AC/DC/AC) frequency converters with DC storage elements is constantly searched for. One of the proposed alternatives is the direct voltage source matrix converter (VSMC). The main disadvantage of the VSMC, virtually limiting its industrial application in power networks or electric drives, is the relationship between the input and output voltages (voltage transfer ratio). The quotient of the rms values of these voltages (while retaining their sinusoidal shape) is lower than 1 [1]-[5]. In this respect, hybrid matrix converters, where an additional DC/DC converter and a small capacitor for energy storage are used, have more favorable properties due to the fact that their voltage transfer ratio can be higher than 1 [6] [7]. Such transfer ratio is also characteristic for direct and indirect matrix reactance frequency converters (MRFC) [8]-[11] and direct current source matrix converters (CSMC) [12]-[15]. MRFC and CSMC are converters without the DC energy storage alike VSMC. So far, modeling, analysis and studying the properties of these converters has included two control strategies: 1) modified classical control strategy based on low frequency transfer matrix [1] and 2) modified space vector modulation [3]. Simplified topology of CSMC with ideal switches as well as ideal current and voltage sources is shown in Figure 1. Results of the analyses CSMC under control strategy 1) presented in paper [12] shows that the achievement of the voltage transfer ratio higher than 1 is possible. Furthermore, input power factor can be controlled but not irrespective of output power factor which is the main disadvantage of this solution. Studies of CSMC under control strategy 2) presented in [13]-[15] also proves that the voltage transfer ratio higher than 1 can be obtained, but other than in [12], the input power factor can be
controlled independently of the output power factor [14].

Carried out in recent years, an intensive research of the use of the predictive control strategy implemented in power electronic converters yielded a number of very good results [16]-[19]. The use of those control strategies in VSMC allows for the improvement of their properties especially in relation to the dynamic ones [17]-[18]. That is why predictive control strategies are also interesting for CSMC.

The aim of this article is to propose and describe the model predictive control (MPC) circuit for CSMC. The proposed control strategy is presented in Section 2.

In Section 3 control circuit is proposed, simulation test results to confirm functionality of the proposed control strategy and converter properties under this strategy are presented in section IV. The conclusion is drawn in the last section.

2. Control Description

Simplified functional diagram of the proposed control system for direct CSMC is shown in Figure 2. Following parts of the control circuit can be distinguished: 1) model predictive sub-circuit, 2) optimization sub-circuit.

Generally, the predictive model sub-circuit is used for the prediction of the phase load voltages \(u_{a}, u_{b}, u_{c} \) and phase source currents \(i_{a}, i_{b}, i_{c} \) for all 27 allowed switch configurations. Optimization sub-circuit generates control signals for the CSMC switches. Those control signals are generated according to switch configuration selected for optimal (smallest) cost function value.

Diagram describing the steps realized in every \(k \) sampling period by the proposed control system is shown in Figure 3. The initial action is the measurement of all the instantaneous values of the source phase voltages \(u_{a}, u_{b}, u_{c} \), input currents \(i_{a}, i_{b}, i_{c} \) and output phase voltages \(u_{a}, u_{b}, u_{c} \). In the next step, for each of the allowed CSMC switch configurations \(S_{jK} \) \(\{x = 1, \ldots, 27\} \) collected in Table 1 [14], output currents \(i_{a}, i_{b}, i_{c} \) of the CSMC are determined with the use of Equation (1) (mathematical model describing the CSMC current relations) [12]-[15]. For the previously calculated output currents by means of differential Equation (2) and its discrete form obtained by the forward Euler approximation -Equation (3), instantaneous output voltages \(u_{a}, u_{b}, u_{c} \) for the next \((k+1) \) sampling period are predicted.

\[
\begin{bmatrix}
 i_{a} \\
 i_{b} \\
 i_{c}
\end{bmatrix}
= \begin{bmatrix}
 s_{aA} & s_{aB} & s_{aC} \\
 s_{bA} & s_{bB} & s_{bC} \\
 s_{cA} & s_{cB} & s_{cC}
\end{bmatrix}
\begin{bmatrix}
 i_{a} \\
 i_{b} \\
 i_{c}
\end{bmatrix}
= T
\begin{bmatrix}
 i_{a} \\
 i_{b} \\
 i_{c}
\end{bmatrix}
\tag{1}
\]

where: \(i_{a}, i_{b}, i_{c} \)—phase input currents, \(i_{a}, i_{b}, i_{c} \)—phase output currents, \(T \)—transfer matrix,

\[
s_{jK} = \begin{cases}
1, & S_{jK} \text{ open} \\
0, & S_{jK} \text{ close, } j = \{a,b,c\}, \ K = \{A,B,C\}
\end{cases}
\tag{2}
\]

\[
u_{a}(k+1) = \frac{T_{D}}{C_{F}}L_{a}(k) + \left(\frac{T_{D}}{R_{L}C_{F}} + 1 \right) u_{a}(k)
\tag{3}
\]
Figure 2. Simplified block scheme of the current source matrix converter with model predictive control circuit.

Figure 3. Steps diagram for the proposed model predictive control strategy.
Table 1. Allowed switching configurations of the CSMC with vector representations of output currents \(\boldsymbol{i} = [i_a, i_b, i_c]^T \) and input voltages \(\mathbf{u} = [u_a, u_b, u_c]^T \).

<table>
<thead>
<tr>
<th>Nr</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>(u_{AB})</th>
<th>(u_{BC})</th>
<th>(u_{CA})</th>
<th>(\mathbf{u})</th>
<th>(\alpha_0)</th>
<th>(i_a)</th>
<th>(i_b)</th>
<th>(i_c)</th>
<th>(\hat{i})</th>
<th>(\beta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>-u_{ac}</td>
<td>0</td>
<td>u_{ac}</td>
<td>2/3u_{ac}</td>
<td>(\pi)</td>
<td>i_A</td>
<td>0</td>
<td>(-i_a)</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>u_{bc}</td>
<td>0</td>
<td>-u_{bc}</td>
<td>2/3u_{bc}</td>
<td>0</td>
<td>i_A</td>
<td>-i_b</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
<td>(\pi/2)</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>-u_{ab}</td>
<td>0</td>
<td>u_{ab}</td>
<td>2/3u_{ab}</td>
<td>(\pi)</td>
<td>-i_A</td>
<td>i_b</td>
<td>0</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>u_{aa}</td>
<td>0</td>
<td>-u_{aa}</td>
<td>2/3u_{aa}</td>
<td>0</td>
<td>-i_A</td>
<td>0</td>
<td>i_A</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>8</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>u_{bb}</td>
<td>0</td>
<td>-u_{bb}</td>
<td>2/3u_{bb}</td>
<td>(\pi)</td>
<td>0</td>
<td>-i_A</td>
<td>i_A</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>9</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>u_{ab}</td>
<td>0</td>
<td>-u_{ab}</td>
<td>2/3u_{ab}</td>
<td>0</td>
<td>i_A</td>
<td>i_A</td>
<td>0</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>10</td>
<td>e</td>
<td>a</td>
<td>c</td>
<td>u_{ac}</td>
<td>0</td>
<td>-u_{ac}</td>
<td>2/3u_{ac}</td>
<td>(-\pi/3)</td>
<td>i_B</td>
<td>0</td>
<td>-i_b</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>11</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>-u_{bc}</td>
<td>0</td>
<td>u_{bc}</td>
<td>2/3u_{bc}</td>
<td>2(\pi/3)</td>
<td>0</td>
<td>i_B</td>
<td>-i_b</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>12</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>u_{ab}</td>
<td>0</td>
<td>-u_{ab}</td>
<td>2/3u_{ab}</td>
<td>(-\pi/3)</td>
<td>i_B</td>
<td>0</td>
<td>i_B</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>13</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td>-u_{aa}</td>
<td>0</td>
<td>u_{aa}</td>
<td>2/3u_{aa}</td>
<td>2(\pi/3)</td>
<td>0</td>
<td>-i_B</td>
<td>0</td>
<td>i_A</td>
<td>(\hat{i})</td>
</tr>
<tr>
<td>14</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>u_{bc}</td>
<td>0</td>
<td>-u_{bc}</td>
<td>2/3u_{bc}</td>
<td>(-\pi/3)</td>
<td>0</td>
<td>-i_B</td>
<td>i_B</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>15</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>-u_{ab}</td>
<td>0</td>
<td>u_{ab}</td>
<td>2/3u_{ab}</td>
<td>2(\pi/3)</td>
<td>i_B</td>
<td>-i_B</td>
<td>0</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>16</td>
<td>c</td>
<td>e</td>
<td>a</td>
<td>0</td>
<td>u_{ea}</td>
<td>-u_{ea}</td>
<td>2/3u_{ea}</td>
<td>(\pi/3)</td>
<td>i_C</td>
<td>0</td>
<td>-i_c</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>17</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>-u_{bc}</td>
<td>u_{bc}</td>
<td>2/3u_{bc}</td>
<td>(-2\pi/3)</td>
<td>0</td>
<td>i_C</td>
<td>-i_c</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>18</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>0</td>
<td>u_{ab}</td>
<td>-u_{ab}</td>
<td>2/3u_{ab}</td>
<td>(\pi/3)</td>
<td>-i_C</td>
<td>i_C</td>
<td>0</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>19</td>
<td>a</td>
<td>c</td>
<td>e</td>
<td>0</td>
<td>-u_{ae}</td>
<td>u_{ae}</td>
<td>2/3u_{ae}</td>
<td>(-2\pi/3)</td>
<td>-i_C</td>
<td>0</td>
<td>i_C</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>20</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>-u_{bc}</td>
<td>u_{bc}</td>
<td>2/3u_{bc}</td>
<td>(\pi/3)</td>
<td>0</td>
<td>-i_c</td>
<td>i_c</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>21</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>0</td>
<td>-u_{ab}</td>
<td>u_{ab}</td>
<td>2/3u_{ab}</td>
<td>(-2\pi/3)</td>
<td>i_c</td>
<td>-i_c</td>
<td>0</td>
<td>(\hat{i})</td>
<td>(\pi/3)</td>
</tr>
<tr>
<td>22</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>u_{ab}</td>
<td>u_{bc}</td>
<td>u_{ac}</td>
<td>-</td>
<td>-</td>
<td>i_A</td>
<td>i_B</td>
<td>i_C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>u_{bc}</td>
<td>u_{ca}</td>
<td>u_{ab}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>b</td>
<td>a</td>
<td>e</td>
<td>u_{ab}</td>
<td>u_{bc}</td>
<td>u_{ca}</td>
<td>-</td>
<td>-</td>
<td>i_B</td>
<td>i_C</td>
<td>i_A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>-u_{ab}</td>
<td>-u_{ac}</td>
<td>-u_{bc}</td>
<td>-</td>
<td>-</td>
<td>i_B</td>
<td>i_A</td>
<td>i_C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>-u_{ac}</td>
<td>-u_{bc}</td>
<td>-u_{ab}</td>
<td>-</td>
<td>-</td>
<td>i_A</td>
<td>i_C</td>
<td>i_B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>-u_{bc}</td>
<td>-u_{ab}</td>
<td>-u_{ac}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

where: \(i_o = [i_a, i_b, i_c]^T \) —load currents vector, \(\mathbf{u}_o = [u_a, u_b, u_c]^T \) —output voltages vector, \(T_D \) —discretization time.

In the next step Equation (4) is used for cost function calculations, which is described for all allowed switch configurations \(x = 1, \ldots, 27 \). The cost function is expressed as a sum of coordinate subtracts of the reference and the predicted output voltages vector. Vector coordinates are obtained by using Equations (5) and (6) [20].

\[
g_{1x} = |u_{oa}^* - u_{oa} (k + 1)| + |u_{ob}^* - u_{ob} (k + 1)|
\]

\[
\begin{bmatrix}
 u_{oa}^* \\
 u_{ob}^*
\end{bmatrix} =
\begin{bmatrix}
 2 & 1 & -1/2 & -1/2 \\
 3 & 0 & \sqrt{3}/2 & -\sqrt{3}/2
\end{bmatrix}
\begin{bmatrix}
 u_a^* \\
 u_b^* \\
 u_c^*
\end{bmatrix}
= T_D \mathbf{u}_o^*
\]
\[
\begin{bmatrix}
u_{x\alpha}^{\ast}(k+1) \\
u_{x\beta}^{\ast}(k+1)
\end{bmatrix} = T_c u^\ast_c(k+1)
\]

where: \(u_{x\alpha}^{\ast}, u_{x\beta}^{\ast}, u_{x\alpha}^{\ast}(k+1), u_{x\beta}^{\ast}(k+1)\) — coordinates of the space vector representations of the reference and predicted voltages, \(T_c\) — Clarke transformation matrix for symmetrical system.

Further, taking into account Equations (7) and (8), using Equation (9) values of the phase input currents are calculated.

\[
u = \begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix} = \begin{bmatrix} s_{a\alpha} & s_{a\beta} & s_{c\alpha} \\ s_{b\alpha} & s_{b\beta} & s_{c\beta} \\ s_{c\alpha} & s_{c\beta} & s_{c\gamma} \end{bmatrix} \begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix} = T^T \begin{bmatrix} u_a \\ u_b \\ u_c \end{bmatrix}
\]

where: \(u_a, u_b, u_c\) — matrix converter input phase voltages, \(u_{x\alpha}, u_{x\beta}, u_{x\gamma}\) — matrix converter output phase voltages, \(T^T\) — transposed transfer matrix.

\[
L_s \frac{di_s}{dt} = R_s i_s + u_s - u_i
\]

\[
i_s(k+1) = \left(1 + \frac{R_s T_D}{L_s^2}\right) i_s(k) + \frac{T_D}{L_s} (u_s(k) - u_i(k))
\]

where: \(i_s = [i_a, i_b, i_c]^T\) — phase input currents vector; \(u_s = [u_{a1}, u_{b2}, u_{c3}]^T\) — phase source voltages vector; \(u_i = [u_a, u_b, u_c]^T\) — input phase voltages vector.

Next for all possible switch configurations \(x = 1, \ldots, 27\) the cost function, expressed by Equation (10) [17], [21] is described. This cost function allows for determining the value of the factor thanks to which, the influence of the switch configuration on the input power factor can be determined. Switch configuration for the next discretization period is selected basing on Equation (11) — global cost function. Switching configuration \(x\) for which \(g_x\) has smallest value is selected. The value of the global cost function depends on individual cost functions \(A\) — tracking reference output voltages values, \(B\) — input power factor.

\[
g_x = g_{s\alpha} + g_{s\beta} = \left|\text{Re}\left(\frac{u_{x\alpha}(k+1)}{u_s(k+1)}\right)\right| = u_{x\alpha}(k+1) - u_{x\alpha}(k+1) \cdot i_{s\alpha}^\ast(k+1)
\]

where: \(u_s\) — space vector representation of source voltages, \(i_{s\alpha}^\ast, i_{s\beta}^\ast\) — space vector coordinates of \(u_{s\alpha}, u_{s\beta}\) — space vector representation of predicted input currents for \(x\) switches configuration; \(u_{a1}, u_{b2}, u_{c3}\) — voltage measurement, 3) Field Programmable Gate Array (FPGA) for commutation strategy (Xilinx XC3S200).

3. Control Circuit

In **Figure 4** basic functional schema of the control circuit is shown. Furthermore tasks division for hardware in which they are implemented is shown. The control circuit consists of 1) analog/digital (A/D) converters (Analog Devices Inc. AD7679) for currents \(i_a, i_b, i_c\) and voltages \(u_{a1}, u_{b2}, u_{c3}\); 2) Two Digital Signal Processors (DSP) for all calculations (Analog Devices Inc. ADSP21836), 3) Field Programmable Gate Array (FPGA) for commutation strategy (Xilinx XC3S200).

4. Test Results

Studies of the discussed model predictive control for CSMC have been carried out for the circuit parameters collected in **Table 2**. The simulation test results have been obtained by means of Matlab Simulink. Simulation setup is shown in **Figure 5**.

In **Figure 6** example of the space vector geometrical interpretations for reference \(u_{x\alpha}^\ast\) and obtained \(u_i\) output voltages of the CSMC are shown. Vector locus for reference and obtained output voltage space vector representations are shown in **Figure 6**, its coordinates are shown in **Figure 6**. In selected time period \((t_k, t_{k+1})\) output voltage space vector tops and its coordinates predicted for all 27 switching configurations are
Figure 4. Control circuit basic schema.

Figure 5. Example of the space vector geometrical interpretation for output reference u^* and obtained u_* voltages of the CSMC, a) vector locus, b) α coordinates, c) β coordinates. (No. 1 to 27-x-SC number).
shown. It can be seen that predicted vector closest to the reference vector (with smallest g) is selected in time moment $t_{(k+1)}$. In Figure 7 for transfer ratio higher than one and three different frequencies 50 Hz, 25 Hz, 75 Hz CSMC currents and voltages’ time waveforms are presented. The response of the circuit to the output reference voltage changes is shown in Figure 8. In Figure 9 the response of the circuit to the output frequency changes is presented. As it can be seen from Figure 8 and Figure 9 output voltage of the current source matrix converter under proposed model predictive control strategy reaches its reference with a very fast dynamics.

Figure 6. Simulink model for simulation of model predictive control of current source matrix converter.

Figure 7. Simulation input voltages (u_A, u_B, u_C), output voltages (u_a, u_b, u_c) and input currents (i_A, i_B, i_C) for reference output voltage amplitude 260 V and frequency (a) 50 Hz, (b) 25 Hz, (c) 75 Hz.
Figure 8. Simulation time waveforms of the input \((u_A, u_B, u_C)\), output \((u_a, u_b, u_c)\) voltages and input currents \((i_A, i_B, i_C)\) for variable reference output voltage amplitude \(|u_o|\).

Figure 9. Simulation time waveforms of the input \((u_A, u_B, u_C)\), output \((u_a, u_b, u_c)\) voltages and input currents \((i_A, i_B, i_C)\) for variable output voltage frequency \(f_o\).

Table 2. Simulation circuit parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase source voltage/frequency</td>
<td>(u_{\text{off}})</td>
<td>230 V/50 Hz</td>
</tr>
<tr>
<td>Output voltage/frequency</td>
<td>(u_{\text{ofo}})</td>
<td>Adjustment</td>
</tr>
<tr>
<td>Discretization time</td>
<td>(T_D)</td>
<td>10 µs</td>
</tr>
<tr>
<td>Resistance</td>
<td>(R_S/R_L)</td>
<td>0.5 Ω/250 Ω</td>
</tr>
<tr>
<td>Inductance</td>
<td>(L_S)</td>
<td>15 mH</td>
</tr>
<tr>
<td>Capacitance</td>
<td>(C_F)</td>
<td>20 mF</td>
</tr>
</tbody>
</table>
5. Summary

In this paper, model predictive control and a control circuit of the current source matrix converter has been presented. Proposed control strategy allows obtaining output voltages with desired frequency and amplitude. Voltage transfer ratio for CSMC under presented control strategy can be higher than 1. Reference values are reached with fast dynamic. Furthermore, the input power factor can be controlled but it highly depends on circuit elements and set parameters. Future investigations will be focused on the improvement of the input power factor control and experimental implementation of the proposed control strategy in current source matrix converter.

Acknowledgements

This work was supported by the European Union, Human Capital within the project "Scholarships for PhD students studying faculties recognized as particularly important for the development of Lubuskie voivodeship", Sub-8.2.2, Action 8.2, Priority VIII.

References

