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Abstract 
The nonlinear diffusion equation for a binary system interdiffusion was ana-
lytically solved in the previous work. The theoretical relation of Kirkendall ef-
fect was also derived in the previous work. These new results have not yet 
been concretely applied to actual diffusion problems. In the present work, it is 
revealed that the previous results reproduce the experimental concentration 
profile by taking account of the movement of diffusion region space. It is thus 
actually confirmed that any problems of binary system interdiffusion can be 
solved by the new analytical method if even diffusivities of self-diffusion and 
impurity diffusion in the materials concerned are given. The method for solv-
ing interdiffusion problems of many elements system, which is extremely im-
portant for the development of new useful materials, is also reasonably dis-
cussed. Further, it is revealed that the concept of intrinsic diffusion is unsuita-
ble for the diffusion theory. The fundamental theory of diffusion discussed 
here will be useful for analyzing actual diffusion problems in future. 
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1. Introduction 

The diffusion problem is one of the most fundamental and important research 
subjects in the material science field. The diffusion research has been thus widely 
and actively performed in accordance with the industry requirements for the de-
velopment of new useful materials [1] [2] [3] [4] [5]. However, the progress of 
fundamental theory of diffusion had been hardly seen until recently. A lot of 
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research papers accepting the Darken equation [6], which is mathematically 
wrong in the derivation process [7], have been still reported [8] [9] [10] [11] [12]. 
It was thus required to establish a new method for solving interdiffusion prob-
lems. In that situation, the analytical method of the nonlinear diffusion equation, 
which is applicable to analyzing interdiffusion problems, was reported [13] [14] 
[15]. Nevertheless, it does not seem that the method is really applied to analyzing 
results of diffusion experiments. In the present study, therefore, the analytical 
theory of interdiffusion problems is concretely expanded and is applied to expe-
rimental results.  

First of all, we mention here fundamental concept of the diffusion theory in 
mathematics. In general, the usual experiments of interdiffusion between ele-
ments I and II are performed within such a temperature region that the norma-
lized concentrations IC  and IIC  satisfy the relation of 

I II 1C C+ = .                         (1) 

The diffusion equations for IC  and IIC  in the interdiffusion field are 
I I

IC CD
t x x

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

 for the element I              (2) 

and 
II II

IIC CD
t x x

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

 for the element II,             (3) 

where ID  and IID  are diffusivities for the elements I and II. Substituting Equ-
ation (1) into Equations ((2) and (3)) yields 

I I
IC CD

t x x
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
, 

II II
IC CD

t x x
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
 and 

II II
IIC CD

t x x
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
,  

I I
IIC CD

t x x
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
. 

The above equations mean 
2

2 0jD D C
t x x x

 ∂ ∂ ∂ ∂
− − = 

∂ ∂ ∂ ∂ 



  for I, IIj = ,             (4) 

using the so-called interdiffusion coefficient of 
I IID D D= = .                         (5) 

Here, note that Equation (5) is valid only in the differential equation for IC  or 
IIC  [15] [16]. The relation between diffusion fluxes I II IJ J D C x+ = − ∂ ∂ −    

( )II I II 0D C x D C C x∂ ∂ =− ∂ + ∂ =   is also valid only in the differential equation 
of diffusion. On the other hand, when we solve Equation (4) in accordance with 
the given initial and/or boundary values different from each other, the diffusivi-
ties ID  and IID  satisfying I IID D≠  are naturally obtained. When we use 
solutions of Equations (4) for the diffusion flux J D C x= − ∂ ∂ , I II 0J J+ ≠  is 
also valid then. There is thus no doubt that the Kirkendall effect (K effect) rele-
vant to the essence of interdiffusion mechanism is caused by I II 0J J+ ≠  [15] 
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[16] [17] [18]. Nevertheless, the mathematical basics mentioned here had not 
been noticed in the long history of diffusion.  

In order to understand the K effect, therefore, the intrinsic diffusion coeffi-
cients I

INTD  and II
INTD  satisfying I II

INT INTD D≠  were newly conceived in those 
days. Although the Darken equation based on the concept given by 

I II II I
INT INTD D C D C= +                       (6) 

has been widely used for analyzing interdiffusion problems [6] [8] [9] [10] [11] 
[12], the equation itself is not only mathematically wrong in the derivation 
process but also entirely meaningless because of using the intrinsic diffusion 
coefficients nonexistent in the recent diffusion theory [7] [15]. In the present 
work, the physical meaning of K effect is reasonably discussed compared with 
experimental results, regardless of the Darken equation. As discussed at the con-
clusion section, the Gauss divergence theory indicates that the K effect may oc-
cur in the diffusion problems as universal phenomena. 

Applying the analytical solutions of Equation (4) to experimental results of in-
terdiffusion problems [17] [19] [20] [21], we confirmed that the concentration 
profiles are reasonably reproduced in the present work. Hereafter, as mentioned 
above, the Darken equation as well as the concept of intrinsic diffusion will dis-
appear from the theory of interdiffusion problems. On the other hand, the new 
method discussed here will become one of the most useful methods for analyzing 
interdiffusion problems.  

2. Mathematical Theory of Analytical Method 

The diffusion Equations ((2) and (3)) in the time and space ( ),t x  is generally 
rewritten as 

C CD
t x x

∂ ∂ ∂ =  ∂ ∂ ∂ 
,                       (7) 

where the suffixes I and II are removed. When the diffusivity depends on the 
concentration, it had been believed until recently that the mathematical solutions 
of the nonlinear diffusion Equation (7) are impossible. However, the mathemati-
cal method for solving Equation (7) was established in the previous work [13] 
[14]. This means that the diffusion problems including a many elements system 
interdiffusion are essentially solved [18]. The matters necessary for the present 
study are briefly summarized in the following. 

Boltzmann transformed Equation (7) into the ordinary differential equation of 

d d d
2 d d d

C CDζ
ζ ζ ζ

 
− =  

 
,                     (8) 

using the parabolic law x tζ =  [22]. In the previous work [13], Equation (8) 
was rewritten as a formula of diffusion flux in the parabolic space yielding 

( ) ( ) ( )d
d

C
J D

ζ
ζ ζ

ζ
= − ,                     (9) 
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where 

( ) ( )0 0
exp d

2
J J

D
ζ η

ζ η
η

 
= − − 

  
∫  for ( ) ( )

0
0

d
d

C
J D

ζ

ζ
ζ

ζ
=

= . 

In mathematics, the dependence of diffusivity on the concentration means 

d
d
C C C D

Dζ ζ ζ
∂ ∂ ∂

= +
∂ ∂ ∂

.                     (10) 

1) Impurity diffusion 
In case of the impurity diffusion, since the diffusivity of Equation (9) corres-

ponds approximately to a constant value 0D D= , its equation becomes 

( ) ( )
2

1
0

0

d
exp

d 4
C

C
D

ζ ζ
ζ

 
= − 

 
,                  (11) 

where ( )1
0 0d dC C

ζ
ζ

=
= . The solution of Equation (11) is obtained as 

( ) A B A B

0

erf
2 2 2

C C C CC
D
ζ

ζ
 + −

= −   
 

              (12) 

for the initial condition of ( ) AC C−∞ =  and ( ) BC C∞ =  under the normalized 
condition of Equation (1). 

2) Binary system interdiffusion 
By solving simultaneously Equations ((9) and (10)), mathematical solutions of 

Equation ((8) or (9)) are possible (See Ref. [13]). As shown in Figure 1, under 
the condition of initial and/or boundary values A A,j jC D  of a material A and 

B B,j jC D  of a material B for I, IIj =  in the binary system interdiffusion, the 
general solutions of Equation (9), ( )jD ζ  and ( )jC ζ , are obtained as 

( ) A B A B

int

erf ,
2 2 2

j j j j
j j

j

D D D DD
D

ζ
ζ α

 + −  = − +
 
            

(13) 

 

 
Figure 1. Schematic figure of interdiffusion phenomena. The coordinate systems of ( ),t x  and ( ),t x   are set at a point of the 

mass center and at a point of space on the initial interface between materials A and B, respectively. The relation between their 

coordinate systems resulting from the movement of diffusion region space is conceived as t t=   and 
0

t
x x vdt= + ∫ 

  using a ve-

locity v  of the origin of ( ),t x   against the origin of ( ),t x . The notation ● means an inert marker. The partial figures (a), (b) 

and (c) represent the initial state at a room temperature, a state at a high temperature during diffusion treatment and a state at a 
room temperature after diffusion treatment, respectively. 

Material A Material B

initial interface

(a)

inert marker

diffusion region
(b) (c)

diffusion region
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( ) A B A B

int

erf ,
2 2 2

j j j j
j j

j

C C C CC
D

ζ
ζ β

 + −  = − +
 
            

(14)

 
where I II 1C C+ = , ( )int int A B 2j j jD D D D+= = +  for 0ζ ≥ , int int

jD D −= =

A B
j jD D  for 0ζ <  and 1 A B

A B A B

2erf
ln ln

j j
j

j j j j

D D
D D D D

α −  +
= − 

− − 
,  

( ) ( )A B A B
j j j j j jD D D Dβ α= − − + . 

We confirmed that Equations ((13) and (14)) agree well with results of the 
empirical Boltzmann Matano method [13] [22] [23]. 

In order to specify the general solutions, we must determine the initial and/or 
boundary values of diffusivities in the interdiffusion problem. The general method 
for determining them had not been experimentally and theoretically known until 
recently. However, they can be reasonably obtained by using the self-diffusion 
coefficient and impurity diffusion coefficient, since the analytical solutions are 
obtained. Here, note that Equations ((13) and (14)) yield the dependence of dif-
fusivity on the concentration given by 

( )( )A B A B erf ,
2 2

j j j j
j jD D D DD f C+ −
= −  

where  

( ) ( ) ( )1 A B
A B A B

A B A B

2 ( )erf
j j j

j j j j j
j j j j

C C Cf C D D D D
C C C C

ζ−  +
= − + − + 

− − 
. 

As can be easily seen, problems of binary system interdiffusion in the material 
composed of an arbitrary rate between elements I and II are solved by investi-
gating the interdiffusion problem between a pure material I and a pure material 
II. In that case, the above initial and/or boundary values for Equations ((13) and 
(14)) are physically accepted as I I

A selfD D= , I I
B impD D= , I

A 1C = , I
B 0C = , 

II II
A impD D= , II II

B selfD D= , II
A 0C =  and II

B 1C = , using the self-diffusion coefficient 

self
jD  of the material j itself and impurity diffusion coefficient imp

jD  of the ma-
terial j in the other material. The solutions of interdiffusion problem between 
pure materials I and II are thus obtained as 

( )
I I I I
self imp self impI I

I
int

erf ,
2 2 2

D D D D
D

D

ζ
ζ α

 + −
 = − +
 
 

       (15a) 

( )
II II II II
imp self imp selfII II

II
int

erf
2 2 2

D D D D
D

D

ζ
ζ α

 + −
 = − +
 
 

       (15b) 

and  

( )I I

I
int

1 1 erf
2 2

C
D

ζ
ζ β

    = − +     
, ( )II II

II
int

1 1 erf
2 2

C
D

ζ
ζ β

    = + +     
.  (15c) 

Equations ((15a), (15b) and (15c)) show that initial and/or boundary values of 
diffusivities, which are applicable to any interdiffusion problems of a binary system, 
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are expressed as 

( )( )

( )( )

I I I I
self imp self impI I

II II II II
imp self imp selfII II

erf
2 2

erf
2 2

D D D D
D f C

D D D D
D f C

 + −
= −




+ − = −

           (16) 

where  

( ) ( ) ( )( ) ( ) ( ){ }I 1
self imp self imp1 erf 1 2jj j j j j jf C C D D D Dζ− −= − − + − + . 

If we can experimentally obtain even diffusivities of self-diffusion and impuri-
ty diffusion in a material concerned, initial and/or boundary values necessary for 
solving an interdiffusion problem are thus obtained from using Equation (16). 

For the interdiffusion problem of an arbitrary diffusion couple between the 
material A composed of I II

A A, 1C Cγ γ= = −  and the material B composed of 
I II
B B, 1C Cλ λ= = − , Equation (16) shows that the initial and/or boundary values 

of diffusivities are 

( )( )

( )( )

I I I I
self imp self impI

A

I I I I
self imp self impI

B

erf ,
2 2

erf .
2 2

D D D D
D f

D D D D
D f

γ

λ

 + −
= −




+ − = −

           (17a) 

and 

( )( )

( )( )

II II II II
imp self imp selfII

A

II II II II
imp self imp selfII

B

erf 1 ,
2 2

erf 1 .
2 2

D D D D
D f

D D D D
D f

γ

λ

 + −
= − −




+ −
= − −

         (17b) 

The initial and/or boundary values of diffusivities corresponding to each ele-
ment in a material composed of an arbitrary concentration rate for elements I 
and II were thus obtained as Equations ((17a) and (17b)). Therefore, the diffu-
sivity profile of Equation (13) is obtained by using these diffusivity values of Eq-
uations ((17a) and (17b)). At the same time, the concentration profile of Equa-
tion (14) is also obtained by using these diffusivity values. As a matter of course, 
the diffusivity values of Equations ((17a) and (17b)) are also applied to int

jD , jα  
and jβ  in Equations ((13) and (14)).  

In addition, the K effect shows that the diffusion region space, which is com-
posed of vacancies and/or interstices among micro particles in a material, moves 
through the migration of their micro particles [17]. It is also physically consi-
dered that the diffusion region space interacts with the free space near the sur-
face of specimen considered to be the sink and source [18]. This means that the 
coordinate transformation of the diffusion equation is necessary for analyzing 
interdiffusion problems [15] [16]. Using the solutions obtained here, the relation 
of K effect effx∆  was obtained as 

( )( )I II I I
eff A B A Bx D D C C t∆ = − −                (18) 
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in consistency with the empirical equation satisfying the parabolic law [15] [16] 
[18]. 

3) Determination of initial and/or boundary values of diffusivities in a ternary 
system interdiffusion 

It is revealed that the so-called interdiffusion coefficient in a many elements 
system is meaningful only in the differential equation of diffusion [15] [18]. In the 
following, we first investigate the interdiffusion problem between the material A 
composed of elements I and II and the pure material B composed of an element III. 
Their initial concentrations are expressed as I

AC γ= , II
A 1C γ= − , III

A 0C = , 
I
B 0C = , II

B 0C = , III
B 1C =  under the normalized condition of I II III 1C C C+ + =  

in the diffusion region.  
In that case, the initial and/or boundary values of diffusivities in the ternary 

system, I I
A A,tnyD D=  and II II

A A, tnyD D= , for I and II in the material A are consi-
dered to be I I

A,tny A,bnyD D=  and II II
A, tny A,bnyD D= , where ID  and IID  of Equa-

tions ((17a) and (17b)) obtained by analyzing the problems of binary system in-
terdiffusion are rewritten as I I

A A,bnyD D=  and II II
A A,bnyD D= . The initial and/or 

boundary value of diffusivity III III
A A, tnyD D=  for III in the ternary system inter-

diffusion is acceptable as III III
A, tny A,impD D=  using the impurity diffusion coefficient 

III
A,impD  of III in the material A. In the same manner, those values I

B, tnyD , II
B, tnyD  

and III
B, tnyD  in the material B are considered to be I I

B, tny B,impD D= , II II
B, tny B,impD D=  

and III III
B, tny B,selfD D= , using impurity diffusion coefficients of elements I, II in the 

material B and the self-diffusion coefficient of the material B. 
The present solutions of a ternary system interdiffusion problem are thus easi-

ly obtained as follows [18].  

( ) ( )
( ) ( )
( ) ( )

I I I I
A,bny B,imp A,bny B,impI I I

int

II II II II
A,bny B,imp A,bny B,impII II II

int

III III III III
A,imp B,self A,imp B,selfIII III III

int

erf 2
2 2

erf 2
2 2

erf 2
2 2

D D D D
D D

D D D D
D D

D D D D
D D

ζ ζ α

ζ ζ α

ζ ζ α

 + −
= − +


+ −

= − +


+ −
= − +



    (19) 

where 
I I
A,bny B,impI 1
I I I I
A,bny B,imp A,bny B,imp
II II
A,bny B,impII 1
II II II II
A,bny B,imp A,bny  B,imp
III III
A,imp B,selfIII 1
III III
A,imp B,self A,i

2erf
ln ln

2erf
ln ln

2erf
ln

D D
D D D D

D D
D D D D

D D
D D D

α

α

α

−

−

−

 +
= −  − − 

 +
= −  − − 

+
= −

− III III
mp B,selfln D








  
    − 

 

and  

( )
( )
( )

I I I I
int int A,bny B,imp

II II II II
int int A,bny B,imp

III III III III
int int A,imp B,self

2

2

2

D D D D

D D D D

D D D D

+

+

+

 = = +

 = = +


= = +

 for 0ζ ≥  and  

https://doi.org/10.4236/jmp.2018.92009


H. Cho et al. 
 

 

DOI: 10.4236/jmp.2018.92009 137 Journal of Modern Physics 
 

I I I I
int int A,bny B,imp

II II II II
int int A,bny B,imp

III III III III
int int A,imp B,self

D D D D

D D D D

D D D D

−

−

−

 = =

 = =

 = =


 for 0ζ < . 

The concentrations are 

( )

( )

( )

I I

I
int

II II

II
int

III III

III
int

1 erf
2 2

1 1 erf
2 2

1 1 erf
2 2

C
D

C
D

C
D

γ ζζ β

γ ζζ β

ζζ β

   
   = − +
   

  
   −   = − +      
      = + +      

             (20) 

where 
I I
A,bny B,impI I

I I
A,bny B,imp

D D

D D
β α

−
= −

+
, 

II II
A,bny B,impII II

II II
A,bny B,imp

D D

D D
β α

−
= −

+
,  

III III
A,imp B,selfIII III

III III
A,imp B,self

D D

D D
β α

−
= −

+
. 

Further, using the following relations of 

( ) ( ){ } ( ) ( )
( ) ( ) ( ){ } ( ) ( )
( ) ( ){ } ( ) ( )

I 1 I I I I I
A,bny B,imp A,bny B,imp

II 1 II II II II II
A,bny B,imp A,bny B,imp

III 1 III III III III III
A,imp B,self A,imp B,self

erf 1 2

erf 1 2 1

erf 2 1

f C C D D D D

f C C D D D D

f C C D D D D

ζ γ

ζ γ

ζ

−

−

−

 = − + − +
 = − − + − +

 = − + − +

 (21) 

the dependences of diffusivity on the concentration are obtained as 

( ) ( )( )

( ) ( )( )

( ) ( )( )

I I I I
A,bny B,imp A,bny B,impI I

II II II II
A,bny B,imp A,bny B,impII II

III III IIII III
A,imp B,self A,imp B,selfIII III

erf
2 2

erf
2 2

erf
2 2

D D D D
D f C

D D D D
D f C

D D D D
D f C

ζ

ζ

ζ

 + −
= −


 + − = −

 + −
 = −


.       (22) 

4) Ternary system interdiffusion 
For a ternary system interdiffusion problem between materials composed of 

an arbitrary concentration rate, for example, a material A composed of I I
A AC µ= , 

II II
A AC µ=  and III III

A AC µ=  and a material B composed of I I
B BC µ= , II II

B BC µ=  
and III III

B BC µ= , the solutions are possible under the condition of I II III
A A Aµ µ µ+ +

1=  and I II III
B B B 1µ µ µ+ + = . In that case, we must determine the initial and/or 

boundary values of diffusivities for each element in the materials A and B. In Eq-
uation (20), we first determine the point of Aζ ζ=  satisfying a given III III

A AC µ=  
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as follows 

( ){ }I 1 III III
A int A2 erf 2 1Dζ µ β−= − − .               (23) 

By substituting Aζ ζ=  into equation (20) and using a parameter γ  for the 
given values of I

Aµ  and II
Aµ , the relations of  

I IA
A I

int

1 erf
2 2 D

ζγ
µ β

  
  = − +

  
  

 and II IIA
A II

int

1 1 erf
2 2 D

ζγ
µ β

  −   = − +
  
  

 (24) 

are reasonably valid in the diffusion region of the interdiffusion problem men-
tioned above.  

The initial and/or boundary values of diffusivities in the ternary system inter-
diffusion, which are applicable to the material A composed of the concentration 
rate I I

A AC µ= , II II
A AC µ=  and III III

A AC µ= , are thus obtained as 

( )( )

( )( )

( )( )

I I I I
A,bny B,imp A,bny B,impI I

A A

II II II II
A,bny B,imp A,bny B,impII II

A A

III III III III
A,imp B,self A,imp B,selfIII III

A A

erf
2 2

erf
2 2

erf
2 2

D D D D
D f

D D D D
D f

D D D D
D f

µ

µ

µ

 + −
= −


 + − = −

 + −

= −


         (25) 

by using Equation (21). 
In a similar manner, we can determine the initial and/or boundary values of 

diffusivities I
BD , II

BD  and III
BD  which are applicable to the ternary system in-

terdiffusion in the material B composed of the concentration rate I I
B BC µ= , 

II II
B BC µ=  and III III

B BC µ= . Using these initial and/or boundary values, the ana-
lytical solutions of the ternary system interdiffusion are reasonably obtained as  

( ) A B A B

int

erf
2 2 2

j j j j
j j

j

D D D DD
D

ζ
ζ α

 + −  = − +
 
 

 for I, II and IIIj =    (26) 

and  

( ) A B A B

int

erf
2 2 2

j j j j
j j

j
C

D

µ µ µ µ ζζ β
 + −  = − +
 
 

 for I, II and IIIj =     (27) 

In the above theory, the K effect is obtained as 

( )
III

eff A B
I

j j j

j
x D C C tω

=

∆ = −∑ ,                 (24) 

where Aω →  if A B
j jC C>  and Bω →  if A B

j jC C<  [18]. 
As can be seen from the above analytical method, the successive calculations 

yield the solutions of a ( )1N +  elements system interdiffusion problem by 
solving an interdiffusion problem between a material composed of N elements 
and a pure material. 
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3. Analysis of Experimental Results 

Kirkendall found that Zn atoms diffuse faster than Cu atoms in the Zn-Cu alloy 
[17] [19] [20]. The molybdenum wire set at a point on the initial interface be-
tween the pure copper and the brass (Cu-70%, Zn-30%) was used as an inert 
marker then. The diffusion treatment was performed at the temperature 880˚C 
during 119 days in the experiment. In the present work, we apply the above 
theory to the historical experimental results first known as the K effect. The ini-
tial values of concentration in Figure 1 are I Zn

A A 0C C= = , II Cu
A A 1C C= = , 

I Zn
B B 0.3C C= =  and II Cu

B B 0.7C C= =  then. In that case, however, it is difficult to 
apply the analytical method resulting in Equations ((17a) and (17b)), since the 
pure Zn melts at a temperature of 420˚C. We cannot thus understand the self- 
diffusivity Zn

B,selfD  in the above theory. On the other hand, the diffusivity of a 
metal near the temperature of melting point becomes about 12 2 110 m s− −⋅  re-
gardless of its kind [8]. The value of Zn

B,selfD  is determined as follows in the  
present work. 

The relation of K effect generalized from Equation (18) is used for determin-
ing the value of Zn

B,selfD  compared with the empirical relation of effx m t∆ = . 
The relation of 

( )( )Zn Zn Zn Zn
A B A B

2m D D C C
µ

= − −                (27) 

is thus valid in the present case [15] [18]. For the diffusion length Dtµ , 
2µ =  is used as a matter of convenience for Equation (18). Here, the impurity 

diffusivity of Zn in the pure Cu given by Zn 14 2 1
A,imp 8.3 10 m sD − −= × ⋅  is adopted 

as a Zn
AD  value in the present study [21]. Substituting the initial values, Zn

A 0C = , 
Zn
B 0.3C = , and Zn 14 2 1

A 8.3 10 m sD − −= × ⋅  into Equation (27), the relation of 

Zn 7
B

5 m8.3 10
3

D − µ
= ×                     (28) 

is obtained. For example, the experimental data at 785˚C indicate  
7 0.51.22 10 m sm − −= × ⋅ . With reference to the numerical behavior of solutions, 

Zn 12 2 1
B 1.25 10 m sD − −= × ⋅  is thus adopted as a physically reasonable value in the 

present study. Here, the solution of basic diffusion Equation (7) for the present 
problem is expressed as 

( )Zn Zn

Zn
int

3 1 erf ,
20 2

xC x
D t

β
    = + +     

             (29) 

using the defined Zn
intD  and Znβ . 

In Figure 2, the black curve denotes the concentration profile of Zn given by 
Equation (29) of the fixed coordinate system at the temperature 880˚C and diffu-
sion time 54.284 10 st = × . In the same figure, the red curve denotes the con-
centration profile of Zn at a room temperature after the diffusion treatment and  
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Figure 2. Concentration profile of Zn in the diffusion region of Zn-Cu alloy. The nota-
tion ○ indicates an experimental value at a given point in the diffusion region. The 
black curve shows Equation (29) at the temperature 880˚C and the time 54.284 10  s×  
regardless an effect of vacancies. The red curve shows Equation (30) for 0x >  at a room 
temperature after the diffusion treatment and it is taken account of an effect of vacancies. 
The dotted blue curve shows Equation (30) for 0x <  at a room temperature after the 
diffusion treatment and the blue curve is taken account of an effect of vacancies in accor-
dance with a situation for 0x <  then. The dotted green line indicates the so-called Kir-
kendall effect. 

 
also the K effect shown by the dotted green line is experimentally obtained as 

5
eff 7.5 10 mx −∆ = ×  then. Here, note that the unbalanced vacancies between the 

regions of 0x >  and 0x <  at the temperature 880˚C and diffusion time 
54.284 10 st = ×  become a distribution in the thermal equilibrium state at a 

room temperature.  
Considering the inert characteristic of marker, the movement of an inert 

marker shows that the diffusion region space moves to the inverse orientation 
against the movement of diffusion particles. As discussed in the previous works, 
the coordinate transformation of the diffusion equation is thus indispensable for 
understanding the K effect [15] [16] [18]. In the present case, therefore, the ori-
gin of fixed coordinate system ( ),t x  is set at the point of mass center on the in-
itial interface and the origin of moving coordinate system ( ),t x   is set at a point 
of space on the initial interface under the condition of t t=   and 

0
d

t
x x v t= + ∫ 

 , 
where v is a velocity of the origin of ( ),t x   against the origin of ( ),t x . Equation 
(27) indicates that the velocity v of the origin of ( ),t x   expressed as  

( )( )Zn Zn Zn 0.5
A B A B

1 Znv D D C C t
µ

−= − − . 
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Introducing the effect of shift sft 0
d

t
x v t= ∫   into Equation (29), the concentra-

tion profile for 0x >  at a room temperature is expressed as 

( )Zn Znsft

Zn
int

3 1 erf
20 2

x x
C x

D t
β

+  + ∆  = + +     
              (30)

 

using the notation of sft sft effx x x+∆ = − ∆ , since the excess vacancies disappear 
during a temperature fall after the diffusion treatment. In other words, the 0x =  
axis and the inert marker on the sftx x=  interface return to effx x= ∆  called 
the Kirkendall interface after the diffusion treatment [15] [16].  

The red curve approximately agrees with the experimental results for 0x >  
under the condition of 4

sft 3 10 mx+ −∆ = × , but the dotted red curve is over shifted 
in the region of 0x <  compared the experimental results. Resulting from the 
diffusion behavior of Zn atoms, the material B side of diffusion couple is in a su-
persaturated state of vacancies, while the material A side is in an unsaturated 
state of vacancies. The red curve of Equation (30) should be thus accepted only 
in the region for 0x > . In the present case, the material A is the pure Cu and it 
seems that Zn atoms on the interface near Ax x=  in the diffusion region of 

A Bx x x≤ ≤  diffuse into the pure Cu as impurities, if we neglect the vacancy be-
havior in the diffusion field. This indicates that we can thus adopt Zn Zn

int- A,impD D=  
in Equation (30) for 0x <  as a first approximation.  

The dotted blue curve denotes the concentration of Zn for 0x <  at a room 
temperature. Further, taking account of the effect of vacancies for 0x < , the 
blue curve shifts to the positive direction of the x  axis under the condition of 
the shift 4

sft 1.2 10 mx x− + −∆ = ∆ − × resulting from the unsaturated vacancies for 
0x < . The shifted blue curve agrees approximately with the experimental results 

for 0x <  at the room temperature after the diffusion treatment. As a result, this 
gives an evidence for the validity of present method for determining an initial 
and/or boundary value of diffusivity discussed in the section 2.  

Using Equations ((29), (30)), the concentration profile of experimental results 
was physically reproduced as shown by the red curve for 0x >  and the blue 
curve for 0x <  in Figure 2. However, the correlation between effx∆  and sftx  
is considerably complicated as discussed in the following. As mentioned above, 
the diffusion region space moves to the positive direction of x axis in the present 
case. The inert maker on the initial interface moves to sftx x=  during diffusion 
treatment in accordance with the movement of 0x =  axis then. During the 
temperature fall from 880˚C to a room temperature after diffusion treatment, the 
supersaturated vacancies for 0x >  flow to the negative direction of x axis be-
cause of the unsaturated state of vacancies in the region of 0x < , and at the 
same time they also flow to the specimen surface considered to be the sink and 
source of vacancies then. The inert marker does not move to the direction of x 
axis even if vacancies flow to the specimen surface perpendicular to the x axis. 
Therefore, the inert marker on the sftx x=  interface returns to effx x= ∆  dur-
ing the temperature fall because of the vacancy flow along the x axis.  
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4. Discussion and Conclusions 

Using the analytical solutions expressed by Equations ((29) and (30)), the inter-
diffusion problem between the pure copper and brass alloy was reasonably 
solved in the present study, regardless of the Darken equation. It was concretely 
confirmed that the Darken equation, which has been widely used for analyzing 
problems of binary system interdiffusion, is not only actually unnecessary but 
also theoretically unsuitable for analyzing the interdiffusion problems. By apply-
ing the diffusion theory obtained previously to the actual interdiffusion problem, 
the necessity of coordinate transformation for the diffusion equation was con-
cretely confirmed in the present work. At the same time, it was also confirmed 
that the concept of intrinsic diffusion is nonexistent from the beginning.  

The quantity of excess vacancies corresponding to ( )sft effx x− ∆  returns to the 
negative direction of x axis after the diffusion treatment. In other words, the 
quantity of excess vacancies corresponding to effx∆  flows toward the specimen 
surface. The K effect thus corresponds to the quantity of vacancies absorbed by 
the specimen surface considered to be the sink and source of vacancies.  

In the region of pure copper, it is considered that diffusion behavior is ap-
proximately acceptable as an impurity diffusion mechanism if we neglect the ef-
fect of vacancies for interdiffusion problems. In fact, the result based on the con-
cept was reasonably obtained. This gives evidence that the analytical method for 
solving interdiffusion problems of many elements system is valid, since we can 
determine initial and/or boundary values of diffusivities as discussed in the Sec-
tion 2. 

For the developments of new useful materials, solving interdiffusion problems 
between materials is fundamentally one of the most important research subjects. 
The new analytical method discussed here will be widely applicable to analyzing 
the interdiffusion problems of many elements system. Behavior of vacancies 
plays extremely important role in the interdiffusion problems. In order to under-
stand further detailed diffusion behavior, solving the diffusion equation of va-
cancies in the diffusion region will be necessary [15] [18].  

Here, the conclusions obtained from the present work are summarized as fol-
lows. 

1) It was confirmed that the concept of intrinsic diffusion is not only unneces-
sary but also wrong from a viewpoint of mathematical physics. The Darken equ-
ation should not be used for interdiffusion problems. 

2) The Gauss divergence theorem indicates that the diffusion flux ( ),J t x  
given by 

( ) ( ) eq,J t x D C x J t J= − ∂ ∂ + +  

is valid because of ( ){ }eq 0x J t J∂ ∂ + =  [24]. Here, the flux ( )J t  means a 
movement of space within the diffusion region and the K effect gives evidence 
for its validity. The flux eqJ  independent of the time and space plays an impor-
tant role in the self-diffusion mechanism [15]. It was also confirmed that the 
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theoretical relation of K effect derived from ( )J t  of each element is reasonably 
valid. 

3) We found that the present analytical theory is essentially indispensable for 
analyzing actual interdiffusion problems. 

In Appendix, we would like to report the errors of equations in Refs. [13] [14] 
[15] [16] [18] relevant to the present work. 
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Appendix 

1) The equation of  

( ) ( )IN A B A B A B2 j j j j j jD D D D D Dξ = − +  for I, IIj =  and/or no-suffix j  

used at the pages 2223 and 2227 in Ref. [6], at the page 258 in Ref. [7], at the 
page 2129 in Ref. [8], at the page 911 in Ref. [9] and at the page 5 in Ref. [11] 
should be revised as 

( ) ( )IN int- A B A B2 j j j j jD D D D Dξ = − +  for int- A B
j j jD D D=  

2) The equation of  

( )d
d j n j

j

C C D
D

ξ
ξ

∂
= ∂ + ∂

∂
 

used as Equation (4)-(10) at the page 2124 in Ref. [8] should be revised as  

d
d j j

j

C CC D
Dξ
∂

= ∂ + ∂
∂

 for ( )nC C ξ= . 

3) The equation of 

1IN A B A B

A B A Bint-

2erf
2 ln ln2

j j j j
j

j j j jj

C C D D
D D D DD

ξ
β −   − + = − + −  

− −   
 

used at the page 911 in Ref. [9] should be revised as 

1IN A B

A B A Bint-

2erf
ln ln2

j j
j

j j j jj

D D
D D D DD

ξ
β −  +

= − + − 
− − 

. 
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