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Abstract 
The present paper describes the energy analysis of a regenerative vapour 
power system. The regenerative steam turbines based on the Rankine cycle 
and comprised of vapour extractions have been used industrially since the be-
ginning of the 20th century, particularly regarding the processes of electrical 
production. After having performed worked in the first stages of the turbine, 
part of the vapour is directed toward a regenerative exchanger and heats 
feedwater coming from the condenser. This process is known as regeneration, 
and the heat exchanger where the heat is transferred from steam is called a 
regenerator (or a feedwater heater). The profit in the output brought by rege-
nerative rakings is primarily enabled by the lack of exchange of the tapped 
vapour reheating water with the low-temperature reservoir. The economic 
optimum is often fixed at seven extractions. One knows the Carnot relation, 
which is the best possible theoretical yield of a dual-temperature cycle; in a 
Carnot cycle, one makes the assumption that both compressions and expan-
sions are isentropic. This article studies an ideal theoretical machine com-
prised of vapour extractions in which each cycle partial of tapped vapour ob-
eys these same compressions and isentropic expansions. 
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1. Introduction 

The work output is maximised when the process between the two specified states 
is executed in a reversible manner. However, according to the second law of 
thermodynamics, such a reversible process is not possible in practice. A system 
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delivers the maximum possible work as it undergoes a reversible process from 
the specified initial state to the state of its environment, that is, the dead state.  

According with M.Pandey, T.K Gogoi [1], the study of thermodynamic cycles 
applied to power stations is of great importance due to the increasing energy 
consumption, the opening of electricity markets and the increasingly strict envi-
ronmental restrictions (specifically regarding the carbon dioxide emissions is-
sue). Power plants that use steam as their working fluid operate on the basis of 
the Rankine cycle (1). The first stage in designing these power plants is per-
forming the thermodynamic analysis of the Rankine cycle. 

According with Da Cunha, A., Fraidenraich, N. and Silva, [2] and Baumann, 
K., [3], the regenerative cycle is a modified Rankine cycle which intends to 
improve the efficiency of the system. Baumann (1930) analyzed the develop-
ment of steam cycle power during years, using high steam pressure and tem-
perature, with the objective to improve the efficiency of the power plants. 
There are some advantages of regenerative power cycle compared of Rankine 
cycle. The thermal stresses in the collectors are minimized because of the water 
being hotter. The steam condenser size can be reduced, the pumps energy to 
cool the steam condenser is reduced in the same proportion. But also there are 
some disadvantages as the plant become more complicated, more expensive 
and increase the number of maintenance. Many industries use steam based 
thermodynamic cycles. Water steam is generated in a boiler, which brings the 
steam to a high pressure and a high temperature. The steam expands in a tur-
bine to produce work. The steam then passes through a condenser. In this 
cycle, referred to as the Rankine or Hirn cycle, the heat referred to as “waste” 
is the heat exchanged in the condenser. 

A regenerative cycle is a cycle in which part of the waste heat is used for heat-
ing the heat-transfer fluid. Since the early 20th century, steam turbines have been 
most frequently used in regenerative cycles, e.g., in thermal and nuclear power 
plants. These steam engines are equipped with five to seven steam extractions. 
Part of the steam that performed work in the turbine is drawn off for use in 
heating the water. Regeneration or the heating up of the feedwater by the steam 
extracted from the turbine has a marked effect on the cycle efficiency. Figure 1 
presents diagram of a regenerative steam extraction. 

The mass of steam generated for the given flow rate of flue gases is determined 
by the energy balance. In fact, the drawn-off steam is proportional to the flow of 
water to be heated to conserve both mass and energy.  

2. Simple Rankine Cycle 
2.1. Real Cycle 

The thermodynamics first principle stipulates that over a cycle, 0W Q+ = . 
0W Q+ =                           (1) 

0H CW Q Q− + − =                        (2) 

H CQ Q W− =                          (3) 
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Figure 1. Diagram of a regenerative steam extraction cycle. 
 

where, 

HQ  = mass enthalpy of the high-temperature reservoir. 

CQ  = mass enthalpy of the low-temperature reservoir. 
The transferred energy is equal to the differential specific enthalpy multiplied 

by the fluid mass 

E m h= ×∆                           (4) 

The energy efficiency of the engine power is defined as  

H

W
Q

η =                            (5) 

The efficiency is rewritten using (1), (3) and (5) as follows: 

H C

H

Q Q
Q

η
−

=                          (6) 

The following is deduced from (4) and (6): 

( )H HS CWQ m h h= −                        (7) 

( )C CS CWQ m h h= −                        (8) 

where: 
m  = fluid mass. 

HSh  = specific enthalpy of the hot vapour to the admission of the turbine. 

CWh  = specific enthalpy in liquid form. 

CSh  = specific enthalpy of the cold vapour to the exhaust of the turbine. 
Figure 2 presents the real Rankine cycle in T-s diagram. 
The cycle performance is deduced from (5)-(8) as 

( ) ( )
( )

HS CW CS CW

HS CW

m h h m h h
m h h

η
− − −

=
−

                 (9) 

2.2. Ideal Carnot Cycle 

Let us consider now that the cycle is performed with ideally isentropic com-  
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Figure 2. The real Rankine cycle (shown in red). 

 
pressions and isentropic expansions.  

According with Lucien Borel [4], the heat exchanged with the high-temperature 
reservoir is equal to 

( )
0

d
HT

H H CS CWQ s mT s s= = −∫                   (10) 

where 

HT  = temperature of the high-temperature reservoir. 

CSs  = cold vapour specific entropy to the exhaust of the turbine. 

CWs  = cold condensate water specific entropy. 
Figure 3 presents the real Rankine cycle in T-s diagram in red en the coloured 

surface corresponds to the total energy of a high-temperature reservoir that 
would be necessary if the cycle obeyed the assumptions of isentropic compres-
sions and isentropic expansions (10). 

The heat exchanged with the low-temperature reservoir is equal to 

( )
0

d
CT

C C CS CWQ s mT s s= = −∫                   (11) 

where CT  = temperature of the low-temperature reservoir.  
Figure 4 presents the Real cycle in red. The coloured surface corresponds to 

the total energy of low-temperature reservoir that would be necessary if the cycle  
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Figure 3. The real cycle is represented in red. The coloured surface corresponds to the 
total energy of a high-temperature reservoir that would be necessary if the cycle obeyed 
the assumptions of isentropic compressions and isentropic expansions (10). 

 

 
Figure 4. The Real cycle is represented in red. The coloured surface corresponds to the 
total energy of low-temperature reservoir that would be necessary if the cycle obeyed the 
assumptions of isentropic compressions and expansions (11). 
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obeyed the assumptions of isentropic compressions and expansions (11). 
The cycle efficiency is deduced from (6), (10) and (11) as 

( ) ( )
( )

H CS CW C CS CW

H CS CW

mT s s mT s s
mT s s

η
− − −

=
−

              (12) 

which is equal to the Carnot factor. 

1H C C

H h

T T T
T T

η
−

= = −                      (13) 

3. Thermodynamics Analysis of Steam Power Cycle with One 
Feed Waterheater 

3.1. Real Cycle with One Feedwater Heater 

We study here the evaluation of the output of a cycle comprised of only 1 steam 
extraction. 

To determine the output of the cycle comprising an extraction, we separate 
this cycle into 2 partial cycles. 

The heat of the hot reservoir in the cycle is equal to the sum of the heat of the 
hot reservoir of the principal cycle and the heat of hot reservoir of the cycle par-
tial of the extraction vapour: 

The heat of hot reservoir of the principal cycle is equal to (7). 
The heat of hot reservoir of the cycle partial of the extraction vapour is equal 

to 

( )HEX ex HS EXWQ m h h= −                     (14) 

where 

HEXQ  = enthalpy of the hot reservoir of the cycle partial of extraction. 

exm  = extraction vapour mass. 

EXWh  = extracted steam specific enthalpy in liquid form. 
One form of the deduced total heat from the hot reservoir: 

( ) ( )H HS CW ex HS EXWQ m h h m h h= − + −               (15) 

where 
m  = vapour mass exchanging with the low-temperature reservoir in the 

condenser 
The heat of the low-temperature reservoir in the cycle is equal to the sum of 

the heat of the low-temperature reservoir of the principal cycle and the heat of 
the low-temperature reservoir of the partial cycle of the tapped vapour: 

The heat of low-temperature reservoir of the principal cycle is equal to (8) 

( )C CS CWQ m h h= −  
The heat of low-temperature reservoir of the cycle partial of the tapped va-

pour is equal to: 

( )CEX ex EXS EXWQ m h h= −                     (16) 

where 
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CEXQ  = enthalpy of the low-temperature reservoir of the partial cycle of ex-
traction 

EXSh  = the mass vapour enthalpy harnessed by the extraction side. 
One form of the deduced total heat from the low-temperature reservoir: 

( ) ( )C CS CW ex EXS EXWQ m h h m h h = − + −               (17) 

The cycle efficiency is deduced from (6), (15) and (17) 

( ) ( ) ( ) ( )
( ) ( )

HS CW ex HS EXW CS CW ex EXS EXW

HS CW ex HS EXW

m h h m h h m h h m h h
m h h m h h

η
   − + − − − + −   =

− + −
 (18) 

The output of a regenerative cycle comprising an extraction is clearly higher 
than that of a non-regenerative simple cycle. It is enough to compare the expres-
sions of the output in (18) and in (9). 

The mass of the steam generated for the given flow rate of flue gases, mex, is 
obtained from the energy balance. 

Heat gained by the steam = Heat lost by the flue gases. 

( ) ( )ex EXW EXS EXW CWm h h m h h− = −  

EXW CW
ex

EXW EXS

h h
m m

h h
−

=
−

                      (19) 

Figure 5 presents the cycle represented in red is the principal cycle traversed  
 

 
Figure 5. The cycle represented in red is the principal cycle traversed by the vapour mass 
“m”. The cycle represented in blue is the cycle traversed by the mass “mex” of the tapped 
vapour.  
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by the vapour mass “m”. The cycle represented in blue is the cycle traversed by 
the mass “mex ”of the tapped vapour. 

3.2. Ideal Cycle Comprised of One Feedwater Heater 

Let us now consider that the two cycles are ideally performed via compressions 
and expansions that are isentropic.  

Let us separate the cycles into two partial cycles. 
The heat of the hot reservoir in the cycle is equal to the sum of the heat of the 

hot reservoir of the principal cycle and the heat of the hot reservoir of the partial 
cycle of the tapped vapour: 

The heat of hot reservoir of the principal cycle is equal to (10). 

( )
0

d
HT

H H CS CWQ s mT s s= = −∫
 

Figure 6 presents the real principal cycle traversed by the vapour “m” mass is 
represented in red. The coloured surface corresponds to the total energy of the 
hot reservoir that would be necessary if the cycle obeyed the assumptions of 
isentropic compressions and isentropic expansions (10). 

 

 
Figure 6. The real principal cycle traversed by the vapour “m” mass is represented in red. 
The coloured surface corresponds to the total energy of the hot reservoir that would be 
necessary if the cycle obeyed the assumptions of isentropic compressions and isentropic 
expansions (10).  
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( )d
H

EX

T

HEX EX H CS CW
T

Q s m T s s= = −∫                 (20) 

Figure 7 presents the cycle represented in blue the real cycle traversed by the 
mass “mex” of the tapped vapour. The coloured surface corresponds to the total 
energy of the hot reservoir that would be necessary if the 2 cycles obeyed the as-
sumptions of isentropic expansions and isentropic compressions (20). 

One deduces the total heat from the hot reservoir as follows: 

( ) ( )H H CS CW EX H CS CWQ mT s s m T s s= − + −             (21) 

The heat of the low-temperature reservoir in the cycle is equal to the sum of 
the heat of the low-temperature reservoir of the principal cycle and the heat of 
the low-temperature reservoir of the partial cycle of the tapped vapour: 

The heat of the low-temperature reservoir of the principal cycle is equal to 
(11). 

( )
0

d
CT

C C CS CWQ s mT s s= = −∫
 

Figure 8 presents the cycles in T-s diagram. The cycle represented in red is  
 

 
Figure 7. The cycle represented in blue is the real cycle traversed by the mass “mex”of the 
tapped vapour. The coloured surface corresponds to the total energy of the hot reservoir 
that would be necessary if the 2 cycles obeyed the assumptions of isentropic expansions 
and isentropic compressions (20). 
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Figure 8. The cycle represented in red is the real cycle traversed by the mass “m” of the 
vapour. The coloured surface corresponds to the total energy of the low-temperature re-
servoir that would be necessary if the 2 cycles obeyed the assumptions of isentropic com-
pressions and isentropic expansions. 

 
the real cycle traversed by the mass “m” of the vapour. 

The coloured surface corresponds to the total energy of the low-temperature 
reservoir that would be necessary if the 2 cycles obeyed the assumptions of isen-
tropic compressions and isentropic expansions. 

The heat of the low-temperature reservoir of the extracted steam partial cycle 
is equal to: 

( )
0

d
EXT

CEX EX EX CS CWQ s m T s s= = −∫                 (22) 

Figure 9 presents the cycles in T-s diagram. The heat of the low-temperature 
reservoir of the partial cycle of extraction is represented by the coloured surface. 
Note that the difference in entropy mass s is equal to the difference between the 
mass entropy of the cold vapour and the mass entropy of condensate of the 
principal cycle. 

( ) ( )C C CS CW EX EX CS CWQ mT s s m T s s= − + −             (23) 

The energy efficiency is deduced from (6), (22), and (23): 
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Figure 9. The heat of the low-temperature reservoir of the partial cycle of extraction is 
represented by the coloured surface. Note that the difference in entropy mass s is equal to 
the difference between the mass entropy of the cold vapour and the mass entropy of con-
densate of the principal cycle. 

 

( )( ) ( ) ( )
( )( )

CS CW EX CS CW EX EX CS CW

H CS CW EX

TH s s m m mTC s s m T s s
T s s m m

η
 − + − − + − =
− +  

which can be expressed as: 

( ) ( )
( )

( )
( )

1H EX C EX EX C EX EX

H EX H EX

T m m mT m T mT m T
T m m T m m

η
+ − + +

= = −
+ +

      (24) 

Applying Equation (19), one determines the mex mass value according to the 
m mass: 

EX C
EX

EX

T T
m m

T
−

=                       (25) 

1 1

EX C EX C
C EX C EX

EX EX

EX C EX C
H H

EX EX

T T T TmT m T T T
T T
T T T TT m m T m m

T T

η

   − −
+ +   

   = − = −
   − −

+ +   
     

1
1

EX

EX C
H

EX

T
T TT

T

η = −
 −
+ 

 

                    (26) 

https://doi.org/10.4236/jmp.2017.811107


D. Alain 
 

 

DOI: 10.4236/jmp.2017.811107 1806 Journal of Modern Physics 
 

4. Generalised Thermodynamics Analysis of a Steam Power 
Cycle with “N” Number of Feedwater Heaters 

4.1. Real Cycle with Two Feedwater Heaters 

The thermodynamic cycles of steam turbines are comprised of between five and 
eight extractions. We treat here the case of a machine comprised of two extrac-
tions; this methodology can be extended to account for a higher number of ex-
tractions. The output is deduced from (18) 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 2 2

2 2

1 CS CW ex EX S EX W ex EX S EX W

CS CW ex HS EXW ex HS EX W

m H H m H H m H H
m H H m H H m H H

η
 − + − + − = −

− + − + −
 (27) 

where: 

1exm  = vapour mass of the first extraction. (Recall that the classification 
numbering of conventional feedwater heaters starts from the condenser.) 

1EX Wh  = specific enthalpy of the steam that heats feedwater heater number 1. 

2EXm  = mass of condensate from extraction number 2. 

1EX Sh  = specific enthalpy of extraction number 1 vapour. 

2EX Wh  = specific enthalpy of the condensed water into feedwater heater 
number 1. 

2EX Sh  = specific enthalpy of extraction number 2 vapour. 
Calculation of 2EXm  
One deduces 2EXm  from (19) 

( ) 2 1
2 1

2 2

EX W EX S
EX EX

EX S EX W

H H
m m m

H H
−

= +
−

                (28) 

4.2. Ideal Cycle “n” Number of Feed Water Heaters 

One deduces the output from the ideal cycle from (30) and (26): 

[ ]
( )

1 1 2 2

1 2

1 C EX EX EX EX

H ex ex

mT m T m T
T m m m

η
+ +

= −
+ +

               (29) 

where: 

1EXT  = temperature of the condensate with extraction vapour number 1 

2EXT  = temperature of the condensate with extraction vapour number 2 
One generalises the following: 

1

1

1

n

C exi exi
i

n

H exi
i

mT m T

T m m
η =

=

+ ⋅
= −

 + 
 

∑

∑
                    (30) 

One deduces 2EXm  from (26) and (28)  

1 2 1
2

1 2

1 EX C EX EX
EX

EX EX

T T T Tm
T T

 − −
= + 
 

                (31) 

One deduces from (29) and (31) the following: 
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( )1
1 2 1

1

1 1 2 1

1 1 2

1
1

1 1

EX C
EX EX EX

EX

EX C EX C EX EX
H

EX EX EX

T TT T T
T

T T T T T TT
T T T

η

  −
+ + −  
  = −

  − − −
+ + +  

  

        (32) 

The above result (32) can be generalised as follows: 

( )
1

1
1 1

1 11

1
1 1 1

1 11 1

1

1

1 1
1

in
EX C

EX EXx EXx
i xEX

in
EX C EX C EXx EXx

H
i xEX EX EXx

T TT T T
T

T T T T T TT
T T T

η

−

+
= =

−
+

= =

   −
+ + −   

    = −
    − − −
+ +     +     

∑ ∏

∑ ∏
    (33) 

5. Conclusions 

The Carnot factor, as is universally known, is a typical case limited to the cycles 
that do not involve feedwater heaters. In the case of regenerative cycles, the 
Carnot factor of a machine is given by the following relationship: 

( )
1

1
1 1

1 11

1
1 1 1

1 11 1 1

1

1

1 1

in
EX C

EX EXx EXx
i xEX

in
EX C EX C EXx EXx

H
i xEX EX EXx

T TT T T
T

T T T T T TT
T T T

η

−

+
= =

−
+

= = +

   −
+ + −   

    = −
    − − −
+ +    

     

∑ ∏

∑ ∏
 

This relationship obeys the second principle of thermodynamics: the variation 
of the entropy of an unspecified thermodynamic system, due to the internal op-
erations, can be only positive or worthless. 

Whatever the fluid, if it is possible to use a part of its mass and not to ex-
change with the low-temperature reservoir, it is advantageous. An example to 
consider the following issue is about combined cycles. A part of designers of 
electrical generating units using the combined cycles of a gas turbine and a 
steam turbine do not use the regenerative Rankine cycle. This is because they 
consider that they have achieved a yield close to Carnot’s performance. This ar-
ticle demonstrates that it is irrelevant. The advantage in this case is above all to 
reduce the steam condenser size. The pumps energy to cool the steam condenser 
is reduced in the same proportion. If an atmospheric refrigerant is used, the 
economy would be significant. 
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Nomenclature 

T  Temperature       (K) 
s  Specific Entropy      (J/kg∙K) 
P  Pressure        (Pa) 
h  Specific Enthalpy      (J/kg) 
W  Work        (J) 
Q  Heat         (J) 
H  Enthalpy        (J) 
m   Main Steam Cycle Mass      (kg) 

exm   Extraction Steam Feedwater Mass   (kg) 

1exm  Extraction Steam Feedwater Number 1 Mass (kg) 

2exm  Extraction Steam Feedwater Number 2 Mass (kg) 
η   Energy Efficiency      (%) 
Σ   Sum 
Π   Product 

∫   Integral 
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