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Abstract 
The concept of multiplicity of solutions was developed in [1] which is based 

on the theory of energy operators in the Schwartz space ( )− S  and some 

subspaces called energy spaces first defined in [2] and [3]. The main idea is to 
look for solutions of a given linear PDE in those subspaces. Here, this work 
extends previous developments in ( )m− S  ( m +∈ ) using the theory of 

Sobolev spaces. Furthermore, we also define the concept of Energy Parallax, 
which is the inclusion of additional solutions when varying the energy of a 
predefined system locally by taking into account additional smaller quantities. 
We show that it is equivalent to take into account solutions in other energy 
subspaces. To illustrate the theory, one of our examples is based on the varia-
tion of Electro Magnetic (EM) energy density within the skin depth of a con-
ductive material, leading to take into account derivatives of EM evanescent 
waves, particular solutions of the wave equation. The last example is the deri-
vation of the Woodward effect [4] with the variations of the EM energy den-
sity under strict assumptions in general relativity. It finally leads to a theoreti-
cal definition of an electromagnetic and gravitational (EMG) coupling. 
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1. Overview 

Teager-Kaiser energy operator was defined in [5] and the family of Teager- 
Kaiser energy operators in [6]. Many applications in signal processing were 
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found over the past 25 years such as detecting transient signals [7], filtering 
modulated signals [8], image processing [9]. However, [2] and [10] introduced  
the conjugate Teager-Kaiser energy operator and associated family ( )k k

+

∈
Ψ


.  

Subsequently using iterations of the Lie Bracket, [3] defined the generalized con-  

jugate Teager-Kaiser energy operators [ ]. p

k k

+

∈

      
 ( p +∈ ). To abbreviate  

the notation, we sometimes use the generic name energy operator in order to 
refer to the conjugate Teager-Kaiser energy operators and the generalized con- 
jugate Teager-Kaiser energy operators. Precision is made in the denomination 
when it is required. Furthermore, the purpose of the energy operators and 
generalized energy operators was the decomposition of the successive derivatives 
of a finite energy function nf  ( n  in { }0,1+ − ) in the Schwartz space 

( )− S . The generalized energy operators were introduced when decomposing  

the successive derivatives of a finite energy function of the form [ ]
1

n
pf

+     
  

( n  in { }0,1+ − ) in the Schwartz space. It then follows in [1] and [3] the 
definition of Energy Spaces, which are subspaces of the Schwartz Space ( )− S  
associated with energy operators and generalized energy operators. This 
definition was used to define the concept of multiplicity of solutions in [1] 
(Theorem 2 and Corollary 1). The idea is to consider those energy spaces and 
functions associated with them when solving linear PDEs. More precisely, we 
look for solutions of a nominated linear PDE within those energy spaces 
(including the space reduced to { }0 ). The concept was further developed using 
the Taylor series of the energy of a solution ( )− S  for a nominated PDE. The 
work was based on finding when the successive derivatives, defined through the 
Taylor series coefficients, are also solutions of this particular PDE (see Section 4 
in [1]). 

This work first generalizes in ( )m− S  ( m +∈ ) the theorems and lemmas 
established in [2] and [3] stated for ( )− S  using the properties of the 2L  
space called here ( )2 mL   ( m +∈ ) together with the general property of the 
Schwartz space ( ) ( )2m mL− ⊂ S  ( m +∈ ) [11]. However, this work imposes 
the condition of the stability by Fourier transform for any functions in ( )− S  
in order to use the Sobolev space(see Appendix I, Definition I.1). Thus, in this 
work we consider ( )− S  together with its dual: the tempered distributions 

( )*,− S . Secondly, the energy spaces k
pM  ( p +∈ , k +∈ ) are also redefined 

as subspaces of ( )m− S . Furthermore, with the definition of the Sobolev spaces, 
and in particular the Hilbert spaces ( )k mH , it allows to show the inclusion 

( ) ( )2k k m m
p L⊂ ⊂ M H . Then, we finally redefine in m  the Theorem 3 

established in [1] and the concept of multiplicity of solutions. 
The next section together with Appendix I are reminders about some 

important definitions and properties for the Sobolev spaces, the Schwartz space 
and the L2-norm. Section 3 deals with the generalization of the work exposed in 
[2] and [3] in ( )m− S  and the redefinition of the energy spaces. Section 4 
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recalls the concept of multiplicity of solutions defined in [1] and generalized in 

( )m− S  with Theorem 4. The last section focuses on some applications of this 
theory. The first application is the wave equation and the discussion of taking 
into account more solutions from other energy spaces. We then define another 
concept called energy parallax (i.e. mathematically in Definition 4, see discussion 
on the physical interpretation in Appendix II) which is directly related to 
multiplicity of solutions. In order to illustrate this concept, a second example is 
the variation of energy density in the skin depth of a conductor material. The 
idea is to show that the variation of energy density can lead to consider multiple 
derivatives of evanescent waves resulting from the electromagnetic field. The last 
section is dedicated to the derivation of the Woodward effect [4] from the 
Hoyle-Narlikar theory [12] [13] using the EM energy density and a discussion 
takes place about the relationship to the presented theory of energy spaces. It 
leads to a theoretical definition of an Electromagnetic and Gravitational cou- 
pling (EMG). 

2. Definition of L-2 Norm and Schwartz Space 
2.1. Notation and Symbols 

In this work, several symbols are used. The set of integer numbers   is some- 
times called only for the positive integer such as +  or m

+  (for a space with 
dimension m). When the integer 0 is not included, it is explicitly mentioned 
such as { }0+ − . The set of natural numbers is  , with only the positive 
numbers defined as + .   is the set of real numbers. Also, the Schwartz space 
is here called ( )m− S  which is the notation used in previous works such as [1] 
and [2]. Several notations describe the relationship between spaces such as 
intersection ( ), union ( ), inclusion (⊂ , inclusion without the equality  , 
inclusion with equality ⊆ ). Reader can refer to [14] or advanced mathematical 
textbooks for more explanations. 

2.2. L-2 Norm and Schwartz Space 

With the difference in Appendix I and the generalities with the Sobolev spaces, 
here the analysis focuses on the L-2 norm (p equal to 2 for the pL  norm). It  
allows to state the Plancherel identity ( )2 mf L∀ ∈  : 

( )( )22d dm mR R
f t f ξ ξ=∫ ∫                     (1) 

We are here interested in the functions belonging to the Schwartz space 

( ) ( )2m mf L−∈ ⊂ S . The Schwartz space consists of smooth functions whose 
derivatives (including the function) are rapidly decreasing (e.g., the space of all 
bump functions [15]). The Schwartz space ( )m− S  is defined as (for  

[ ]1,2m∈  in [1] [3], for m +∈  in [14] [16]): 

( ) ( ){ }, , ,m m mf fα β α β− ∞
+= ∈ < ∞ ∀ ∈  S C             (2) 
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where α , β  are multi-indices and 

( ), sup mt
f t D f tβ α
α β ∈

=


                     (3) 

Note that one can define ( )m− S  with , mα β∀ ∈  according to [17], but 
we decide to use m

+  following the development in the next sections. It is useful 
for the remainder of the work to remember some properties of the Schwartz 
functions in ( )m− S . 

Properties 1. [18] Some Properties of ( )m− S . 
• If 1 p≤ ≤ ∞ , then ( ) ( )m p mL− ⊂ S  
• ( )m− S  is a dense subspace of ( ),2k mH   ( k∈ ). 
• (Stability with Fourier transform) The Fourier transform is a linear 

isomorphism ( ) ( )m m− −→ S S . 
• If ( )mf −∈ S , then f  is uniformly continuous on m . 
The proof of those properties are standard results with Schwartz spaces 

established in many harmonic analysis books (e.g., [17] [18]). 
Remark (1) Note that in [1] [2] [3], the author used the general term of finite 

energy functions for Schwartz functions in ( )m− S , with m  restricted to 

[ ]1,2 . It is a common definition in signal processing for the functions in  
( )2 mL   and generally associated with the Plancherel identity. 
Remark (2) One way to interpret the property that ( )m− S  is stable by 

Fourier transform is: 
for ( )mf −∈ S , k∈  

( ) ( )( ){ }22sup 1m

k
f

ξ
ξ ξ

∈
+ < ∞



  

( ) ( )( )
22

2, 1
1

k aa fξ ξ
ξ

↔ ∃ ∈ + ≤
+

                (4) 

Now, let us recall the definition of the Hilbert spaces ( ),k p mH   (Sobolev 
spaces ( ),k p mW   for 2p = , see Appendix I, Definition I.1) from (35) and 
drop the sup-script p in the remainder of this work: 

( ) ( )
( ) ( ) ( ) ( ){ }2*, 2 2: 1

k m k m

km m

W H

f f Lξ−

=

= ∈ + ∈S

 

 
    (5) 

Note that ( )*, m− S  is the space of tempered distributions, dual of ( )m− S  
via the Fourier transform. A function belongs to ( )2 mL   if and only if its 
Fourier transform belongs to ( )2 mL   and the Fourier transform preserves the 
L2-norm. As a result, the Fourier transform provides a simple way to define L2- 
Sobolev spaces on m  (including ones of fractional and negative order m  
[18]). Finally, the stability via Fourier transform is the key for  

( ) ( )m k m−   S H . 
Remark (3) Following the remark (Remark 3.4 in [19]) and the general 

properties of the Fourier transform, one can state the equivalence relationship in 

( )2 mL   
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( ) ( )2k m mf D f L kα α∈ ↔ ∈ ∀ ≤ H  

( ) ( )2 mD f L kα α↔ ∈ ∀ ≤  

( ) ( )2 mf L kαξ α↔ ∈ ∀ ≤  

( ) ( ) ( )22 21 mD f L k
α αξ α↔ + ∈ ∀ ≤                (6) 

Using the definition of ( )k mH  and the properties of the Fourier transform, 
it is also possible to show that for k k′> , ( ) ( )k m k m′⊂ H H  [20], and the 
relationship ( ) ( )0 2m mL= H . It is also possible to define 

( ) ( )m k m
k

∞
∈

=
  H H  with ( ) ( )m m− ∞⊂ S H , and to extend this equality 

to k∈  following [19]. 

3. On Some Subsets of Schwartz Spaces: Energy Spaces 

This section first recalls generalities on the Teager-Kaiser energy operator and 
its conjugate operator with the application to decompose Schwartz functions 
from the work developed in [2] and [3]. We call in this work Energy operators 
the families of operators based on the Teager-Kaiser energy operator. The 
definitions and theorems are here stated for the Schwartz space ( )m− S  
( m∈ ) whereas the preliminary work in [2] and [3] stated the definitions and 
main theorems for [ ]1,2m∈ . For 2m =  in Section 6 in [3], a discussion takes 
place during the application of the theory to linear partial differential equations. 
Secondly, the energy spaces defined in [1] and [3] are here generalized on 

( )m− S  with novel relationships with Sobolev spaces ( )k mH  ( k∈ ). 

3.1. Definition and Properties of the Energy Operators in ( )mS−   

Let us call the set ( ) ( )( ),m m− −  S S  all Schwartz functions (or operators) 

defined such as ( ) ( ): m mγ − −→ S S . For ( )mf −∈ S , let us define k
i f∂   

( k∈ , [ ]1, ,i m∈ 
), with f  defined with the vector parameter  

[ ]1 2, , , m
mt t t= ∈ T  such as 

[ ]

( )( )( ) [ ] { }

[ ]

1
1 2 1 1 1

0

, 1, , , {0}

, , , , , d d , 1, , , 0

, 1, ,

i

k
k
i k

i

tk
i k m k

i

ff i m k
t

f f t t t t i m k

f f i m

τ
τ τ τ

+

−
+−∞ −∞

 ∂
∂ = ∀ ∈ ∀ ∈ − ∂

∂ = ∀ ∈ ∀ ∈ −

∂ = ∀ ∈



∫ ∫



   





 (7) 

Combining multiple integrals and derivatives justify the use of the Schwartz 
space ( )m− S  and echoes the choice made previously in [2] (see equation 
(10)). The definitions and results given in [2] and [3] in the case ( )− S  are 
now formulated for ( )m− S . Section 2 in [2] and Section 4 in [3] defined the 
energy operators k

+Ψ , k
−Ψ  ( k  in  ) and the generalized energy operators  

[ ]. p

k

+
 
   and [ ]. p

k

−
 
   ( p  in + ). Following [3], let us define the energy  
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operators with multi-index derivative in (7): 

( )

( ) ( )

[ ] ( )
[ ] ( )

1 1 0

1

,
1

,,

. . . . .

. .

.,. .

.,. .

m
k k

k i i i i
i
m

k k i
i

kk

k ik i

ψ

ψ

+ −

=

+ +

=

+ +

+ +

Ψ = ∂ ∂ + ∂ ∂

Ψ =

= Ψ

=

∑

∑                    (8) 

Further more, we also use the short notation [ ] [ ].,. .k k

+ +=  in the remainder of 
this work. Note that k

−Ψ  is the conjugate operator of k
+Ψ  and ,k iψ −  respec- 

tively to ,k iψ + . 

Remark (4) The families of (generalized) energy operators [ ]. p

k k

+

∈

      
 and 

[ ]. p

k k

−

∈

      
 ( p  in + ) are also called families of differential energy operator  

(DEO) [2] [3]. 

Furthermore, [3] defined the generalized energy operators [ ]1.
k

+
 
   and 

[ ]1.
k

−
 
   ( k∈ ): 

[ ] [ ] ( ) ( ) ( ) ( )

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

1 1 0
, , , ,, , ,

0 01 1
, , , , ,

0 00

, ,

, , ,1

.,. , .,. . . . .

.,. , .,. . .

. .

.,. , .,. .,. , .,.

.,. , .,.

k k
i k i i k i i k i i k ik i k i k i

k
i ik i k i k i k i k i

k
i i

k i k i

m

k k k i k ik k ii

k k

ψ ψ ψ ψ
++ + + − + + +

+ + ++ + −

+ +

+ ++ + + +

=

+ +

  = ∂ ∂ + ∂ ∂ 

     = ∂ ∂     

   + ∂ ∂   

   =   



∑

[ ] [ ]1 1

,1
. .

m

k k i ki

+ + +

=

    = =     ∑

      (9) 

By iterating the bracket [ ]. , [3] defined the generalized operator [ ]
,

. p

k i

−
 
   

and the conjugate [ ]
,

. p

k i

+
 
   with p in + . Note that [ ]

1,
0p

i
f

−
  =   p∀  in +  

and i in  . 
Now, the derivative chain rule property and bilinearity of the energy operators 

and generalized operators (for i in [ ]1,2 ) are shown respectively in [2], Section 
2 and [3], Proposition 3. The generalisation of this property to i in [ ]1, ,m  for  

the operators ( ), .k iψ + , ( ), .k iψ − , [ ]
,

. p

k i

−
 
   and [ ]

,
. p

k i

+
 
   ( k∈ , p +∈ ) is  

trivial due to the linearity of the derivatives and integrals when defining k
i∂  in 

(7). Due to the linearity of the sum, the bilinearity property is also generalized to  

( ).k
+Ψ , ( ).k

−Ψ , [ ]1.
k

+
 
   and [ ]1.

k

−
 
   ( k∈ , p +∈ ). 

Definition 1. [2] f∀  in ( )m− S , { }0v +∀ ∈ − , n +∀ ∈  and 1n > , the 
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family of operators ( )k k
G

∈  (with ( ) ( ) ( )( ),m m
k k

G − −
∈

⊆   S S ) decom- 

poses v n
i f∂  in m  ( [ ]1, ,i m∈ 

), if it exists ( ) { }0j j
N +

+

∈
⊆


 ,  

( ) j

j

N
l l N

C
=−

⊆  , and it exists ( )jα  and r in { }0+
  (with r v< ) such as 

( )1 1
0

1 j u

j

v Nv n v j n r
i i u u ij u N

v
f f C G f

j
α− − − −

= =−

− 
∂ = ∂ ∂ 

 
∑ ∑ . 

In addition, one has to define ( )m− s  as: 

( ) ( ) ( )( ) ( ){ }( ){ }1
m m

k kk k
f f Ker Ker− − + −

∈ ∈ −
= ∈ ∉ Ψ Ψ

   s S  (10) 

or with the energy operators ,k iψ +  and ,k iψ −  defined in (8) 

( ) ( ) ( )( ) ( )( ){ }( )( )[ ]{ }, ,1, , 1
m m

k i k ii m k k
f f Ker f Ker fψ ψ− − + −

∈ ∈ ∈ −
= ∈ ∉





  

s S    (11) 

( ).Ker  is the notation for the kernel associated here with the operators k
+Ψ , 

k
−Ψ , ,k iψ +  and ,k iψ −  ( k  in  ) (see [2], Properties 1 and 2). By definition, one 

can state that ( ) ( )m m− −  s S . Following Definition 1, the uniqueness of the 
decomposition in ( )m− s  with the families of differential operators can be 
stated as: 

Definition 2. [2] f∀  in ( )m− s , { }0v +∀ ∈ − , n +∀ ∈  and 1n > , the  
families of operators ( )k k

+

∈
Ψ


 and ( )k k

−

∈
Ψ


 ( ( )k k

+

∈
Ψ


 and  

( ) ( ) ( )( ),m m
k k

− − −

∈
Ψ ⊆


  s S  decompose uniquely v n

i f∂  in m , if for any  

family of operators ( ) ( ) ( )( ),m m
k k

S − −
∈

⊆   S S  decomposing v n
i f∂  in 

m , there exists a unique couple ( )1 2,β β  in 2m  such as: 

( ) ( ) ( )1 2 ,k k kS f f f kβ β+ −= Ψ + Ψ ∀ ∈          (12) 

Two important results shown in [2] are: 
Lemma 1 For f  in ( )m− S , the family of DEO k

+Ψ  ( k∈ ) decomposes 
v n
i f∂ , { }0v +∀ ∈ − , { }0,1n +∈ −  and [ ]1, ,i m∈ 

. 
Theorem 1. For f  in ( )m− s , the families of DEO k

+Ψ  and k
−Ψ  ( k∈ ) 

decompose uniquely v n
i f∂ , { }0v +∀ ∈ − , { }0,1n +∈ −  and [ ]1, ,i m∈ 

. 
The Lemma 1 and Theorem 1 were then extended in [3] to the family of 

generalized operator with : 
Lemma 2. For f  in ( )m

p
− S , p  in + , the families of generalized energy 

operators [ ]. p

k

+
 
   ( k∈ ) decompose v

i∂  [ ] 1

1

n
pf

+−     
 { }0v +∀ ∈ − , 

{ }0,1n +∈ −  and [ ]1, ,i m∈ 
. 

Theorem 2. For f  in ( )m
p
− s , for p  in + , the families of generalized 

operators [ ]. p

k

+
 
   and [ ]. p

k

−
 
   ( k∈ ) decompose uniquely [ ] 1

1

n
pv

i f
+−  ∂    

 

{ }0v +∀ ∈ − , { }0,1n +∈ −  and [ ]1, ,i m∈ 
. 

( )m
p
− S  and ( )m

p
− s  ( p  in + ) are energy spaces in ( )m− S  defined 

in the next section. 
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Remark (5) One can extend the Theorem 1, Theorem 2, Lemma 1 and 
Lemma 2 for nf  with n  in   following previous discussions in [2] (Section 
3, p.74) and [3] (Section 4). n  is here restricted to { }0,1+ −  in order to easy 
the whole mathematical development. 

3.2. Energy Spaces in ( )m− S   

Let us introduce the energy spaces and some properties. 
Definition 3. ([1], Definition 3) The energy space ( )m

p
− E S , with p  in 

+ , is equal to { }0
v

p pv +∈
=



 E M . 

With ( )v m
p

− M S  for v  in +  defined as 

( ) [ ] [ ] ( )

{ } [ ]

1 1
, , ,

, 0 , 1, ,

n
p pv m k m

p ig g f f k

k v n i m

+ +
− − +

+

     = ∈ = ∂ ∈ ∈      
∀ ≤ ∈ − ∈ 




  



M S S
 (13) 

The energy spaces, ( )m
p
− S  and ( )m

p
− s  ( p +∈ ) , cited in Lemma 2 and 

Theorem 2 are defined: 

( )
{ }

( ) ( ) [ ][ ]

[ ]{ }

0

1, , ,

1 ,

m i
p p p

i

pm m
p p i m k k i

p

k k i

f f Ker f

Ker f

+

−

∈

+
− −

∈ ∈

−

∈ −

  = = 
  
    = ∈ ∉     

            









 











 

S E M

s S  (14) 

Remark (6) Definition 3 does not follow completely Definition 3 in [1], 
because the energy space v

pM  is defined here k v∀ ≤ , and only for k v=  in 
[1]. 

Remark (7) In the previous definition, { }0p
∞ =M  ( p +∀ ∈ ). Also, 

( )m
p p
∞ −⊂ M S , whereas ( )m

p p
∞ −⊂/ M S  in [1] and [3]. The inclusion does not 

change Lemma 2 and Theorem 2 (i.e. ( )m
p p
∞ −⊂/ M s ). The justification of not  

including this space was only based on the applications of the theory in [1] and 
[3] which is not justified in this work. 

We can now state some properties associated with the energy spaces on 

( )m− S . 
Properties 2. v∀  in + , and in particular 1v , 2v  in +  (with 1 2v v< ), 

p  in + , we have the following inclusions: 
• ( )v v m

p  M H  

• 2 1v v
p pM M  

• { } ( )0
0

v m
p pv +∈
=



   E M H  

Proof. 
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1) Let us recall the definition of the Hilbert space on m  according to 
Appendix I, Definition I.1 and Definition 1. 

( ) ( ) ( ){ }2 2 ,v m m mf L D f L vα α= ∈ ∈ ∀ ≤  H     (15) 

Looking at the definition of the energy space v
pM  and ( )v mH , one can 

notice the similitude. However , the multi-index derivative Dα  ([21], chap. 1.1)  

contains also the cross-derivatives (e.g., 
2

1 2t t
∂

∂ ∂
), whereas there are no cross-  

derivatives in the definition of v
i∂  at the beginning of Appendix I. Thus, the 

energy spaces v
pM  ( p +∈ , { }0v +∈ − ) is defined without the cross- 

derivatives. In addition with Properties 1, ( ) ( )2m mL−   S . Thus, by 
definition we have the relationship ( )v v m

p  M H : 
2) With Remark (3), we know that for 1 2v v< , ( ) ( )2 1v vm m⊂ H H . Now, 

with 1), ( )1 1v v m
p  M H  and ( )2 2v v m

p  M H . Now by definition of 1v
pM  

and 2v
pM , ( )1 2 2v v vm

p p=M H M . Finally, 2 1v v
p pM M . 

3) From Remark (3), ( ) ( )0 2m mL= H , ( ) ( )2m mL− ⊂ S  and (by defi- 
nition of the energy space) { } ( )0

v m
p pv +

−
∈ −

=
   E M S  ( p +∈ ). Thus, 

{ } ( )0
0

v m
p pv +∈ −
=
   E M H  ( p +∈ ). 

Furthermore, Appendix III discusses the relationship between the subspaces 
v
pM  and 1

v
p−M  ( p +∈ ). Finally, because we are studying functions and 

operators in subspaces of ( )m− S  with )()( 2 mm L  ⊂−S , one need to 
extend Proposition 1 in [1] and [3]. 

Proposition 1. If for n +∈ , ( )n mf −∈ S  and analytic; for any  
( ) 2,i ip q ∈  and [ ],i i iq pτ ∈  ( [ ]1, ,i m∀ ∈ 

), and ( )nf  is analytic, where 

( )( ) ( )2 di

i

n n
i i iq

f f t t
τ

τ = < ∞∫              (16) 

then 

( )( ) ( )( ) ( )( ) ( )2

0 !i

k
i in n k n

i i t i
k

p q
f p f q f q

k

∞

=

−
= + ∂ < ∞∑      (17) 

is a convergent series. 
Proof. The proof of Proposition 1 for i equal 1 is given in [1] (p.4). The 

extension of the proof for the case i equal m is straightforward with the general 
definition for any ( ) 2,i ip q ∈  and [ ],i i iq pτ ∈  ( [ ]1, ,i m∀ ∈ 

). 

4. Multiplicity of the Solutions in ( )m− S   

To recall [1], a possible application of the theory of the energy operators is to 
look at solutions of a given partial differential equation for solutions in ( )m− S  
of the form ( )v n

i f∂ . Instead of solving the equation for specific values (e.g., 
boundary conditions), the work in [1] ([1], Theorem 1 and corollary)defines the 
concept of multiplicity of solutions in ( )m− S  ( [ ]1,2m∈ ) such as the study of 
the multiple solutions of a PDE based on the definition of the energy spaces pE  
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( p +∈ ). One way to understand this concept, is to study the convergence of the 
development in Taylor series of the energy function associated to a nominated 
energy space. It was shown in [1] that taking into account additional terms of 
the Taylor series leads to define additional solutions of the wave equation (see 
Section 4 [1]). In this section, we extend this concept to ( )m− S  ( 0m∈ ) and 
we reformulate the results from[1] for the solutions in the subspaces  

( ) ( )2v m m
p p L−⊂ ⊂ ⊂ M E S  ( p +∈ , v +∈ ). 

Let us define any PDEs of the form: 

[ ]

( ) ( )
0, , 0,

,

,

jv
ij ij i m

m m

ij j

a g

g

a v

+∈ ∈

−

+

 ∂ =

∀ ∈ ⊆

∀ ∈ ∈

∑ ∑


 

 

A S                   (18) 

Thus, all the solutions are here defined in ( ) ( )m m−⊆ A S . Now, we are 
interested in the solutions which can be defined on the energy spaces pE   
( p +∈ ). In other words, ( ) { }m

pp +∈
≠ ∅

 A E . In particular, we choose the 

solution ( )0 m
pp

g +∈
= ∈

 A E . Furthermore, one can define  

( )m
pp

g +∈
∈

 A E , such as v +∃ ∈  for ( )m v
pp

g +∈
∈

 A M . In other 

words, ( )mf −∃ ∈ S  and { }0n +∈ − , such as [ ]
1

n
pg f

+  =    
. Now, one can 

then state a general theorem of multiplicty of solutions based on [1]. It follows: 
Theorem 3. (Multiplicity of Solutions in m ) If ( ) ( )m m−⊆ A S  is a 

subspace of all the solutions of a nominated linear PDE. For p +∈ , g  is in 

pE . Then, g  is a solution for this linear PDE if and only if: 
1) (General condition to be a solution) ( ) { }m

p ≠ ∅A E . 

2) (Solutions in ( )m− S ) ( )m
pg∈ A E , m +∃ ∈  such as 

( )( )supm g=  . 

3) (Multiplicity of the solutions) If v
pg∈M  ( v +∈ ), ( )mf −∃ ∈ S  and  

{ }0n +∈ − , such as [ ]
1

n
pv

ig f
+  = ∂    

 ( [ ]0, ,i m∈ 
) and k v∀ ≥ , k +∈ , 

[ ] ( )
1

n
pk m

i pf
+  ∂ ∈   

A E . 

4) (Superposition of solutions and energy conservation ) If ( )m
pF ∈ A E , 

with [ ], 1

n
pk

ik k vF f+

+

∈ ∀ ≥
  = ∂    

∑   such as [ ]
1

n
pk k

i pf
+  ∂ ∈   

M  ( [ ]0, ,i m∈ 
), 

then ( )F < ∞ . 

Proof. The proof is the generalization of what was already written in [1] (see 
Theorem 2 in [1]) for the case m equal 1. Here is the generalization to m. 

1) This is the definition of a solution for a nominated PDE with solutions in 

( )mA  and in the energy space pE . 
2) ( ) ( )2m m

pg L∈ ⊂


 A E , thus ( )g < ∞ . With Proposition 1, it  
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means that for any ( ) 2,i ip q ∈  and [ ],i i iq pτ ∈  ( [ ]1, ,i m∀ ∈ 
) 

( )( ) ( )2 di

i
i i iq

g g t t
τ

τ = < ∞∫                  (19) 

Thus, following [18], one can define im ∈  such as  

[ ] ( )( ),sup
i i ii iq pm gτ τ∈=   and then we define [ ]1, ,max ii mm m∈=



. With our 
notation, it is equivalent to write ( )( )supm g=  . 

3) It is sufficient to show that for v +∈ , k v∀ ≥ , ( ) { }m k
p ≠ ∅A M . 

Now, with the definition ( ) { }m
p ≠ ∅A E , and ( ) { }m k

p ≠ ∅A M . In 

addition, { }0p
∞ =M , k

p p
∞ ⊂M M  ( k v∀ ≥ ) and ( )0 m k

p∈ A M . The interest  

of this statement is the function ( )v m
i h

−∂ ∈ S  such as k +∃ ∈  with k v≥   
and 0k

i h∂ = . In particular, if we introduce a numerical approximation in order 
to get the condition ~ 0k

i h∂ . In other words,  

{ }~ 0 , 1, , 0, such ask k
i ih k k h+ +∂ ↔ ∃ ∈ ∀ ∈ > ∂ ≤       (20) 

In some examples in Section 4 in [1] and Section 6 in [3], it is shown that the 
evanescent waves when solving the wave equation for specific solutions, is a 
particular example of those functions. 

4) The proof follows [1] (Theorem 2). This statement is to guarantee that 
there is a finite sum of energy with the superposition of multiple solutions. Thus 
with the development in statement (2.), one can use the Minkowski inequality 
(e.g, [22], Theorem 202) for iτ  in [ ],i ip q  ( [ ]1, ,i m∀ ∈ 

) 

( )( ) ( )
2

1,

di

i

n
pk

i i i ip
k k v

F f t t
τ

τ
+

+

∈ ∀ ≥

   = ∂      
∑∫


  

( )( )( ) ( )
0.52

0.5

1,

di

i

n
pk

i i i ip
k k v

F f t t
τ

τ
+

+

∈ ∀ ≥

     ≤ ∂        
∑ ∫


  

( )( )( ) ( )
0.5

0.5

1,

n
pk

i i i
k k v

F fτ τ
+

+

∈ ∀ ≥

      ≤ ∂          
∑


   

( )( )( )0.5 0.5

,
i k

k k v

F mτ
+∈ ∀ ≥

≤ ∑


                    (21) 

with [ ] ( ),
1

sup
i i i

n
pk

k i iq pm fτ τ
+

∈

      = ∂          
 . Thus, (4.) stands if and only if 

0.5
, kk k vm+∈ ∀ ≥

< ∞∑  .  As k +∀ ∈ ,  k v∀ ≥ ,  km  is in + ,  it then exists 
0.5

,sup kk k vM m+∈ ∀ ≥
= ∑  . One possibility is ok∃  in +  such as ok k∀ > , then  

0km = . 

5. Some Applications 

This section focuses on the application of the energy space theory. The first 
section is the study of the concept of multiplicity of solutions with a simple 
mathematical example using the wave equation. Then, the second section is 
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discussing the application of this concept within the Woodward effect [4] [13] 

5.1. Energy Variation and Wave Equation 

As a simple case of linear PDE, the wave equation with the particular solutions 
of the form of evanescent waves, was already discussed in Section 6 of [3] and 
[1]. However, it is an interesting example to apply and understand the concept 
of multiplicity stated in Theorem 3. From [23], the wave equation can be 
formulated in 2  (with t and r the time and space variables): 

( ) ( )

[ ] [ ] ( )
[ ] [ ]

2 2
2

3
1 2 1 2 1 2

0 0 1 2

1, , 0,

0, , , , , , ,

0, , ,

r tg r t g r t
c

t T r r r r r T r r

t T r r r

∂ − ∂ =
 ∈ ∈ ∈ <
 ∈ ∈


           (22) 

c is the speed of light. Note that the values of t and r are restricted to some 
interval, because it is conventional to solve the equation for a restricted time 
interval in +  and a specific region in space. According to the previous section, 
we are here interested in the solutions in the energy (sub)space k

pM , of the kind  

( ) [ ] ( )
1

, ,
n

pk
tg r t f r t

+  = ∂    
 ( n  i n  { }0+ − ,  p  i n  + ,  k  i n  + ) . 

Furthermore, the relationship ( ) ( )2 2k
p L−⊂ ⊂ M S  imposes that the solu- 

tions should be finite energy functions, decaying for large values of r and t. It 
was previously underlined in [1] and [3] that planar waves should be rejected, 
because this type of solutions does not belong to ( )2L  . However, evanescent 
waves are a type of solutions included in ( )2− S  and considered in this work. 
They are here defined such as: 

( ) ( ) ( )( ){ }
[ ] [ ] ( )

2 1

2
1 2 1 2 1 2

, exp exp ,

0, , , , , ,

f r t Real A u r i t u r

t T r r r r r r r

ω = −

∈ ∈ ∈ < 

          (23 

2 1i = − , 1u  and 2u  are the wave numbers, ω  is the angular frequency 
and A  is the amplitude of this wave [23]. Assuming ω  and ( 1u , 2u ) known, 
one can add some boundary conditions in order to estimate 1u , 2u  and A . 
Furthermore, a traveling wave solution of (19) should satisfy the dispersion 
relationship between 1u , 2u  and ω  [23]. However, our interest is just the 
general form assuming that all the parameters are known. For 0p = , the type of 
solutions in 0

kM  are: 

( ) ( ) ( )
( ) ( )( ) ( )

[ ] [ ] ( )
[ ] [ ] { } { }

0 0

0 2 1 0

3
1 2 1 2 1 2

0 0 1 2

, , ,

, , ,

0, , , , , , ,

0, , , , 0 , 0

kk n n
t

kk n n
r

f r t i n f r t

f r t n u iu f r t

t T r r r r r T r r

t T r r r n k

ω

+ +

∂ =

∂ = −

 ∈ ∈ ∈ <


∈ ∈ ∈ − ∈ −



 

       (24) 

In 1
kM , one can then write the type of solutions 
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( )( ) ( )

( )( ) ( ) ( ){ }
( )( ) ( )( ) ( ){ }

[ ] [ ] ( )
[ ] [ ] { } { }

1
1, 0 0

1,

2
1, 0 0

2
1, 0 2 1 0

3
1 2 1 2 1 2

0 0 1 2

, ,

, 2 ,

, 2 ,

0, , , , , , ,

0, , , , 0 , 0

k k
t t t

t

k
t t

k
r r

f r t f r t

f r t Real i k f r t

f r t Real k u iu f r t

t T r r r r r T r r

t T r r r n k

ω

+
+

+

+

+ +

   ∂ Ψ = ∂      

∂ Ψ =

∂ Ψ = −

∈ ∈ ∈ <

∈ ∈ ∈ − ∈ −



 

      (25) 

Let us consider the form of solutions which propagates in a closed cavity (e.g., 
closed wave guide [23]). One possible solution is the evanescent wave described 
in (20). Now, if f  and ( )f  are analytic in 2 , with Proprsition 1 we can 
assume that f  is finite energy (and more generally in ( )2− S ) with a wise 
choice on the parameters A , 1u , 2u  and ω . One can estimate the difference 
of energy in time over dt  inside the cavity at a specific location 0r  ( 0r  in 
[ ]1 2,r r ) such as 

( )( ) ( )( )2
0 00
, , d

T
f r T f r h h= < ∞∫  

( )( ) ( )( ) ( )( ) ( )2
0 0 0

0

d
, d , ,

!

k
k
t

k

t
f r T t f r T f r T

k

∞

=

+ = + ∂ < ∞∑   

( )( ) ( )( ) ( ) ( )( )2 1
0 0 0 1, 0

1
, d , , d ,k

t t
k

f r T t f r T f r T t f r T
∞

− +

=

+ = + + ∂ Ψ∑   

( )( ) ( )( ) ( )2
0 0 0, d , , df r T t f r T f r T t+ +             (26) 

Here the symbol ‘  ‘ means that 

( )( )( ) ( )1 2
1, 0 0, 1, , 0 | , ,k

t tk k f r T f r T+ + − +∃ ∈ ∀ ∈ > ∂ Ψ <      (27) 

Now, let us do a hypothesis that ( )( )0 , df r T t+  increases significantly over 
dt  modifying the approximation in (24) 

( )( ) ( )( )1
1, 0 1, 0, 1, , 1| , ,k

t t tk k f r T f r T+ + − + +∃ ∈ ∀ ∈ > ∂ Ψ < Ψ      (28) 

and then,  

( )( ) ( )( ) ( ) ( )( )
2

2
0 0 0 1, 0

d, d , , d ,
2t
tf r T t f r T f r T t f r T++ + + Ψ   (29) 

To recall that ( )2 0
0,f r t ∈M , ( )2 1

0,t f r t∂ ∈M  and ( )( ) 0
1, 1,t f r t+Ψ ∈M , and 

using Theorem 3, one can take into account solutions in those subspaces. The 
multiplicity of the solutions due to the variation of energy can be formulated as 
an approximation for taking into account additional solutions produced by the 
wave equation. 

Remark (8): In [1], the general idea was to look for the solutions of linear 
PDEs in ( )− S  associated with energy subspaces ( )p

− s  ( p +∈ ) in order to 
apply Theorem 1 in [1], which is here generalized in Theorem 3 for m  
( m +∈ ). The purpose was to find the subspaces reduced to { }0  when 
studying the convergence of the Taylor series of the energy functions. However, 
the redefinition of the energy subspaces k

pM  within the Sobolev spaces defined 
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in Section 3 allows us to look for solutions in ( )m
p
− S  in order to use Lemma 2. 

Because of the inclusion of the energy spaces shown in Properties 2 using the 
Sobolev embedding (e.g., Theorem I.1 in Appendix I) such as 1k k

p pk+ ⊂M M  
( k +∈ , p +∈ ), { }0 k

p p
∞ = ⊂M M . 

Definition 4. (Energy Parallax) Considering a linear PDE with some solutions 
in ( )mA  such as ( ) ( ) { }m m− ≠ ∅ A S . Furthermore, if it exists p  and 

v +∈  such as ( ) { }m v
p ≠ ∅A M , then we associate the energy ( )f  for 

( )m v
pf ∈ A M , such as one can estimate the variation  

( ) ( )( ) ( )( )( )d d df f q q f q q= + −    over an elementary quantity dq  (e.g., 

space or time). If ( )d f  is not negligible ( m∃ ∈  such as 1  and 

( )d f >  ), then one can consider additional solutions in ( ) 1m v
p
+

A M . 

5.2. Variation of EM Energy Density and the Woodward Effect 

In this section, the theory of energy space is applied to the possible variations of 
electromagnetic energy density due to, for example, skin depth effect [23] inside 
some conductive material. Beyond this application, the interest is to give a 
physical meaning of taking into account those additional solutions in various 
energy spaces. The second part is dedicated to the Woodward effect and the 
possible relationship with the variation of EM energy density in some specific 
settings. 

5.2.1. Variation of EM Energy Density 
Thus, let us formulate the variation in time of energy density (u) at the second 
order with a Taylor series development such as: 

( )
2

2 2dd d d
2t t
tu u t u o t= ∂ + ∂ +                 (30) 

o  is the Landau notation to omit higher order quantities. Note that at the  

first order d
d t
u u
t
= ∂ . The higher orders term are based on the assumptions that  

the EM waves inside the skin layer of the copper plate are evanescent waves and 
thus functions in the Schwartz space ( ( )4− S -with 3 dimension variables and 
considering also the time ) [23]. As discussed before, those solutions are finite 
energy functions and in ( )4L   (i.e. following [1] and [3], 

( )( )0 0 0, , ,u f x y z T= < ∞  at some given point in the skin layer defined by the 
coordinates 0 0 0, ,x y z ). Now, using the Lemma 1 and the space 0

kM  in Section 
3, we can state in ( )4− S  

( ) ( ){
( ) ( )( )( )

( ) { } [ ] ( ) [ ] }

4
0 0 0 0

1 2
0 0 0 1 0 0 0

24
0 0 0

, , ,

, , , , , , ,

, 0 , , 0, , , 0,

k k n
t

k n
n t

n

g g f x y z t

f x y z t f x y z t

f n z L x y a

α

α

−

− − +

− +

= ∈ = ∂

= ∂ Ψ

∈ ∈ − ∈ ∈ ∈



  

M S

S

(31) 

Here f  is either the electric or magnetic field (i.e. the absolute norm of E
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and B


 respectively). With the concept of multiplicity of solutions (e.g., 
Theorem 3). If g  is a general solution of some linear PDEs, then nf  can be 
identified as a special form of the solution (conditionally to its existence ). 

Now considering the wave equation, the electric field and magnetic field are 
solutions and belong to the subspace 0

kM  and associated with the variation of 
energy density tu∂ . Furthermore, we can consider the solutions in 1

0M  
associated with the variation of energy density 2

t u∂ , which can be explained 
with the concept of multiplicity of solutions. The solutions of interest in 1

0M  
are for the electric field tg E= ∂  and the magnetic field tg B= ∂ . The Taylor 
Series development of the energy of (for example) the electric field on a 
nominated position in space (i.e., 0 0 0, ,x y z ) and in an increment of time dt : 

( )( ) ( )( ) ( )( ) ( )2
0 0 0 0 0 0 0 0 0

0

d
, , , d , , , , , ,

!

k
k
t

k

t
E x y z T t E x y z T E x y z T

k

∞

=

+ = + ∂ < ∞∑   

( )( ) ( )( ) ( )2
0 0 0 0 0 0

0

d
d , , , d , , ,

!

k
k
t

k

t
E x y z T t E x y z T

k

∞

=

+ = ∂∑    (32) 

Finally one can write the relationship with the energy density following (26) 
and the previous Taylor series development for the electric and magnetic field: 

( )( ) ( )( )

( ) ( ) ( )

0 0 0 0 0 0
0

0

2
2 2 2 2

0 0 0 0 0 0 0
0

d , , , d d , , , d10.5
d d

1 d d0.5 , , , , , , d
2 6t t

E x y z T t B x y z T t
t t

t tE x y z T B x y z T u u o t

µ

µ

 + +
 +
 
 
 

= + + ∂ + ∂ + 
 

 




(33) 

Therefore, taking into account the second order term of the energy density 
ut

2∂  means that additional solutions should also be considered in the EM 
modeling. Note that in Appendix IV, we are taking an example of evanescent 
waves inside a copper wall (i.e. skin depth effect [23]) and try to give further 
meaning to the consideration of higher order derivatives of the EM energy 
density where the additional solutions are defined with the energy spaces (e.g., 

t E∂  and t B∂  in 1
0M ). 

5.2.2. Derivation of the Woodward Effect Using the Electromagnetic 
Energy Density 

This section focuses on the derivation of the Woodward effect created in a 
asymmetric EM cavity (i.e. frustum) due to EM waves reflected on the cavity’s 
wall. Thus, the assumption is that the EM energy density variation results from 
the evanescent waves taking place in the skin depth of the asymmetric EM 
cavity’s walls. 

1) Assumptions with the energy momentum relationship 
When the Woodward effect was established in [4] [13], the authors implicitly 

assumed the rest mass of the piezoelectric material via the famous Einstein’s 
relation in special relativity 2mc=  (   the rest energy associated with the 
rest mass m ) and its variation via electrostrictive effect. 

Here, the system is the asymmetric EM cavity. The rest mass is all the particles 
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within it at time 0t  when no charges are on the cavity’s walls. It excludes the 
photons considered with a null mass. Thus, the main assumption is that the EM 
excitation on the walls creates electric charges (i.e. electrons) which makes the 
rest mass varying with time. This assumption is the same as the mass variation 
of a capacitor between the charge and discharge times [24]. It allows us to state 
the variation of rest energy such as: 

( ) ( ) ( ) ( )( ) 2 2d d d dt t t m t t m t c mc= + − = + − =           (34) 

Finally, the variation of rest energy d  is assumed to be equal to the 
variation of EM energy density ( du ) resulting from the charges within the skin 
depth of the walls. We neglect any electrostrictive effects compared to the 
variation of EM energy density. 

Note that at the particle level, the rest mass should satisfy the energy momen- 
tum relationship ( eu ) for a free body in special relativity [25]: 

( ) ( )222 2

2

e e

e

u pc m c

up v
c

= +

=
                    (35) 

with p  the momentum and em  the rest mass of the particle associated with 
the total energy eu . The particle is accelerated via the Lorentz force applied to 
the whole cavity with obviously v c . Thus, we have also the relationship 

( )22
ep u c< . In the remainder, we also use the elementary variation δ  which 

becomes d  for an infinitesimally small variation. 
2) Derivation of the Woodward effect and relationship with EM energy 

density 
If we define the mass density such as m Vρ = , then from [13], one can write 

the elementary mass variation per unit of volume 

( )~ d infinitesimally small variationm
V
δ

δρ ρ=  

( )22
2

1 1 1d
4π t tG

ρ ρ ρ
ρ ρ
 

= ∂ − ∂ 
 

                  (36) 

Let us define the the rest energy 2cρ= , then 

( )
( )22

2 22

1 1 1d
4π t tG c c

ρ
ρ ρ

 
 = ∂ − ∂
 
 

   

( )
( )22

2

1 1 1d
4π t tG

ρ
 

= ∂ − ∂ 
  

 
 

                  (37) 

In some particular cases such as an EM cavity, we assume that the variation in 
time of the rest energy is equal to the variation of EM energy density u  (i.e. 

t tu∂ ∂ ), but the rest energy is much bigger than the EM energy density 
u . It allows then to state the relationship between the Woodward effect and 

the EM energy density 
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( )
( )22

2

1 1 1
4π t td u u

G
ρ

 
= ∂ − ∂ 

   
                (38) 

The EM energy density u  follows the general definition of the sum of energy 
density from the electric ( Eu ) and magnetic ( Bu ) fields [23]. Finally, (38) can be 
seen as the definition of the EMG coupling.  

6. Conclusions  

This work generalizes in the Schwartz space ( )m− S , the framework on 
conjugate Teager-Kaiser energy operators established in [2] and [3] for the case 
m in [ ]1,2 . The concept of multiplicity of solutions defined in [1] is also 
redefined here in Theorem 3. However, this concept uses the notion of energy 
spaces ( v

pM  ( p +∈ , v +∈ ), subspaces of ( )− S  defined previously in [1] 
and [3]. In order to generalize their definition as subspaces of ( )m− S , the 
theory has been extended to some properties on the Hilbert spaces ( )(1

mv H ) 
on )(2 mL  . In particular, we show in Properties 2 that 2 1

v v
p pM M  ( 1 2v v< ) 

and the inclusion ( ) ( )2
1 1

v v m m
p L   M H . 

The concept of multiplicity of solutions focuses on, generally speaking, 
looking for solutions of a given linear PDE specifically in the energy spaces. In 
this way, it is not following the classical way of solving a linear PDE with 
boundary conditions. Three examples illustrate this concept. The first one 
investigates some type of solutions (e.g., evanescent waves) of the wave equation 
when analysing the Taylor series development of the energy function associated 
with an evanescent wave. We then formulate another concept: the energy 
parallax. It is defined mathematically in Definition 4. Under some specific 
circumstances (e.g., the energy function exists), we show that the variations of 
energy locally in a predefined system, should lead to include additional solutions 
in the energy spaces with higher order v (in + ). The second example is based 
on the local variations of EM energy density, which allows to define waves which 
are first order derivative of the EM field. This example is further explored in 
Appendix IV. Finally, the last example is the derivation of the Woodward effect 
with some strong hypothesis in order to include the EM energy density in the 
specific case of asymmetric EM cavity. We introduce in the Woodward effect, 
the first and second order derivative of the EM energy density, which can be 
interpreted such as a theoretical definition of an Electromagnetic and Gravita- 
tional coupling. 
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Appendix I: Generalities on Sobolev Spaces 

A Sobolev space is a vector space of functions equipped with a norm that is a 
combination of Lp-norms of the function itself and its derivatives up to a given 
order. Intuitively, a Sobolev space is a space of functions with sufficiently many 
derivatives for some application domain, such as partial differential equations, 
and equipped with a norm that measures both the size and regularity of a function. 
Sobolev spaces are named after the Russian mathematician Sergei Sobolev. 

Definition I.1. [14] Let mΩ⊆   ( m +∈ ) be open. The Sobolev space 
( ),k pW Ω  ( k∈ , [ ]1,p∈ ∞ ) is defined as: 

( ) ( ) ( ){ }, ,k p p pW f L D f L kα αΩ = ∈ Ω ∈ Ω ∀ ≤         (39) 

with D fα  the α-th partial derivative in multi index notation,  

1
1

n
n

fD f
t t

α
α

αα

∂
=
∂ ∂

. The Sobolev space ( ),k pW Ω  is the space of all locally  

integrable functions f  in Ω  such as their partial derivatives D fα  exist in 
the weak sense for all multi index kα ≤  and belongs to ( )pL Ω  (i.e. pL

f < ∞ ) 
([26], chap. 5). If f  lies in ( ),k pW Ω , we define the ,k pW  norm of f  by 
the formula 

( ) ( ),k p pW L
k

f D fα

α
Ω Ω

≤

= ∑                       (40) 

Now, let us introduce the Fourier transform ( ) ( )1: m m
bL →    as in 

[19] 

( ) ( ) ( )( )e dixf f x x fξ ξ− ⋅

Ω
= =∫                  (41) 

Here ( )m
b   is the space of bounded and continuous functions in m  

[17]. Note that ⋅  is the scalar product (with x  and ξ  in m ). One can then 
define the Sobolev spaces for mΩ =  , ( ),k p mW   using the Bessel potentials 
and the Fourier transform such as [14] or [17] (chap. 9) : 

( ) ( ) ( ) ( ) ( ) ( ){ }2, , 1 2: 1
kk p m k p m p m p mW H f L f Lξ−  = = ∈ + ∈  

      (42) 

The Bessel potential spaces are defined when replacing k  by any real 
number s . They are Banach spaces and, for the special case 2p = , Hilbert 
spaces . Now, one can state an important result with Sobolev spaces [14] 

Theorem I.1.: ( ) ( ), ,k p m l q mW W⊆  , whenever 0k l> ≥  and  
1 p q≤ < < ∞  are such that ( )k l p m− <  

Proof. The proof of this theorem is rather long and technically delicate which 
is not our focus. Readers interested in this matter should refer to [14] [26] (Chap. 
5) 

Appendix II: Possible Interpretation of the Energy Parallax 
in Modern Physics 

In Section 4, we define mathematically the notion of multiplicity of solutions for 
a given PDE. Through the various examples in Section 5, we define the concept 

https://doi.org/10.4236/jmp.2017.810100


J.-P. Montillet  
 

 

DOI: 10.4236/jmp.2017.810100 1720 Journal of Modern Physics 
 

of energy parallax. The general meaning is that additional solutions should be 
taken into account when varying the amount of energy. Those solutions should 
be defined based on the associated energy spaces (e.g., pE , p +∈ ). Now, if we 
replace this concept in modern physics, what is the meaning behind it? 

In modern physics, Energy is a global concept across the whole science. The 
definition varies with for example kinetic energy and potential energy in classical 
mechanics. It relates respectively to the object’s movement through space and 
function of its position within a field [27]. Chemical energy can be defined 
broadly such as the electrical potential energy among atoms and molecules. In 
quantum mechanics, energy is defined in terms of energy operators (e.g., Hamil- 
tonian) as a time derivative of the work function. It allows to define particles at 
nominated energy levels associated with an EM waves emitted at frequencies 
defined by the Planck’s relation. In General Relativity, energy results from the 
product of a varying mass and the square of the speed of light. Energy can 
describe the behavior of a system of two particles (and more). For example, the 
electron-positron annihilation in which rest mass (invariant mass) is destroyed. 
At the opposite, the inverse process (creator) in which the rest mass of the 
particle is created from energy of two (or more) annihilating photons [28]. 

Energy parallax is here defined such as the concept of using additional wave 
functions. For example in Section 5.2.2 increasing the higher order derivatives of 
the EM energy density leads to the consideration of additional waves. The 
energy parallax concept can then help us to state that those additional waves are 
additional excited photons that we must take into account to vary the EM energy 
density. 

Appendix III: Discussion on the Possible Relationship 
between the Energy Spaces v

pM  and v
p

1
1M −

+  

This section follows the development in Section 3.2 and especially Properties 2. 
First, p +∀ ∈ , { }1

v v
p p+ ≠ ∅M M , because ( )0 m−∈ S , and ( p +∀ ∈ , 

v +∈ ) 0 v
p∈M . Thus, 10 v v

p p+∈ M M . 

To recall Definition 2 and Lemma 2, [ ]
1

n
pv

i f
+  ∂    

 can be decomposed with 

the family of energy operators [ ] 1. p

k k

++

∈

      
 ( { }0,1n +∀ ∈ − , [ ]1, ,i m∈ 

, 

p +∈ , { }0v +∈ − ). Thus, one can write ( l v< ): 

[ ] [ ]
1 11

1 1 10

1 j

j

n n l Nv pp pv v j u
i i u i

j u N

v
f f C f

j
α

− +−+ + +
− −

= =−

−           ∂ = ∂ ∂                
∑ ∑    (43) 

Thus, for 1n > , Lemma 2 allows to state that { }, 1
1

v v v n
p p p

>
+ =M M M , with 

, 1v n
p

>M  the subspace of pE , but restricted for n +∈  and 1n > . 
Furthermore, let us define the space ( ),* m

p
− s : 

( ) ( ) [ ][ ]
,*

1, , ,

pm m
p p i m k k i

f f Ker f
+

− −
∈ ∈

    = ∈ ∉       

   s S    (44) 
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Note that ( ),* m
p p
∞ −⊂/ M s , but the bump functions [15] are included in 

( ),* m
p
− s . We can also recall the discussion on 1n =  in [1] and [3], with the 

definition 

( ) ( )
[ ]

,*

1

1, , , , 1m m
p n

p
f p g g n n

f

− + − +

+

 
  ∀ ∈ ∈ ∃ ∈ = ∀ ∈ > 

        

   s S  (45) 

On can also state that [ ]
[ ]

[ ]

3

1
21

1

p

pk k
i i

p

f
f

f

+

+

+

           ∂ = ∂             

 ( k +∈ ) and use the  

Leibniz’s rule for derivations in order to expand the multiple derivatives or the 
decomposition stated in Lemma 2. If we call ,*v

pM  ( p +∈ ), the subspaces of 

( ),* m
p
− s . For all 1g  in ,*v

pM  can be written as a non linear sum of 2g  in 
,*

1
v
p+M . Finally, we can conclude that ,* ,*

1
v v
p p+M M . With the specific extension of 

v
pM  to the case 1n = , we can also conclude 1

v v
p p+M M . In addition, 

( ) ( ),* ,*
1

m m
p p
− −

+  s s  by definition. 

Appendix IV: Consequences in Terms of EM theory 

We are taking the example of the variation of EM energy density inside a copper 
wall due to planar waves reflecting and refracting on it [23]. To recall Section 5.2, 
the EM field is now including ( E , δE ) and ( B , δB ), contribution of the 
subspaces 0

0M  and 1
0M  respectively when using the concept of multiplicity of 

the solutions (i.e. Theprem 3) for the higher order derivatives of the energy 
density (see (26)). We call the total EM field totE  and totB  inside the copper 
plate (skin layer) with associated permittivity   and permeability µ . They are 
solutions of the Maxwell equations: 

,

,
0,

,

tot
tot

tot t tot

tot

tot t tot

ρ

µ µ

∇ ⋅ = 
∇× = −∂ 
∇ ⋅ =


∇× = ∂ + 

E

E B
B
B E j





                  (46) 

with the principle of charge conservation: 

0t totρ∂ +∇ ⋅ =j                         (47) 

Now, the variation of energy density (26) together with the equation of charge 
conservation is formulated such as: 

d
d tot tot
u
t
+∇ ⋅ = ∇ ⋅P E                      (48) 

tot tot
tot µ

×
=

E BP  is the Poynting vector. Now, writing tot δ= +E E E , 

tot δ= +B B B  and δ  is the first derivative in time ( t∂ ) (i.e. solutions in 1
0M ),  
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then following [23] 

( ) ( ) ( ) ( )1
t t t t tµ

 
+ ∂ ⋅ = + ∂ ⋅ ∇× + ∂ − ∂ + ∂ 

 
E E j E E B B E E    (49) 

using the equalities ( )∇ ⋅ × = ⋅∇× − ⋅∇×E B B E E B  and the Maxwell 
equation t∇× = −∂E B , 2

t t∇×∂ = −∂E B  the previous equation reduces to: 

2

0

t t
t t t

t t
t t

u u
µ µ

ε
µ µ µ

∂ ×∂   ×
⋅ +∇ ⋅ + ∂ + ∂ ⋅ +∇ ⋅ + ∂   

   
∂ × ×∂    ∂ ⋅∂

+∇ ⋅ +∇ ⋅ + + ∂ ⋅∂ =   
   

E BE BE j E j

E B E B B B E E
   (50) 

We can separate in three groups,  

2

t

t t
t t

t t t t
t t

u

u

µ

µ µ

ε
µ µ

 ×
∂ +∇ ⋅ = − ⋅  

  
∂ × ×∂    ∂ +∇ ⋅ +∇ ⋅ = − ⋅∂    

    
∂ ×∂ ∂ ⋅∂  ∇ ⋅ = − − ∂ ⋅∂    

E B j E

E B E B j E

E B B B E E

 

The Poynting vector is defined as 
µ
×

=
E BP  and its derivative  

t t
t µ µ

∂ × ×∂
∂ = +

E B E BP . Thus, the second order term of the energy density is  

the contribution of the EM field generated by t∂ E  and t∂ B  is: 

( )2

0

t

t t t

t t t t
t t

u
u

ε
µ µ

∂ +∇ ⋅ = − ⋅ 
∂ +∇ ⋅ ∂ = − ⋅∂ 


∂ ×∂ ∂ ⋅∂  ∇ ⋅ = − − ∂ ⋅∂    

P j E
P j E

E B B B E E
 

The last line is the contribution from only the fields t∂ E  and t∂ B . 
Finally, the creation of the wave defined by the EM field ( t∂ E , t∂ B ) means 

that some material properties may allow to create two type of EM waves namely 
( E , B ) and ( t∂ E , t∂ B ). 
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