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Abstract 
Basic set of equations of motion for particles in the case when charge distribu-
tion of a particle at rest is spherically symmetric and localized is formulated. 
Various approximations for interaction forces are derived. The basic approx-
imation is justified by the fact that particle velocities vary little on a time scale 

0 cσ  ( 0σ ~localization radius). Examples of large and small (with respect to 

0σ ) distances between particles are considered. In both cases the slow motion 
approximation is derived. Apart from calculation of the corrections to the 
point charge interaction at large distances an approach to the analysis of neu-
tral particles (missing in the point particle theory) containing charged frag-
ments is proposed. In addition, it is shown that at small distances charges of 
the same sign may attract if their mechanical masses are substantially small. 
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1. Introduction 

As is well known, classical electrodynamics is intrinsically inconsistent at dis-
tances of the order of or less than the “radius” of the electron (see (37.3) in [1]). 
In the beginning of the last century it became already possible to cure those in-
consistencies by taking into account the theory of extended charges. It is during 
this time however that quantum “revolution” took place and made this problem 
no longer relevant as quantum effects “came into a play” already at distances 
much larger than the electron “radius”. Yet, the divergences that occurred within 
the point charge approximation were successfully removed by the renormaliza-
tion methods of quantum field theory. Classical theory was left to (one might say 
was allowed to) study technically feasible models (charged spheres, capacitors, 
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etc.). Recent researches in this field [2] [3] [4] are worth noticing.  
In [5] the author considered this problem in general setup having investigated 

properties of the field created by an accelerated extended charged particle. Dif-
ferent options for the current vector were considered. In particular, it was as-
sumed that charge distribution of a particle at rest is spherically symmetric. In 
analyzing interaction of a particle with its own field the field contribution into 
inertial mass was calculated and the Lorentz-Abraham-Dirac formula for radia-
tion friction was derived more accurately (corrections to the latter as well as 
conditions for these corrections being comparably small were found). The issue 
of what makes existence of an extended micro particle charge stable was left 
aside (according to the author this issue is analogous to the issues of elementary 
particle stability “causes”). 

This work is a follow up of [5]. Its mathematics gets even more cumbersome 
though that one may wonder if our work makes sense at all. We are pretty sure it 
does. First of all it is clear that improving the theory to a better perfection is 
useful from mathematical stand point (to clarify conditions and accuracy of the 
results provided by the point particle electrodynamics). There are pragmatic 
reasons too.  

1) Currently a combination of relativism along with large acceleration of ex-
tended charges can be only observed at microscopic level that is governed by 
quantum theory. It does not exclude similar phenomena where classical electro-
dynamics still applies. 

2) There are many principles and results of the classical theory that manifest 
as quantum analogs in one way or another (to name a few, corrections to the 
potential yield energy spectrum shift, classical trajectory corresponds to the 
evolution of coordinate mean values with time, etc.). Therefore one cannot ex-
clude the fact that classical phenomena related to a finite size charge may affect 
quantum ones. 

The original system of equations of motion for the extended charge dynamics 
results from setting the variation of the action to zero while varying particle tra-
jectories (i.e. it is assumed that the field produced by charges is unambiguously 
defined by their trajectories). This system is relatively simple in its form though 
hardly applicable in practice making the derivation of the “working” approxima-
tions extremely cumbersome. Therefore, to put it clear and short we provide our 
work with the notations, our analysis scheme and concluding appendix that 
contains all cumbersome expressions. 

2. Notation and Analysis Scheme 

1) Vacuum speed of light c  is set to 1.  
2) Latin letters (except for ,l m ) enumerate Minkowski space-time tensor 

components: kx –coordinates of a point, ( )kf s —trajectory of the “center” of a  

particle, d , , .
d

k k kfu f u
s

= =


 —particle velocity, acceleration, etc. 4-vectors. 

Line element s  is chosen such, that 0 21 .u = + + u   
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3) Summation over dummy indices is implied. Occasionally we omit tensor 
index of a vector. For example, ( ) 2,  k k

k kq p qp p p p= = . Time component is 
singled out as follows ( ) ( ) ( )0 0 0, ,  , ,  , .k k

kp p p p x x= = − =p p r   
4) Particles and their parameters are enumerated by Greek letters and num-

bers. A particle is assumed to be arbitrary unless its number is specified. 
5) Current density vector of a given particle is defined via integration over the 

line element: 

( ) ( ) ( ) ( ) ( ), d ,  1 ,  ,k k k k k k kJ x J X s s J y u X x fδ τ µ σ= = − = −∫         (1) 

where ( )rµ  is spherically symmetric charge distribution of a particle at rest, 

( ) ( ) ( )2 2 2 2 0
0, , ,

1
Xu y Xu X X

u
τ σ τ

 
= = = − = = − − 

+ 


Xu
σ σ X u       (2) 

The following shift is implied in integration x x f→ +  and 4 3d d dx τ= σ . 
We keep the notation for σ  including when .X x=  Function ( )µ σ  is 
bounded at the origin and localized in such a way, that its “multipoles” 

( )
0

4π d ,  1, 2,3,l
lq lµ σ σ σ

∞
= =∫                     (3) 

are finite (at least for 6l ≤  in our case). 
6) The notation for the following integrals is introduced: 

( ) ( ) ( ) ( ) ( )4 3d d ,Q x x Q x f Qδ τ µ σ µ σ= + =∫ ∫ σ             (4) 

where ( ) ( )
( )

0
0

,  
1

x
u

= = +
+

σu u
σu r σ  in the second integrand. For ( )Q Q σ=  one 

has 

( ) ( ) 2
0

4π d .Q Q σ µ σ σ σ
∞

= ∫                     (5) 

Whenever the weight function µ  carries a particle number it is appended 
explicitly to the associated quantities: ,  k ku uα α α

µ µ= = → =  . The fol-
lowing functions associated with µ  carry this number as an upper index: 

( ) ( ) ( ) ( )1 0

4π d , 1,2, ,  2π d .l
l lQ z z z l B z z z

σ

σ
σ µ σ µ

σ
∞

+= = = −∫ ∫      (6) 

7) By 0σ  the order of a charge size is denoted.  
8) Derivatives with respect to kx  as well as with respect to parameters 

,τ σ  are denoted as:  

( ) ( ) ( ) ( ) ( ), ,, , ,  d d .k
k x Q Q

τ
τ σ σ σ′= ∂ ∂ = ∂ ∂ =   

9) Occasionally we omit arguments of a function. In this case a function and 
its value given at a point specified earlier in the text are denoted by the same 
symbol. Integration is carried out within infinite limits unless otherwise speci-
fied. The multiplicity of an integral is defined by dimensionality of its integrand. 

Our analysis is as follows. We derive the original equations and then decom-
pose them with respect to small parameters. The basic parameter is associated 
with the particle acceleration bound. Namely, the particle velocity is supposed to 
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vary little during the time that light covers distance of the order of 0σ . To be 
specific, suppose that the acceleration is characterized by a certain frequency 0ω . 
We assume 

0 0 1.σ ω                             (7) 

Suppose 0σ  is of order of the electron “radius” while 0ω  is the frequency of 
a photon interacting with the electron. Inequality (7) breaks down at photon 
energies being hundreds of the electron self-energies. This implies that (7) rules 
out very rapid accelerations. Hence, we see (7) is still fulfilled for intermediate 
accelerations (i.e. not necessary small). By dropping terms of the order of 
( )0 0

mσ ω  one is said to neglect those velocity derivatives that are of m-th order 
and higher (i.e., the total order of a given product).  

There are two small parameters associated with large and small distances 
compared to 0σ  between centers of particles. The fourth parameter is a small 
velocity of a particle: ( )01 .u=v u v  

We start out by decomposing the original equations with respect to the basic 
parameter and then derive large and small distance approximations. In both 
cases we then study their small velocity behavior. 

3. Basic System of Equations 

Trajectory of the α-th particle is given by functions ( )kf sα α . Taking an N - 
particle system in some reference frame we can adjust the origins of line ele-
ments such that 

( ) ( ) ( )0 0 0
1 1 2 2 N Nf s f s f s= = =

                 (8) 

(i.e., each sα  can be expressed in terms of a single evolution parameter). 
From (1, 2) it follows that the current of the α-th particle (we append α
—index to ,  ,  ,  ,  ,  f u u yτ σ ) has the form 

( ) ( ) ( )d ,  1 .k k k kJ J s J y uα α α α α α α α αδ τ µ σ= = −∫               (9) 

Equations of motion read 

( ) ,  1, 2, , ,k km u g Nα α α α= = 
                  (10) 

where mα  is the mechanical mass of the α-th particle, whereas forces ( )
kg α  are 

derived from variation of the electro-magnetic part of the action 

( )
4 4

out
1d ,  d ,

16π
k nk k

e k kn kS S A J x S F F A J x = − = − 
 ∫ ∫        (11) 

1 1 1,  ,  ;N N Nk k k k kn knJ J A A F Fα α αα α α= = =
= = =∑ ∑ ∑  

here ( )out
kA  is the gauge potential of the external field, ,  k knA Fα α  are the poten-

tial and the Maxwell tensor of the α -th particle correspondingly that satisfy the 
Lorentz condition and Maxwell equations: 

, ,0,  4π .k kn k
k nA F Jα α α= = −                   (12) 

It follows then the action S  and its variations are given by 
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( )4 4 41 1d ,  d d .
2 2

k k k k
k k k kS A J x S J A A J x A J xδ δ δ δ= − = − + = −∫ ∫ ∫     (13) 

The variational derivatives e kS fαδ δ  are associated with forces ( )
kg α . To 

calculate these derivatives one has to take into account: 1) any variation with re-
spect to ( )u uα α  is equal to zero; 2) the fact that the Lagrangian depends on ac-
celerations implies that the variations kuαδ  as well as kfαδ  should be equal to 
zero at the integration boundary.  

Therefore, equations (10) cast into 

( ) 4
1 ,  d ,Nk k k k n n

k

J
m u g W g s A x

f
α

α α βα α βα α ββ
α

δ
δ=

= + = −∑ ∫


          (14) 

where kgβα  is the force the β -th particle acts on the α-th one and kWα  is the 
external field force. Explicit expressions for these forces were found in [5] (see 
(15)). To obtain kgβα  ( kWα ) it suffices to associate current with the α -particle 
while field-with the β  one (external). Let us restrict ourselves to the first term 
resulting from this expression (we omit the second one corresponding to higher 
order corrections): 

( ) ( ) ( ) ( )4d 1 ,k kn kn
n ng s F x J x y F x uβα β α α β αα

= = −∫           (15) 

( ) ( ) ( ) ( )out1k kn
nW s y F x uα α αα= −                 (16) 

(recall 
α


 is given by integral (4), where µ  should be replaced with 

αµ ). We omit the external field below (if present we just add it to the final equa-
tions). Note that for sufficiently uniform external field one recovers the usual 
Lorentz force. 

Forces kgβα  depend in a highly complicated way on particle trajectories and 
unknown charge distributions (the latter can be more important). This is why 
equations (14) in general are virtually useless for constructive analysis. Next, we 
consider the approximations, where this dependence is simplified. Particularly, 
forces depend on αµ  via a few integral characteristics (constants).  

4. Limited Accelerations 

In order to reduce amount of indices we omit index β  in identifying a particle 
and its parameters and take the α-th particle as the first one, whereas 1 1

k kg gβ =  
is the force created by the field of arbitrary particle (including the first one) act-
ing on the first particle. In final expressions, it suffices to do other way around: 
by appending β  an arbitrary particle (and its parameters) while taking the first 
particle as the α-th.  

The field of an accelerated extended charge has been found in [5]. For current 
(1) it is given by formulae (6, 9) in this paper. Due to localization of the function 
( )µ σ  the integration in this formulae is carried out along region 0 0s s σ′ − < , 

where 0s  is defined by the relation 

( ) ( )0 0
0 0 ,  .x f s s− = − =r f r x                 (17) 

For limited accelerations ((7) is fulfilled) we can expand ( )kf s′  and its de-
rivatives in power series of 0s sρ ′= − , e.g., 
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( ) ( ) ( ) ( )
2

0 0 0 ,
2

f s f s u s u s ρρ′ = + + +
              (18) 

With the aid of expansion (18) and the integration along ρ  one can find the 
potentials with any accuracy. In [5] by dropping 4th and higher order derivatives 
the field was found in two cases—in the center of a particle and at distances 
larger than its “size”. The same accuracy expression for the field at any distance 
is more involved. We give it here by neglecting 3rd order velocity derivatives: 

1 2 3 ,k k k kA A u A u A u= + +                      (19) 

( )( )[ ] ( )[ ]

( )( )[ ] ( )[ ]

( )[ ]
[ ] ( )

1, 1, 1, 2, 1,

1 2, 2 3,

3, 1,

0

1 1 , ,

1 11 , ,

 , ,

, , ;

 

kn knkn
y y y

kn kn

kn
y

kn k n n k

F y A yA A X u A A u u

A y A X u A A X u

A A u u

q p q p q p X x f s

τ τ

τ τ

τ

λ
τ

τ τ

= − + − + −

+ + − + −

+ −

= − = −





 

 



  (20) 

all functions of s  are calculated at the point 0s  , in particular, in view of (17): 

( )( ) ( ) ( )2 0
0 00,  ,  ,  .k

kX u X u f f s u u sτ= = = − − − = =r f u u f  

Functions 1 2 3,  ,  A A A  are given in (A.1 – A.3).  
Though we have found the more explicit approximation for the field, integrals 

(15) still provide one with too big amount of the charge distribution characteris-
tics. For large and small distances between particles the situation simplifies as we 
show below. In so doing we drop off 2nd order and higher velocity derivatives.  
For a given approximation (see (16) in [5]) ( )11 11

k k
fg M u= −  , where 

( ) ( ) ( ) ( )2 1
1 11 10

216π d d 2fM z z z B
σ

σ µ σ σ µ σ
∞ ∞

= = −∫ ∫        (21) 

can be called the electromagnetic mass of the first particle. Taking it into account 
we move kgαα  on the left in (14) introducing the notation ( )fM m Mα α α= +  for 
the full mass of the α-th particle. Correspondingly, any particle but the first one 
is supposed to be taken as arbitrary in the formulae below. 

5. Large Distances 

So, let 

( ) ( )1 1 0 .s s σ− f f                     (22) 

In (A.1 - A.3) one has 1 ,  0l
l l

q
Q B

τ +≅ ≅  ( lq  see (3)). Instead of (20) we now 

have 

( ) [ ] [ ] [ ] ( )2
03 5 2 3

1
, , , .

2 6
kn kn knkn y e yD e DF X u X u u u ω

τ τ τ τ
− 

= − + + + 
 

 


  (23) 

Here 2e q=  (particle charge) and 4D q=  (the electric analog of the mo-
mentum of inertia); ,e Dα α -same quantities for α-th particle. 

In (15) and (17) we make a shift ( )1 1x x f s→ +  (see (4)), where now  
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( ) ( ) ( )0 0 2 2
1 1 1 1 1 1 1 1,  1 ,  .k

kx u x x x σ= = + + = = −u σ r σ u σ u        (24) 

In (15) we then have 1 0σ σ< . Let us introduce the vector  

( ) ( )1 1 0 ,k k kf s f sγ ′= −  

where 0s′  is defined in (17) at ( )1 1
k kx f s= . Expanding then 0s  in powers of 

1σ γ  and neglecting higher order contribution ( )4
1σ γ , we obtain 

2 2 2
0

0 0 0 03 2 3,  ,
22 2

aya a x as s
b bb b b

τ
β β′= + − = + − +            (25) 

( ) ( )
2

0
0 0 0 0 041 ,  ,  , , 

2
ab y b y w y

b b
β

τ α α α α β τ
 

= − = − + = − = + 
 

 

( ) ( ) ( ) ( ) ( ) ( )0 0 0, , , , , .b u a x xu y xu w u u u sγ γ τ γ ′= = = = = =   

Expanding ,  ,  ,  X u yτ  in (23) and taking into account (25) one gets 

[ ] [ ] [ ]0 1 2, , , .kn kn knknF F x u F x u F u uγ γ= + + + +          (26) 

Explicit expressions for 0 1 2,  ,  F F F  are given in (A.4 - A.6) while the values of 
,  ,  u u f  are taken at ( )0 0 1s s s′ ′= . which satisfies the equation  

( ) ( )( )0
1 1 0 k k kf s f sγ γ ′= = −γ               (27) 

Carrying out integration in ( )1 1
1 kny F−  and taking into account that odd 

powers of x  do not contribute we have 

( ) ( )( ) ( )( )
( )( )

1 1 0 1 1 1 1 2 1 0 2

3 1 1 1 4 12 1 5 ,

k k k

k k k

g uu K uu K S uu K b K S u

S b K uu K u S u S u

γ= + + + − +

+ − − + +

 

 

     (28) 

where ( )1 1b uγ= , while 0 2 3,  ,  K K K  and 1 5, ,S S  are given in (A.7 - A.13). 
Appending index β  to an arbitrary particle (including its parameters) in (28), 
while taking the 1-st particle as the α-th one we obtain the equations of motion  

,  1, 2, , .Nk k kM u g W Nα α βα αβ α α
≠

= + =∑ 
               (29) 

It is clear that even for 2N =  the obtained system should be solved numeri-
cally (mainly due to implicit form of ( )0s s′  given in (27)). At small velocities 
however one can succeed analytically. 

Let us denote ( ) ( )0 0
1 1 0,  t f s t f s′ ′= = . Dropping off 3v -terms ( 1v ) we 

find from Equation (27)  

( ) ( ) ( )( ) ( )
2

2 21 ( ) 2 ,
2

t t R Rv R R
R

 
′ = − − − + − − − 

 
  

RvRv Rv Rv Rv vv  (30) 

where ( ) ( ) ( )0 1,  t u t t= = = = −v v u f R f f  (the upper dot denotes differen-
tiation with respect to time). Expanding t′  in (28) we find the three dimen-
sional vector for the force that the field produced by the 2nd particle acts on the 
first one: 

( )
( )

21 2 2 1 1 2
21 21 21 2 23 5 5 3 ,

6
, 1, 2;

e e e D e D w R
R R R

wα α α

= + − +

= − =





g G Q R v

v R
           (31) 



M. B. Ependiev 
 

661 

( ) ( ) ( )
2 2 222

21 1 2 22

3 11 ,  ,
2 2 22

w RT T
R

 
= + − + + − = 
  





Rv
G R v R v v R     (32) 

2 2
22

21 1 2 1 1 2
5 ,  

2 2 6 3
w R Rw R T RR = − + − − − + = − 

 
  

 Q R R v v R f f     (33) 

Changing index 2 to β  and 1 to α  in (31 - 33) one finds vector .βαg   
The obtained results remain valid in case when some of the particles are neu-

tral. For example if 2 20,  0,e D= ≠  then 21g  can be determined using (31) 
from the third term while, 12g —from the second one with the interchange 
1 2↔  (in these cases the length plays crucial role). Note that if 1 2 0D D= =  
Equation (31) reproduces interaction force of point charges expanded in small 
velocities. At the same time one needs extended charges to have bounded elec-
tromagnetic mass (20).  

In case of two equal mass and equal absolute charge particles one has in (29, 
31) that 1 2 2 1 1 2,  e D e D M M= = . Assuming the center of mass is at rest ( 1 2= −v v ) 
and neglecting 2v -terms let us write down the equation for ( )tR  in the fol-
lowing form  

( ) ( )1 2 1 21 2 1 2 1 2
1 3 3 3 5

22 2
2 3 2

e e e De e e D e eM
R R R R R

    − − = − +      

 



RR RR
R R     (34) 

It says that if 1 2e e=  the inertia mass decreases as the distance between par-
ticles decreases (we will see what it implies at small distances).  

6. Small Distances 

Let us rewrite the condition of small distances in the form 

( ) ( )1 1 0 .s s σ− f f                      (35) 

We do not speculate on to which extent such mutual penetration of particles 
is possible for it requires understanding of the inner mechanisms that make an 
extended charge stable. We leave this question aside. Let us however remark that 
e.g. virtual particle creation (vacuum polarization) hardly escapes from that kind 
of processes. Under (35) in (20) (taking into account 1x x f→ +  in (15)) we 
expand it in two parameters 1) in ( ) ( )( )0

k k kX X X x f s f sγ′ ′= + = + −  vec-
tor ( ) ( )1 1f s f sγ = −  is supposed to be small; 2) in solving Equation (17) 

( ) ( ) ( ) ( )0 0 0
0 0x f s f s s s+ − = + −r f f               (36) 

parameter 0s sε = −  is taken to be small. We neglect 3γ –terms and higher. 
Expanding in kγ  results in  

( )( ) ( )
2 2

3 2

2 , 1,
2

u a a a bb X u
τ γ τ γ ττ τ τ

τ τ τ τ

′+  ′ ′ ′′
′ ′ ′= + + + − − = − ′ ′ ′ ′ 

 

 

      (37) 

( ) ( ) ( ), , .uX a X b uτ γ γ′ ′ ′ ′ ′= = =  

From (36) one obtains (below if not otherwise stated ( ) ( ),u u s u u s= =  )  
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( ) ( ) ( )1 22 2 2
0 0 0 0 02 ,  ,  ,y xu xε σ τ σ τ σ τ σ τ= − + − = = −       (38) 

( ) ( )
22

0
0 0,  ,  ,  ,

2 2

k
k k k k k k x yuX x u u s u u y xuεε ε τ σ

σ
′ ′= + − = − = + =



   (39) 

( ) ( ) ( )2 2,  ,  ,  ,  .a a b w b b w a x b u w uε ε ε γ γ γ′ ′= + − = − = = =   

In (20) we encounter functions of the form ( ) ( )0G P xσ , where ( )P x  is 
some polynomial. Let us introduce the angle ϕ  belonging to a plane orthogon-
al to ( )( ) ( )0 0

1 1 1 1u uu u′ = − + +u u u . As 1σ  and σ  do not depend on this 
angle and ( )1 0xu = , the integration along ϕ  and azimuth gives no contribu-
tion from odd powers of x . For even powers we introduce the notations 

{ } ( ) { } ( )( )( )2π 2π
1 2 3 1 2 30 0

1 1d ,  d
2π 2

kk k kq qx x p p p p x p x p x xϕ ϕ
π

= =∫ ∫  (40) 

where 1 2 3,  ,  ,  q p p p —are the x –independent vectors. In (A14 - A18) the expli-
cit relations for (40) are given. Note, that ( )22 2

0 1 0 cosτ σ δ θ= , where azimuth θ  
is the angle between 1σ  and ,′u  2

0δ ′= u . In case 0 0δ →  it makes sense in 
addition to average ( )P x  with respect to θ  (weighted with sinθ ). Averag-
ing vectors in (40) yields:  

{ } { }
2 4
1 1

1 2 3 4,  ,
3 15

kk k kq q p p pσ σ
ρ→ − →              (41) 

( ) ( ) ( ) ( )4 1 2 3 1 3 2 2 3 1 1 1,  , .k k k k k k kp p p p p p p p p p q qu uρ = + + = −         


 

Substituting (37 – 39) into (20) one finds from (15) 

( ) ( )( ) ( )

( )( ) ( ) ( )( )
( )

1 1 1 1 1 2 1 311 1

1 1 4 1 1 51 1

1 1

       ,

.

k k k k k

k k k k

g uu T uu b u T uu T

uu b u T uu u uu u T

b u

γ

γ

γ

= + − +

+ − + −

=



          (42) 

Expressions for 1 2 3 4 5,  ,  ,  ,  k kT T T T T  are given in (A.19 - A.23). As we can see 
(42) has quite a cumbersome form. This is not a problem for the analysis. The 
fact that the angle dependence on charge distributions in (42) is expressed via 
integrals being functions of ( )2

0 1 1uuδ = −  rather than just constants is a prob-
lem: 

( ) ( )( )1 21 2 2
1 1 1 1 1 00 1

d 1 d ,  , 0,1, 2, ;l mz z z l mσ µ σ σ σ δ
∞

−
+ =Φ∫ ∫        (43) 

where ( )σΦ  are functions from list (6).  
To get reduced to constants let us consider the case of small velocities, 

0 1δ  . Expanding integrals in (43) in 0δ  and taking into account (41) one has 

( )0 0
1 1 2 3 4 1 5 1 1,  d d .H H H H H f f t p p t= + + + + = = = g γ v v v v      (44) 

Expressions for lH  are given in first relations (A.24 - A.28) up to 2v  order. 
Let us stress that lH  is a polynomial in ( ) ( )1,  t tf f  and their derivatives de-
pending totally on six constants (hereinafter 2,  ,  Q Bµ  depend on 1σ  while 
  denotes (5))  

2 2
1 2 1 2 1 21 1 1 11 1

4π , 4π , , , , .Q Q Q Bµ σ µ σ σ′           (45) 
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Equations of motion then take the form 

,  1, 2, , ,NM v Nα α βα αβ α α
≠

= + =∑
g W               (46) 

where αW —is the 3d vector of the external force acting on the α-th particle 
while βαg  can be restored by appending indices to (44, 45) along the lines of 
(29). In (46) the dependence on charge distributions αµ  is expressed via 

( )5 1N N −  constants (we have taken into account that in accordance with (5) 
one has 2 2

1 1, 3β α β α ββα αα β
µ µ σ µ σ µ µ′ ′= + = − ). The amount of con-

stants reduces drastically for specified eα  such that 1 1e eα αµ µ=  (arguably 
such an equivalence of distributions takes place for equal absolute values of 
charges only): constants of type (45) can be expressed (see (A.29, A.30)) via 

( )1fM  and three positive constants 

( )
1

1 1 1
0 11 1 1 21 2 21 2 24π 3,  , . C C Q C Q Q Q

µ µ
µ σ

=
= = = =         (47) 

If particles can be represented as uniformly charged balls of radius 0σ  then 

( )
2 3 2 2 2

0 2 1 0 1 1 0 1 01, 3 4 , 3 5 .fC C e C e M eσ σ σ= = = =          (48) 

Consider now a system of two equal mass particles in which charges are equal 
in their absolute values ( ( ) ( )1 2 1 2, f fm m m M M M= = = = ). Coefficients in (44) 
now take the form of the second equalities in (A.24 - A.28). The external fields 
E  and H  are supposed to be sufficiently uniform. We are interested in diffe-
rential equations for γ  (inner motion) and position of the center of mass 

( )1 2 2= +q f f  (motion of the whole system), which are found from (46). Con-
sider the linearized approximation of these equations: 

( ) ( )[ ] [ ]1 2
0 1 2 1 2

51 2 ,
3 2

e em M C e e e e +  + − = + − + − +  
  

  γ γ E qH γH    (49) 

( )( ) [ ] [ ]1 2 1 2 1 2 2

1

1 ,  .
2 2 4

e e e e e e em M
e

+ + −
+ + = + + ⋅ = q E qH γ H     (50) 

For sufficiently large masses m  there is nothing unexpected about these eq-
uations. However if mass is zero or small enough one encounters surprises.  

Let 2 1,  0.e e m= − =  In this case processes in which a pair of particles can be 
created from “nothing” (in vacuum) having zero mechanical masses and oppo-
site charges get “legalized” (no energy conservation breakdown). Equation (49) 
describes three dimensional linear oscillators. At linearized level the inertial 
mass in (50) is equal to zero. Motion of the system as a whole at 0≠H  gets 
highly sensible to the behavior of ( )tγ  if corrections to this mass are taken into 
account.  

Another surprise springs out when 2 1e e=  for 2 3m M< . In this case as 
before (49) remains the equation for an oscillator. In other words, the approach- 
ing charges of the same sign with sufficiently small mechanical masses switch 
repulsion to attraction!  

It is unlikely to expect this kind of phenomena to be described by equations 
(49, 50) in the micro world. It seems plausible though that qualitatively they still 
have some analogs. In the first example, for instance, a small inertial mass of a 
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moving system may correspond to a pair creation supplemented with their rapid 
drag into a different position. The attraction effect of equal sign charges makes 
their “merging” to a state of a mass 𝑚𝑚 greater than ( )2 3fM  seemingly possi-
ble. 

7. Conclusion 

So, the generalization of electrodynamics to a version of the extended charge one 
can be considered basically solved. In case of arbitrary distance between particles 
one could also provide the slow-motion approximation. The author felt redun-
dant not only because of the extremely cumbersome result. What is more im-
portant is that the result contains a function of charge distribution, which fails to 
be expressed as a combination of constants (this means that its analysis demands 
specifying the form of functions αµ ). The ongoing investigations may be aimed 
at solving the obtained equations as well as at analyzing the other examples of 
extended charges including those with central symmetry violated and also ac-
counting for the distribution dependence on acceleration (whenever acceleration 
deforms charge internal structure), etc. The essence of extended charge remains 
an open issue. The question is whether that extension is a real thing, i.e. analog-
ous to common spread of matter, or the analogy is purely formal (for instance, 
an “elementary charge” as a field source represents a “smeared” distribution 
from mathematical stand point). 
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Appendix 

To (18, 19): 

( )( ) ( ) ( )2 3 4 2 2
1 2 2 2 3 3 4

2 2 2 2 2
2

6 ,

1 1
3 6 6

2 8 2 2 2 ,
120 30 3 15 3 5 2

A Q y Q q Q q y y y Q

y y y y yQ B Bτ

λτ τλ τ τ τ τ

τ λ τ λτ ττ

= + − − + − − − +

   
+ − − + + + − −   
   

 



 (A.1) 

( )( )
3

3
2 2 2 4

81 2 ,
6 3

y yA y Q q Q Bττ τ = + − − − + 
 

          (A.2) 

( ) ( )
4 2

3 4
3 2 2 3 3 4

1 4 .
2 6 3

A Q q Q q Q Bτ ττ τ τ= − − − + −         (A.3) 

( ( ) ( ),  l lQ Q B Bτ τ= =  see (6)). 
To (26): 

( )( ) ( )02 3 2
0 0 0 1 0 0 13 5

1 5
1 1 3 6 12 10 30 ,

2
yDeF y

b b
α

α α α α α α α
+

= − + + − + − −  (A.4) 

( ) ( )2 3 20
1 0 0 0 0 02 31 2 3 4 1 3 6 ,

eeF
b b

β
α α α α α= + + + + + +           (A.5) 

( ) ( ) ( )
2

0 20 0
2 0 0 03 2 3

0

1 3
1 2 3 1 3 ,

6 2
.

D e e
F

b b b
y w y

α β β
α α α

+
= − + + − +

= +
         (A.6) 

To (28): 

( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )}
( )

1 21
0 1 13 5

2 1
1 1 1 1 1 1 5

1 1

1 3 53 1 3 5 1 2
2 2

 2 1 2 ,
2

,

ee w eDK w w w w uu
b b

e Dww uu b uu uu b uu b u u
b

w u γ

− = + − + + − − −


+ − + − − −

=

  



 

   (A.7) 

( ) ( )
2

21 1 1
1 1 12 4

3 5 4 ,
2 2

ee eD bK uu uu
bb b

 
= + + + − = 

 

            (A.8) 

( ) 21 1
2 13 3

1 ,
2 6

eD e DK uu
b b

 = − − + 
 

                  (A.9) 

( )( ) ( ){ }1
1 1 15 2 1 ,

eDS w uu b uu
b

= − −                  (A.10) 

( )( ) ( )1
2 1 14

21 ,
3

eD bS w uu uu
b

 = − + 
 

                (A.11) 

( )1
3 5 13 ,

3
eDS S uu
b

= =                      (A.12) 

( ) ( )( ) ( )( )( ) ( ){ }1
4 1 1 1 1 14 1 2 1 .

eDS w w uu b uu uu b uu
b

= − − − − +    (A.13) 

To (40, 41) 

{ } ( )( ) ( ) ( )
2
1

0 1 1 1
0

3 1 1 ,  , , , , ,
2

k k k k k kq qu u q z z zu u z q u pσ
ϑ ϑ δ

δ
 = − − − = − =     


 (A.14) 
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{ } ( ) ( )
4

221
1 2 3 1 1 2 0 2 3 3 0 4 0 12

0

, , ,  1,
8

k k k k kp p p u u uuσ
ρ δ ρ ρ δ ρ δ

δ
 = +Φ + +Φ = Φ −  (A.15) 

2 2 2 2 2
1 2 3 0 1 035 30 3,  5 6 1,  2 1,  ,ϑ ϑ ϑ ϑ ϑ ϑ ϑ τ σ δΦ = − + Φ = − + Φ = − + = (A.16) 

( )( )( ) ( )( )3
1 1 2 3 2,  ,p u p u p u p p upα β γα β γ αρ ρ

≠ ≠ ≠
= = ∑            (A.17) 

( )( ) ( )3 3
3 4,  .k k k kp u p u p p p pα β γ α β γα β γ α α β γ αρ ρ

≠ ≠ ≠ ≠ ≠ ≠
= =∑ ∑            (A.18) 

To (42): 

( ) { } ( ) ( ) ( ) { }

( ) { } ( ) { } ( ) { }

{ } { }

( )( ){ }

( )

2 2
2 4

1 2 3 0 6 0 23 1 1

2 1 2 3

2 1 2 1

2 2 2
2 2 0 2 1

2
0 2 2 4

1
2 2 4 4

1 , , , ,
2 4 2

1 , , , ,
2

1 2 ,
2

, ,

k kk

k k k

k k

k

m mm

bw bT bQ D u D Z Z Q D u

w bQ D D u D u u

bQ u u Q u

Q Q b Q Q u

D Z Q Z mQ Q

γτ τ

γ γ γ γ

γ γ γ

γ τ

τ

  ′ ′ ′ ′′ ′′′ ′= + + + + + −     
 ′ ′ ′′ ′′− + + −  

′′ ′′+ −

′ ′ ′′− − + +

′= + = −



 

 



(A.19) 

{ } ( ) { } { }( ) { } { }( ) ( )2 2 2 1 1 21 3
1, , , , , ,

2 2
wT Q u Q D u b u u Q b u u u Dγ γ γ′ ′ ′= + + + − + −     (A.20) 

{ }

{ } { }

2 22 2
0

3 2 2 2

22
0 2 2

1
2 2

1 , , ,
2

 

kk

k k

bb bT Q Q Q u

Q b Q Q u

τγ
σ

τ γ γ γ
σ

  −  ′ ′′= + + +   
    
 ′′ ′′− + + 
 

          (A.21) 

{ }( ) { } { } { }2
4 0 2 , ,, , k k

k kT b u Q q p q p p qτ γ ′= − = =           (A.22) 

( ) ( )

{ } { }( )( )

{ }( ) ( )

( ) ( ) ( )

2

5 2 4

2 2 2 2
0 1 2 0 22

2 2
2 2 2
0 0 2 2 4 0 2

4
3

6 3
1 , 2 , 5 2

4
1 , ,

4

,m m

B
T Q Q

b b u Z Q Q

bu b Q Q Q Q

Q Q

σσ

τ γ γ γ σ τ σ
σ

γγ στ τ τ
σ

σ
σ σ

= + −

′ ′′− + − + +

− ′+ − − − + +

∂′= =
∂




     (A.23) 

To (44): 

( )( )2
1 1 1 1 01 1

1

4π 35 5 ,  
15 5 2

eH w w w w C
e

µ σ µ  ′= + − = + + = 
 

     (A.24) 

( ) ( )( )2 1 2 1 2 01 1

4π ,
3

H b b Q b b b C bCµ= − − = − −        (A.25) 

( )

2 2
1 2 1

3 2 1 2
1

2
11

1 2 0

24 16π
3 3 6 5 3

4 12 ,
3 3 6 5

f

Q b bBH Q Q

Mb b C C C

σ µ σ
− = − + + + 

 

 −  = − + +     

γ

γ

        (A.26) 
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( ) ( )( )4 1 2 1 0 2
1

4π ,
3

H b b Q b b C Cµ
= − − = − −           (A.27) 

( )

2 2
2 2

5 1 2 1 011 1

1 4π 1 .
3 30 3 20fH Q M Cσ σ µ

 
′= + = − 

 

γ γ        (A.28) 

To (45): 

2
1 0 2 2 1 2 1

4π 8π ,  
9

,,  
3

C Q C Q Cβ β
β β αβ αβ αβα α α α

µ σ µ ε ε σ ε′= − = = =  (A.29) 

( )
2
1 2 2 21 2

1

2 ,  ,  ,  f

e e
Q B M Q Q B B

e β β

α ββ β β β
αβ αβ µ µ µ µα α

σ ε ε
= =

= − = = = = (A.30) 
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