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Abstract 
Electrostatic Rayleigh-Taylor (ERT) mode/instability is studied in a non-uni- 
form quantum magnetoplasma, whose constituents are electrons and posi-
trons with fraction of ions. The effects of quantum corrections (i.e. Bohm po-
tential and temperature degeneracy) and magnetic field on ERT mode are in-
vestigated with astrophysical plasma application. A generalized dispersion re-
lation is deduced under the drift wave approximation. The presence of posi-
tron makes the dispersion relation a cubic equation. Different roots of both 
real and imaginary parts of the RT mode are examined by applying the Car-
dano’s method of solving the cubic equation. The dispersion relation and the 
growth rates of RT instability are examined both analytically and numerically 
with effects of electron and positron density, and magnetic field variations. It 
is shown that the magnetic field and positron density have stabilizing effec-
tuates on ERT mode while due to electron density the mode becomes unsta-
ble. The present work is anticipated to be of physical relevance in the studies 
of laboratory laser-produced plasmas as well as in the study of compact mag-
netized astrophysical objects like white dwarfs. 
 

Keywords 
Rayleigh-Taylor Instability, Drift Wave Approximation,  
Quantum Magneto Hydrodynamics, Cardano’s Method 

 

1. Introduction 

Classical plasma is usually considered to have low densities and high tempera-
ture plasmas. But some technologies have made it possible to produce plasma 
having densities comparable to the solid state, and this type of plasma cannot be 
explained properly by using the laws of classical mechanic and therefore laws of 
quantum mechanics will be applied. Contrary to classical plasmas, quantum 
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plasma exhibits the property of low temperature and high number density, and 
in nature there are many examples where such behavior of plasma is observed 
like in astrophysical environments e.g. in the crust of white dwarfs, brown 
dwarfs, Neutron stars and Magnatar etc. [1] [2] and in the core of giant planets 
(e.g. Jovian planets) [3] [4]. Dense quantum plasmas may also occur in the next 
generation of laser-based matter compression schemes [5] [6] [7], in which the 
plasmon frequency is measurably shifted due to quantum effects. Other applica-
tions of dense quantum plasmas which are relevant to the collective dynamics of 
degenerate electrons/positrons include: the electron-hole plasma in quantum 
wires [8], metallic nanostructures and thin films [9], the dense quantum diode 
[10], nanophotonics and nanowires [11], nano-plasmonics [12], high-gain quan- 
tum free-electron lasers [13], quantum wells and piezomagnetic quantum dots 
[14]. 

There are a few physically unlike results which may be marked “quantum”, 
first referable to distinguishability of the particles, and the equilibrium distribu-
tion then changes from the Maxwell-Boltzmann to the Fermi-Dirac. The inter- 
Fermion distance being smaller than the thermal de-Broglie wavelength in such 
cases, along with temperature degeneracy (a consequence of Pauli Exclusion 
Principle) and tunneling effects, give rise to new collective phenomena and the 
role of quantum corrections begins [15]. This also changes the dynamics by pre-
venting two particles to be in the same state via exchange interaction. Second the 
particles will have the dispersive effects due which those particles are not located 
in phase space. Third some particles like electrons and positrons have an intrin-
sic magnetic moment or spin. The spin interacts with magnetic field via the di-
pole force thus affecting the dynamics [16]. There has recently been a surge in 
the interest of dense quantum plasmas for example see the Refs. [15] [17]-[25]. 
Altogether these studies include the effects of quantum corrections like Bohm– 
de Broglie potential, the zero temperature Fermi pressure and spin magnetiza-
tion like properties which can significantly modify the dynamics of the plasma. 

The above literatures mainly focus on perturbations in homogeneous quan-
tum plasma backgrounds. However, some time quantum plasmas can have the 
non-uniform density features when brought into practice, which frequently oc-
cur in a real (e.g. in astrophysics) or effective (e.g. in inertial confined fusion) 
external gravitational field. The Rayleigh-Taylor (RT) instability is an important 
hydrodynamic effect that occurs at the plane interface between two fluids of dif-
ferent densities when a heavy fluid is accelerated into a lighter one. This type of 
instability for a fluid in a gravitational field was first investigated in his famous 
paper in 1882 by Rayleigh [26] and later Taylor in 1950 had applied it to all ac-
celerated fluids [27]. Since then, this instability problem has been investigated by 
several investigators under varying assumptions [28]. The detailed description of 
this instability problem with other parameters and assumptions has been given 
e.g. in the Ref. [29]. 

The hydrodynamic instabilities in quantum plasmas have been an important 
field of study of research in the last few years. Assuming a quantum hydrody-
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namic model for quantum plasmas, various authors have shown that the delicate 
interplay between dissipation and dispersion leads to a variety of instabilities like 
two stream instability, Kelvin-Helmholtz instability and Rayleigh-Taylor insta-
bility etc. [30] [31] [32]. The effect of quantum mechanism on the internal waves 
and the RT instability in plasma is considered by Vitaly in [32]. The effects of 
the quantum mechanism and magnetic field on electromagnetic mode of RT in-
stability have been investigated in ideal incompressible plasma by deriving the 
linear growth rate in the presence of fixed boundary conditions [33]. The effect 
of quantum corrections on RT instability for a finite thickness layer of incom-
pressible viscoelastic plasma through porous media was investigated recently in 
[34]. The RT instability in vertical/horizontal inhomogeneous rotating plasma 
with quantum effects is investigated by [35] [36]. The electrostatic RT instability 
is studied in a dense electron-ion quantum magnetoplasma [37], where ions are 
assumed cold and classical while electrons are dense and quantum mechanical. It 
has shown that density gradient and quantum speed significantly modify the RT 
instability growth rate. Comparative to classical in the case of dense quantum 
magnetoplasma the RT instability linear growth rate is significantly higher and 
highly localized. 

On the other side it is well known that electron-positron plasmas appear in 
the polar cap regions of pulsar magnetospheres, in the early universe, and in the 
inner region of the accretion disks surrounding the central black holes in active 
galactic nuclei, in the polar regions of neutron stars, at the center of our own ga-
laxy, solar flares and have also been found in intense laser pulse propagating in 
plasmas [38]-[45]. However, some authors [46] [47] have suggested that elec-
tron-positron plasmas also contain a small fraction of heavy ions. Recent inves-
tigations [48] [49] 50] have shown some new and interesting linear and nonli-
near phenomena in three component electron-positron-ion plasmas. 

In this work we investigate the electrostatic RT mode by using the QHD mod-
el of quantum electron-positron-ion plasma. A dispersion relation is obtained 
under the assumption of drift density in homogeneity. The dispersion relation 
and growth rate of instability are studied by using the Cardano’s method of 
solving the cubic equation. 

2. Basic Formulation and Governing Equations 

Consider an electron-positron-ion (e-p-i) plasma with magnetic field 0 0 ˆB B z= , 
where 0B  is the external magnetic field. In equilibrium condition density gra-
dient and gravitational field presumably in opposite direction i.e. ˆn n x∇ = − ∇  
and ˆg gx= . This shows the fact that density and gravitational field is along 
x-axis and magnetic field applied from external source is along z-axis. Electric 
field and wave propagation are taking place along y- axis i.e. ( )0, , 0yE E=  and 

( )0, , 0yK K= . In order to study the RT-instability in quantum e-p-i plasma, we 
use the following linearized quantum magneto hydrodynamic equations i.e. 
momentum equation 
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The continuity equation 

( ) 0t j j jn n∂ + ⋅ =U∇                     (2) 

where q, jm , g, jn  and jU  are electrostatic charge, particle mass, accelera-
tion due to gravity, density and velocity of the jth species respectively, where “j” 
represents electron, positron and ion respectively. The quasi-neutrality condi-
tion in equilibrium reads 0 0io p en n n+ =  and ħ is the Plank constant divided by 
2π , and e is electronic charge. The quantum force term i.e. the last two terms of 
Equation (1) are appearing due to quantum mechanical effects of jth species and 
denote the quantum correlation between density fluctuations and the tempera-
ture degeneracy factor due to Fermi-Dirac statistics. The equation of state for  

degenerate electrons and positron is 
( )2 32

2 5 3
3π

5Fj j
jm

=P n  known as Fermi 

pressure and the pressure gradient force 2Fj Fj jnε= ∇P∇  with  

( )2 32 23π

2
jo

Fj
j

n
m

=


ε  is being the jth Fermi energy on the Fermi surface. The 

quantum mechanical effects for ions are neglected due to large mass of ions 
compared to electrons and positrons we assume. Thus Equation (1) for cold 
streaming ions in linearized form can be written as 

( ) ( )0i i t i i i i i im n qn m n∂ + ⋅ = + × +U U E U B g∇           (3) 

In the equilibrium state, we find the ions drift as  

ˆio
ci

g y−
=
Ω

U                        (4) 

where 0
ci

i

eB
m

=Ω  is known as ion cyclotron frequency. The electrons and posi-

trons have drifts (opposite and parallel) but can be neglected in the limit 

, 0e p

i

m
m

→ . The equation of motion for Fermionic electron/positron is 

( ) ( ) ( )
2

2
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4e e t e e e e Fe e e
e

m n en n n
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( ) ( ) ( )
2

2
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4p p t p p p p Fp p p
p

m n en n n
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ε∂ + ⋅ = + × − + ∇U U E U B 

∇ ∇ ∇  (6) 

Following the procedure given in [51] for low frequency ( )t ci∂ Ω  elec-
trostatic perturbations, the perpendicular first order components of the ion fluid 
velocity can be obtained as 

i E Pi⊥ = +U V V                         (7) 

where 
0

ˆ
E

E z
B

 ×
= − 
 

V  represents E B×  drift while  
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V U U∇  is the polarization drift of ion. Further sim-

plification of EV  and PiV  gave 

0
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In the above equations ioU  represents the ions streaming fluid velocity. 
Since polarization drift directly proportional to inertia, so compare to ions, it 
can be neglected for both electrons and positrons, therefore, from Equation (5) 
the perpendicular component of velocity vector for quantum mechanical and 
Fermionic electron is 

( )
2

2
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Similarly the perpendicular component of positron, from Equation (6) is 

( )
2
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Due to the absence of polarization drift, electron and positron streaming 
terms are not appearing in Equations (10) and (11). In linearized form the con-
tinuity equations for ions, electrons and positrons are 

( )1 1 ˆ 0io
t i io i E io pi

nn n n
x
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All the above Equations (7)-(13) are valid for long wavelength limit, i.e. 
1Fjkλ  , where Fjλ  is the Fermi length of electron and positron. Also we have 

assumed that phase speed of electrostatic RT mode is greater than quantum 
Bohm potential speed and much smaller than the Fermi speed of electron and  

positron i.e. ,Fe p
j

K V
m k

ω

  . We have neglected the terms ( )eoU∇ ⋅  and  

( )poU∇ ⋅  in Equations (13) and (14) by assuming that constant streaming ve-
locities of electron and positron are not spatial functions. Assuming a plane 
wave solution of the form ( )exp iky i tω−  to all the perturbed quantities and 
using the drift approximation ( )22

ci iokUωΩ − , we obtain the number density 
for ions as 

0
1

0

yi D
i ni

D ci

Ein kn
B

ωκ
ω

 
= − + Ω 

                  (15) 

where ( )0D ikUω ω= −  is known as Doppler shifted frequency and  
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 is the inverse inhomogeneity scale length for ions. The electron 

continuity Equation (13) leads to the perturbed electron density as 
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where 0e
ne

n
x

κ ∂
=

∂
 is the inverse inhomogeneity scale length for electrons, and 
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tic speed. Similarly, if Equation (14) is utilized to determine the density of posi-
tron by employing the same procedure as used for finding the density of electron 
we have the following relation 

( )
0

1
0

p np y
p

p

n k E
n i

BkVω ∗

= −
+

                   (17) 
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 is being the inverse inhomogeneity scale length for posi-
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 is another modified 

quantum ion acoustic speed due to positron. 

2.1. Dispersion Relation and ERT Instability 

Under the assumption kλFp ≪ 1 we can write the perturbed quasi neutrality con-
dition  

1 1 1i p en n n+ =                         (18) 

instead of Poisson equation. Using Equations (15)-(17) in Equation (18) leads to 
a generalized dispersion relation as 

( )1 0ci npci ni ci ne

D p e

p kk kp k
kV kVω ω ω∗ ∗

Ω Ω Ω
− + + − =  + − 

          (19) 

Here 0

0

p

e

n
p

n
=  represents the ratio of positron to electron. If we ignore the 

positron concentration i.e. 0p =  then we get exactly dispersion relation of RT 
in electron-ion quantum magneto plasma of [37] i.e. 

2
0

D
D ne ci i ne qe ne

ci

kU U ωωω κ κ κ
 

= − Ω + + Ω 
             (20) 
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In order to discuss the instability analysis by incorporating the streaming of 
ions, we solve Equation (19) in detail and arrive to the following form 

( ) ( ) ( )
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3 2 2
* 0
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2 4 2
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Introducing gravitational field ( )0ci iU g−Ω = , the above equation in cubic 
form can be written  

3 2 0a b cω ω ω+ + + =                       (22) 

where the constants a, b and c all are real and are defined as 
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Employing the following normalized parameters 
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plasmon energy to Fermi energy and 
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 is the electron Fermi 

length while s
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Ω
 shows the ion-sound gyro-radius. Equation (24) is the 

normalized dispersion relation. Let us consider a simple case where 2 1ω   
which makes the 3ω  term to be negligible in Equation (24) and hence 

2 0a b cω ω+ + =

                          (25) 

This is quadratic equation and instability will occur when ² 4 0b ac− <  (we 
shall omit the notation for simplicity). We use r iω ω γ= +  (where rω  is the 
real frequency of the wave mode and γ  the growth rate) in Equation (25) and 
solve it we get 

2

2,
2 4r
b b c
a aa

ω γ= − = − +                    (26) 

It is clear that quantum mechanical effects depend on the particle number 
density, so using the data of neutrons stars, magnetars and white dwarfs (as 
mentioned in Results and discussion section), Figure 1 shows the plot of norma-
lized real frequency rω  versus the normalized wave number k  for different 
values of positron concentration i.e. 1 6p =  (solid line) and 1 8p =  (dashed 
line). It is seen that the electrostatic R-T mode is well separated. The growth rate 
γ of the propagating wave is depicted in Figure 2 for different values of positron 
concentration i.e. 1 6p =  (solid line) and 1 8p =  (dashed line). It is obvious 
that γ increases for low wave numbers k , till a threshold wave number ck k≡ , 
then γ decreases and the system tends to have less instability. The growth rate γ  
 

 
Figure 1. Solution to Equation (25), the normalized real wave frequency rω , versus the 

scaled wave number nek κ  in EPI quantum magnetoplasma for different values of posi-
tron concentration i.e. 1 6p =  (solid line) and 1 8p =  (dashed line). Other Physical 

parameters are taken as 27
0 6 10en = × , 10ne kκ = , 20Γ = , 1000000WDg =  and 

6
0 10B = . 
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Figure 2. Solution to Equation (25), the normalized growth rate ciγ Ω , versus the 
scaled wave number nek κ  in EPI quantum magnetoplasma for different values of posi-
tron concentration i.e. 1 6p =  (solid line) and 1 8p =  (dashed line). Other Physical 

para- meters are taken as 27
0 6 10en = × , 10ne kκ = , 20Γ = , 1000000WDg =  and 

6
0 10B = . 

 
is affected by the positron concentration and in fact decreases with respect to p . 
Therefore, the number of positrons would lead to lower the instability of R-T 
mode in electron-positron-ion system. 

2.2. Instability Analysis by Cardano’s Method 

The Cardano’s formula (named after Girolamo Cardano 1501-1576), which is 
similar to the perfect-square method to quadratic equations, is a standard way to 
find a real root of a cubic equation. It provides a technique for solving the gener-
al cubic equation in terms of radicals. The other two roots (real or complex) can 
be found by polynomial division and the quadratic formula. The solution has 
two steps. We first “depress” the cubic equation and then solve the depressed 
equation.  

By using the Cardano’s method of solving the cubic equation, we will discuss the 
RT instability analysis of Equation (24). In order to address the instability process, 
again r iω ω γ= +  (where rω  is being the real frequency of wave mode and γ  
is the growth rate) in Equation (25) and solve it for that 2² rγ ω  we get real and 
imaginary parts as (we shall omit again the notation for simplicity)  

3 2 0r r ra b cω ω ω+ + + =                    (27) 

23 2 ra bγ ω ω= + +                     (28) 

For the solution of cubic equation here we use Cardano’s method: by intro-

ducing 
3r
azω = −  also by defining the term p and q as 

2 23
3

b ap −
=  and 
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32 9 27
27

a ab cq − +
=  the equation (27) then reduces to reduced cubic equation 

having no second degree term i.e. 
3 0z zp q+ + =                         (29) 

If p  and q  are zero, then z  is zero. Otherwise, we can consider the cases 
when the value of p  or q  is zero and when both aren’t zero. We will consider 
the case when both these are not zero. Consider, that, for two numbers u and v: 
if z u v= − , 3p uv=  and 3 3q u v− = −  then solving for u  and v we have 

( ) ( )3 3 33u v uv u v u v− + − = −                  (30) 

By finding the values of u and v, we will be able to solve the cubic. 

3

3

2 3

2

     where the discriminant  is defined as
2

4 27

qu

qv

q p

= − + ∆

= + ∆ ∆

∆ = +

       (31) 

The nature of the Cardano roots can be described with the help of the discri-
minant Δ as follow. 

1. If 0∆ = , then all the roots are real, and at least two are equal. 
2. If 0∆ > , then ∆  is a real number, and so one root (the principal root) 

is real, and the other two are complex numbers. 
3. If 0∆ < , then ∆  is imaginary, so all the roots are real, and u and v will 

be complex numbers. This is the so called irreducible case. We will consider case 
(2) and (3) only.  

For case (2), Δ is not negative, so the square root is a real number. In this case 
the real root is determined as 

3 3
1 2 2 3r

q q aω = − + ∆ − + ∆ −                (32) 

The other two roots are complex and of no interest. Regarding to this real root 
we have the following growth rate for RT instability 

2
11 1 13 2r r a bγ ω ω= + +                     (33) 

For case (3), since 3
2
qu = − + ∆  and 3

2
qv = + ∆ , so in this case ∆  is 

an imaginary number i.e. 0∆ <  which implies that 

3

3

2

2

qu i

qv i

= − + −∆

= + −∆
 

Using the trigonometry concept of complex analysis we find the following 
three normalized real roots of RT mode 

1
3

21 2 cos
3 3r

ar φω  = − 
 

                    (34) 
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1
3

22
2π2 cos

3 3r
ar φω + = − 

 
                   (35) 

1
3

23
4π2 cos

3 3r
ar φω + = − 

 
                   (36) 

where 
3

3
pr  = − 

 
 and 

3
cos

2
3

q

p
φ

 
 
 

= − 
  −    

. The corresponding three 

normalized growth rates for R-T instability are as follow 

2
21 21 213 2r ra bγ ω ω≈ + +                    (37) 

2
22 22 223 2r ra bγ ω ω≈ + +                    (38) 

2
23 23 233 2r ra bγ ω ω≈ + +                    (39) 

One out of these three modes will be growing, which will determine the R-T 
instability growth rate. 

3. Result and Discussion 

To see the complete view of quantum effects that include the tunneling through 
Bohm potential and the Pauli-exclusion principle through the Fermi degenerate 
pressure on the growth rate of R-T instability (31)-(38) along with coefficients 
are numerically analyzed. For numerical scheme we may use values given in [52] 
for a typical white dwarf with number density ( )25 28 310 10 cm  and 1on p−∼ − <  
and ( )8 14

0 10 10B G= −  [53]. Other physical parameters in cgs system are given 
as 103 10c = × , 28

, 9.1 10e pm −= × , 241.67 10im −= × ,  
10 274.8 10 , 1.05 10e h −= × = × , 161.38 10Bk −= × . It should be noted that all the 

above equations are in dimensionless form. 

3.1. Analysis of R-T Instability of Equation (33) 

In this particular case, the growth rate (33) is based on the real frequency (32) 
that explicates the RT instability in electron-positron-ion quantum plasma. Us-
ing the above-mentioned data in normalized coefficients of Equation (24) the 
normalized growth rate (33) is plotted for electrostatic RT mode of instability 
with effects of density, and ambient magnetic field variation (Figure 3 and Fig-
ure 4). It is observed from all these three figures that the growth rate is damping, 
which means that inhomogeneity in plasma here acts as sink and taking energy 
from perturbation. The consequence of such analysis (i.e. damping phenomena) 
in nonlinear regime then gives shocks in such system which is beyond from the 
scope of present study. It is shown in Figure 3, and Figure 4 that the damping 
rate increases with increasing density, and decreases with respect to B₀. This 
means that increased density acts like source of sink and absorbs energy from 
perturbation while with B₀ opposite effects occurred.  
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Figure 3. Solution to Equation (33), the normalized damping rate ciγ Ω , versus the 

scaled wave number nek κ  in EPI quantum magnetoplasma with electron density 

variation i.e. 27
0 5 10en = ×  (solid curve) and 27

0 6 10en = ×  (dashed curve). Other 

Physical parameters are taken as 27
0 10pn = , 10ne kκ = , 0.6Γ = , 1000000WDg =  and 

6
0 10B = . 

 

 
Figure 4. Dampping curves of normalized growth rate ciγ Ω  versus normalized 

wavenumber nek κ  (given by Equation (33))in EPI quantum magnetoplasma for 

different values of magnetic field variation i.e. 810ciΩ =  (solid curve) and 81.5 10ciΩ = ×  

(dashed curve). Other Physical parameters are taken as 27
0 10pn = , 10ne kκ = , 0.6Γ = , 

1000000WDg =  and 27
0 6 10en = × . 

3.2. Analysis of R-T Instability of Equations (37)-(39) 

Using the Cardano method of solving the cubic Equation (27) for the condition 
where all the roots are real and different, we then get the real mode of Equations 
(34)-(36) and regarding to that we get three growth rates Equations (37)-(39), 
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for ERT instability. Using the above-mentioned data the normalized growth rate 
(37) is diagrammed for RT mode of instability with effects of electron density, 
and ambient magnetic field as shown in Figure 5 and Figure 6. Figure 5 and 
Figure 6 show that the growth rate increases (decreases) with increasing  
 

 
Figure 5. Normalized growth rate ciγ Ω  versus normalized wavenumber nek κ  
(given by Equation (37))in EPI quantum magnetoplasma for different values of electron 
density i.e. 27

0 6 10en = ×  (solid curve) and 27
0 6.5 10en = ×  (dashed curve). Other 

Physical parameters are taken as 27
0 10pn = , 10ne kκ = , 20Γ = , 1000000WDg =  and 

6
0 10B = . 

 

 

Figure 6. Normalized growth rate ciγ Ω  versus normalized wavenumber nek κ  
(given by Equation (37)) in EPI quantum magnetoplasma for different values of magnetic 
field variation i.e. 810ciΩ =  (solid curve) and 81.2 10ciΩ = ×  (dashed curve). Other 

Physical parameters are taken as 27
0 10pn = , 10ne kκ = , 20Γ = , 1000000WDg =  and 

276 10eon = × . 
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number density (magnetic field B₀). Thus magnetic field B₀ suppresses the insta-
bility as it confines the particles more in the center than at periphery for loca-
lized mode. Also the frequency of wave mode is less than ciΩ , so by increasing 
B₀ makes this comparison more obvious and hence decreases the growth rate. 
On the other hand by increasing the number density of electrons makes the 
plasma more dense and shrinks which means more particles are available to give  

energy to wave perturbation as FeV
k
ω
< . This consequently increases the growth  

rates and makes the RT mode unstable. Similarly the stabilizing effect of the po-
sitron concentration on growth rate variation (37) is demonstrated in Figure 7, 
which shows that the growth rate of RT instability decreases with respect to p  
variation. It indicates that positron concentration plays a stabilizing role in the 
instability analysis. It means that growth rate decreases with increased values of 
p .  

The similar behavior of growth rate as of Figure 7 is shown in Figure 8 for 
second root (Equation (38)) with variation of positron concentration. It signifies 
that growth rate decreases with increased values of p . Similarly Figure 9 and 
Figure 10 respectively exhibit the growth rate variation of second root (Equation 
(38)) for different values of electron density and magnetic field B₀. These two 
figures demonstrate that the growth rate increases (decreases) with increasing 
number density (magnetic field B₀). The growth rate variation of the second root 
is of standard trend and shows the same behavior as mentioned in different lite-
rature. The third root (Equation (39)) shows a damping trend. 
 

 
Figure 7. Normalized growth rate ciγ Ω  versus normalized wavenumber nek κ  
(given by Equation (37)) in EPI quantum magnetoplasma for different values of positron 
concentration i.e. 27

0 10pn =  (solid curve) and 27
0 1.2 10pn = ×  (dashed curve). Other 

Physical parameters are taken as 27
0 6 10en = × , 10ne kκ = , 20Γ = , 1000000WDg =  

and 6
0 10B = . 
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Figure 8. Normalized growth rate ciγ Ω  versus normalized wavenumber nek κ  
(given by Equation (38)) in EPI quantum magnetoplasma for different values of positron 
concentration i.e. 27

0 10pn =  (solid curve) and 27
0 1.2 10pn = ×  (dashed curve). Other 

Physical parameters are taken as 27
0 6 10en = × , 10ne kκ = , 20Γ = , 1000000WDg =  

and 6
0 10B = . 

 

 

Figure 9. Normalized growth rate ciγ Ω  versus normalized wavenumber nek κ  
(given by Equation (38)) in EPI quantum magnetoplasma for different values of electron 
concentration i.e. 27

0 6 10en = ×  (solid curve) and 27
0 6.5 10en = ×  (dashed curve). Other 

Physical parameters are taken as, 27
0 10 , 10p nen kκ= = , 20Γ = , 1000000WDg =  and 

6
0 10B = . 

4. Summary and Conclusion 

To summarize, we have analytically and numerically studied the Rayleigh Taylor 
instability in quantum E-P-I magneto plasma whose constituents are the elec-
trons and positrons with fraction of ions. We have used the quantum hydrody- 
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Figure 10. Normalized growth rate ciγ Ω  versus normalized wavenumber nek κ  
(given by Equation (38)) in EPI quantum magnetoplasma for different values of magnetic 
field  i.e. 810ciΩ =  (solid curve) and 80.9 10ciΩ = ×  (dashed curve). Other Physical 

parameters are taken as 27
0 10pn = , 10ne kκ = , 20Γ = , 1000000WDg =  and 

276 10eon = × . 

 
namic equation where ions were dealt cold and classical while electron and posi-
tron are considered inertialess and quantum mechanical with their respective 
Fermi temperatures. General dispersion relation for RT instability was deduced, 
under the drift approximation. The presence of positron makes the algebraic 
equation a cubic one. In simplified form the real and growth rate of RT mode 
was discussed with effect of positron concentration. The Cardano’s method of 
solving the cubic equation was used to deduce the real and imaginary roots of 
RT instability. The real part of wave gives the dispersion relation and the imagi-
nary one defines the growth rate of the RT mode. The growth rate of RT insta-
bility is examined in detail with essence of pair plasma density and magnetic 
field variation. It is found that quantum speed and density gradient have mod-
ified the RT instability significantly. It was shown that the growth rate of Ray-
leigh-Taylor instability in E-P-I quantum plasma increases with increasing of 
electron density while decreasing with increasing of magnetic field ( )oB  and 
positron concentration. We have discussed the examples of celestial body (like 
white dwarf) that suggests the presence of RT instability in electron-positron-ion 
quantum magneto plasma. 
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