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Abstract 
The recent concern with the role of Fermi energy (EF) as a determinant of the prop-
erties of a superconductor (SC) led us to present new EF-dependent equations for the 
effective mass (m*) of superconducting electrons, their critical velocity, number den-
sity, and critical current density, and also the results of the calculations of these pa-
rameters for six SCs the Tcs of which vary between 3.72 and 110 K. While this work 
was based on, besides an idea due to Pines, equations for Tc and the gap at T = 0 that 
are explicitly EF-dependent, it employed an equation for the dimensionless construct 

02 * Fy k m P Eθ=  that depends on EF only implicitly; k in this equation is the 
Boltzmann constant, θ is the Debye temperature, and P0 is the critical momentum of 
Cooper pairs. To meet the demand of consistency, we give here derivation of an equ-
ation for y that is also explicitly EF-dependent. The resulting framework is employed 
to (a) review the previous results for the six SCs noted above and (b) carry out a 
study of NbN which is the simplest composite SC that can shed further light on our 
approach. The study of NbN is woven around the primary data of Semenov et al. For 
the additional required inputs, we appeal to the empirical data of Roedhammer et al. 
and of Antonova et al. 
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1. Introduction 

Some of the recent studies [1]-[7] concerned with high-Tc superconductors (SCs) have 
been motivated by the belief that Fermi energy (EF) plays an important role in deter-
mining their Tcs and gap-structures. These studies make it natural to ask: why not in-
corporate EF (equivalently, chemical potential μ) into the equations for the Tc and the 
gap ∆  of an SC, and then treat it as an independent variable? This is a departure from 
the usual practice because these parameters are conventionally calculated via equations 
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sans EF because of the assumption 

1,FE kθ                               (1) 

where k is the Boltzmann constant and θ  is the Debye temperature.  
The proposed approach requires, besides the values of Tc and ∆ , another property 

of the SC in order to determine EF. Upon choosing critical current density 0j  of the 
SC, new equations for both elemental and composite SCs valid at T = 0 were recently 
presented in [8] for j0 and the following of their properties: m*, 0v , and ns, which de-
note, respectively, the effective mass of superconducting electrons, their critical velocity 
at which 0∆  vanishes, and the density of superconducting electrons. While the results 
of such a study for Sn, Pb, MgB2, YBCO, Bi-2212, and Tl-2212 were also reported in [8], 
it was based on, unlike the equations for 0∆  and Tc, an equation for the dimensionless 
construct y , defined below, that is dependent on EF only implicitly.  

( )0 2 * ,Fy k P m Eθ=                        (2) 

where m*, P0, and EF are in units of electron volts. 
To meet the demand of consistency, we present here the derivation of a new equation 

for y  that also contains EF explicitly—to put it on par with the equations for Tc and 

0∆ . While this leads us to review our earlier results, we also undertake here a detailed 
study of the superconducting properties of NbN because:  

(i) It is the simplest composite SC different samples of which (a) have been fabricated 
by the same method of preparation, (b) are geometrically similar, but (c) differ in size 
(e.g., film thickness), and for which (d) data in the form { }0,  ,  c eT j n  are available, 
where ne is the density of conduction electrons. This is unlike the composite SCs dealt 
with earlier, which were not necessarily fabricated by the same method of preparation 
and for which the values of 0j  and ne were not available. We were then led to estimate 
the values of 0j  for these SCs from the data at T = 4.2 K. Given the values of Tc and ne 
for NbN, we can now also shed light on the ratio s en n  as a function of Tc. 

(ii) Since the value of the highest Tc reported for it in [9] is 15.25 K, it is the simplest 
composite SC for which we believe one-phonon exchange mechanism (OPEM) to be 
operative. This is unlike, e.g., MgB2 for which, given its Tc, we need to invoke the two- 
phonon exchange mechanism (TPEM).  

(iii) The above features make NbN the simplest testing ground for some key steps of 
our approach, such as the procedure followed for resolving θNbN into θNb and θN. 

The paper is organized as follows. In Section 2 are reproduced from [8] those equa-
tions that constitute our framework in the OPEM scenario, which may be defined as 
one in which the Tc of an SC can be accounted for by a value of the interaction parame-
ter λ  that satisfies the Bogoliubov constraint, i.e., λ < 0.5. Section 3 is devoted to de-
rivation of the new equation for y . The study of NbN is taken up in Section 4. A re-
view of our earlier results is taken up in Section 5. The final two sections are devoted to 
a discussion and conclusions, respectively. 

2. EF-Incorporated Equations for Various Properties of an SC 

Recalled below from [8] are some of the equations that we need for NbN. In these equ-
ations 0W  is to be identified with 0∆ . Further, the equations have been written by 
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assuming that µ , EF, and λ  have the same values at T = 0 and T = Tc, which is in 
accord with a tenet of the BCS theory. In the following we use µ  and EF interchange-
ably because they will be seen to differ negligibly. The modified equation for y  will be 
derived in the next section.  

Equation for 0W : 

( ) ( )
1 3

1 0 2 0
3, , 0,

2 4
I W I Wλ µ µ − =  

                   (3) 

where 

( ) ( )1 0 0, d 2 ,
k

k

I W W
θ

θ

µ ξ ξ µ ξ
−

= + +∫                   (4) 

and 

( ) ( ) ( )3 2 2 2
2 0 0

4, d 1 .
3

k

k

I W k W
θ

θ

µ µ θ ξ ξ µ ξ ξ
−

 = − + + − +  ∫          (5) 

Equation for Tc: 

( ) ( )
1 3

3 4
3

2 4
, , 0,c cI T I Tλ µ µ − =  

                      (6) 

where 

( ) ( )3 , d tanh 2 ,
k

c c
k

I T kT
θ

θ

µ ξ ξ µ ξ ξ
−

 = + ∫                 (7) 

and 

( ) ( )
1

4 , d 1 tanh 2 .
k

c cI T kT
θ

µ

µ ξ ξ µ ξ
−

 = + − ∫                 (8) 

In the above equations 

( ) ( )( ) ( )3 22 1 20 1 4π 2 * ,   1FN V m E Vλ  ≡ = =                    (9) 

After λ  has been determined via (7) with the input of θ, Tc, and any assumed value 
of µ , the corresponding value of EF can be determined by the following equation 

( ) ( ) 2
32 , .F cE I Tλ µ =                            (10) 

Equation for y: 

( ){ } ( )1  ln 1 ln 1 0.y y y yλ  − − + − =                     (11) 

This equation has been obtained by assuming that 

3 1 2 1,  1,E E E E                               (12) 

where  

( )2
1 2 0 3 0 1 2,  2 *,  8 * .FE k E P E m E P m y E Eθ= = = =             (13) 

Equation for j0(EF): 

( ) ( ) ( ) ( )( ) ( )2 3 2 3
0 0 5* ,  * 2F s F F g Fj E n E e v E A y v E e eθ γ= = =        (14) 

where 
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( )1 3 2 1 3 4 4 3 1 3 1
5 6 π 3.703 10  CeV K sec .A e k − − −= × ⋅ ⋅           (15) 

3. The Modified Equation for y in the OPEM Scenario 

Equation (11) has been derived in [10] (pp. 115-120) by assuming Inequality (1). In or-
der to do away with this inequality, we begin here with the following equation for 
moving CPs because the present derivation differs from the earlier one only beyond it.  

( ) ( )( ) ( )( ) ( ) ( )3 31 16π d tanh 2 tanh 2 .
U

L
V p C p D p C p D pβ β = + +   ∫   (16) 

In this equation 
2 8 *L k P x P mθ α= − + −                     (17) 

2 8 *U k P x P mθ α= − −                      (18) 

( )2 *,    cos ,  ,    1FE m x P p kTα β= = =              (19) 

( ) 2 2/ 2 8 * 2 *FC p E W P m P x p mα= + − − −             (20) 

( ) 2 22 8 * 2 *FD p E W P m P x p mα= + − + −             (21) 

Equation (16) was obtained via a Bethe-Salpeter equation. It seems interesting to 
point out that when 0P = , it reduces to the well known criterion of superconductivity 
derived by Thouless via the t-matrix approach, as can be seen from [11] and, in greater 
detail, in [12]. 

The equation for the critical momentum ( )cP T  at any temperature follows from 
(16) by putting W = 0. In terms of 2 2 ,Fp m Eξ = −  we then have  

( ) ( ) ( )1
1 20

1 4 d ,x I x I xλ= +  ∫                   (22) 

where 

( ) ( ) ( )( )1 2

1 2
1 2d tanh 2

E E x

E E x
I x E xξϕ ξ β ξ

−

− +
= +  ∫              (23) 

( ) ( ) ( )( )1 2

1 2
2 2d tanh / 2 ,

E E x

E E x
I x E xξϕ ξ β ξ

−

− +
= −  ∫             (24) 

( ) ( )31 ,FE Eϕ ξ ξ ξ= + +                    (25) 

and we have used (9), (13) and (19). Besides, justification to follow, we have dropped E3 
everywhere except in the denominator of (25) in order to avoid the singularity at 0ξ = . 
Compared with the earlier equation for y , the new feature of (22) is that it has the ad-
ditional factor of 1 FEξ+  in each of its constituents. 

In order to obtain the ( )0 T β= = ∞  version of (22), we split both ( )1I x  and 
( )2I x  into two parts: ( )1I x  into ( )11I x  and ( )12I x  for which the limits of inte-

gration are ( )1 2 2 to  E E x E x− + −  and ( )2 1 2 to ,E x E E x− − respectively, and ( )2I x  
into ( )21I x  and ( )22I x , where the former is integrated from ( )1 2 2 to E E x E x− +  
and the latter from ( )2 1 2 to .E x E E x−  It is then seen that, when T = 0, ( ) ( )tanh 1= −  
for ( )11I x  and ( )21I x  and (+1) for the remaining parts. 

Because the constituents of both ( )1I x  and ( )2I x  differ from one another only in 
the matter of limits and an overall sign, we now consider the following indefinite 
integral:  
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( ) ( )3d d 1 ,J z z z Eξϕ ξ ′= = + +∫ ∫                    (26) 

where we have used (25), put Fz Eξ=  and 3 3 ,FE E E′ =  whence  

( ) ( )3 32 1 2 1arctan 1 1 .J z E z E ′ ′= + − − + −              (27) 

Therefore, for 3 1E′   (as will be seen to be so), we obtain 

( ) ( ) ( )2 1 2 arctan 1 2 1 ln 1 1 1 1 .J z i i z z z z = + + + = + − + + − +    (28) 

Taking into account the overall sign of ( )11I x , (28) yields  

( )

( ) ( ){ } ( ) ( ){ }
11 2 1 2

2 2 1 2 1 2

2 1 2 1

+ ln 1 1 1 1 1 1 1 1

I x E x E E x

E x E x E E x E E x

 ′ ′ ′= − − + − + 
 ′ ′ ′ ′ ′ ′+ − − − − − + + − +  

 (29) 

where ( )  1,  2 .i i FE E E i′ = =  Since 1 2 1 2 ,E E E E y′ ′ = =  we replace 2E′  in the 
above equation by 1E y′  in order to make contact with (11). ( )12I x , ( )21I x  and 

( )22I x  can be similarly calculated. For the sake of compactness, we define 

( ) ( )1 1 1 2 1 1, , 1 ,  , , 1  u E x y E x y u E x y E x y′ ′ ′ ′= − = +           (30) 

( ) ( ) ( ) ( )3 1 1 4 1 1, , 1 1 ,  , , 1 1 .u E x y E x y u E x y E x y′ ′ ′ ′= − − = + −       (31) 

Then substituting ( )1I x  and ( )2I x  into (22), we obtain 

( ) ( ) ( ) ( )1
1 1 2 1 10

1 4 d  , , , , , ,x T E x y T E x y T E yλ λ′ ′ ′= + ≡  ∫          (32) 

where 

( ) ( ) ( ) ( ) ( ){ }1 1 1 1 2 1 3 1 4 1, , 4 , , , , , , , , ,T E x y u E x y u E x y u E x y u E x y′ ′ ′ ′ ′= − − + +  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

1 1 2 1 3 1 4 1
2 1

1 1 2 1 3 1 4 1

1 , , 1 , , 1 , , 1 , ,
, , 2 ln

1 , , 1 , , 1 , , 1 , ,
,u E x y u E x y u E x y u E x y

T E x y
u E x y u E x y u E x y u E x y

′ ′ ′ ′ + + − − ′ =  ′ ′ ′ ′− − + +  
 

and ( )1, ,T E yλ ′  has been defined for later convenience. Obtained by retaining the 

factor 1 FEξ+  in ( )1I x  and ( )2I x , (32) for y is the equation we had set out to  

obtain. It generalizes (11) which was obtained without this factor. While we could ear-
lier solve (11) in the OPEM scenario with the input of λ  alone, solution of (32) re-
quires the additional input of θ and EF. In order to carry out a quick consistency check 
of (32), we recall that upon solving (6) for Sn (θ = 195 K, Tc = 3.72 K, 100kµ θ = ), we 
had earlier obtained λ = 0.2466. The solution of (11) then led to 21.726y = . This is 
precisely the value we now obtain by solving (32) with the same inputs for λ , θ , and 

1 1 1 100.FE E E′ = =  

4. Study of NbN Based on EF-Incorporated Equations 
4.1. Outline of Procedure 

Working in the OPEM scenario, we 
(A) Solve. (6) with the input of θ and Tc to determine λ  for different assumed val-

ues of µ .  
(B) Solve (32) to obtain the values of y  corresponding to each pair of ( ),µ λ  val-

ues obtained above. 
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(C) Calculate 0j  via (14) for each triplet of { }  ,  ,  yµ λ  values till it is found to 
agree with its experimental value. 

As predictions, this process also yields the values of m*, ns, and 0v  via equations 
derived in [8] and noted in Table 3. As a further check, we calculate 0W  via (3) by 
employing the values of µ  and λ  that led in (C) to the experimental value of 0j .  

Before we can proceed as above, we need to fix the Debye temperature of the ions 
that cause pairing in NbN, i.e., θNb. 

4.2. Debye Temperature of Nb Ions in NbN 

θNbN is not quoted in [9]. The reported values for it vary in the range 250 - 335 K [13] 
[14] [15] [16]. We begin by adopting [13]  

NbN 335 K.θ =                             (33) 

We now need to resolve θNbN into θNb and θN, which must be different because masses 
of Nb and N ions are different. As in [8], we do so via the following equations 

NbN Nb N0.5 0.5θ θ θ= +                         (34) 

( ){ } ( ){ } 1 2

Nb N N N Nb N N Nb1 1 ,m m m m m mθ θ  = + + − +  
       (35) 

where Nm  ( Nbm ) is the atomic mass of N (Nb). While the first of the above equations 
has been routinely used for binaries, the second equation has been derived [10] by as-
suming that the constituents of the binary simulate weakly coupled oscillations of a 
double pendulum. The equations above have been written by assuming that Nb is the 
upper bob of the double pendulum. With Nb 92.91m = , N 14.007m = , and θNbN as in 
(33), the solutions of these equations yield  

( )Nb 397.8 K Nb as the upper bobθ =                 (36) 

( )Nb 105.7 K Nb as the lower bob ,θ =                 (37) 

the corresponding values for θN being 272.2 and 564.3 K (which we do not need). In the 
following we shall perform all calculations with both the above values of θNb.   

4.3. Choosing the Values of Tc for Which the Data in [9] Are Addressed 

In [9], while values of Tc varying between 9.87 and 15.25 K have been reported for 13 
samples of NbN for which the values of 0j  lie in range 2.92 - 13.30 MA∙cm−2, the val-
ues of en  have been reported at only three values of cT , which are 10.72, 14.02, and 
15.17 K. Hence we limit the scope of this paper to these values of cT  only.   

4.4. A Consistency Check of (6) 

If we solve the usual BCS equation for Tc (i.e., the equation sans EF) with θ = 105.7 
(397.8 K) and Tc = 10.72 K, we obtain λ = 0.4142 (0.2682). These are precisely the val-
ues we obtain via (6) for the same values of Tc and θ and the additional input of μ (or EF) 
= 100 kθ for each value of θ being considered. Note that 100kµ θ =  manifestly satis-
fies constraint (1). It is hence seen that (6) incorporating µ  is a valid generalization of 
the usual equation sans µ , and may therefore be used for arbitrary values of µ .  
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4.5. Fixing Additional Required Inputs 

Having fixed the values of θNb and Tc, we can carry out steps (A) and (B) spelled out in 
Section 4.1; to carry out step (C) we additionally need the values of γ and the cell para-
meters of different samples of NbN, which are not given in [9]. We fix these by appeal-
ing to the data in [13]. A summary of all the inputs required for this study is given in 
Table 1. Based on the data in [17], this table includes the estimated values of 0∆  at 
each of the Tcs under consideration 

4.6. Results 

For each of the three values of Tc and both the values of θNb noted above, we carried out 
steps (A)-(C) noted in Section (4.1) for Nb100 1kµ θ≤ ≤ . For the sake of brevity, pre-
sented in Table 2 are the results corresponding to θNb = 105.7 K for only those values of 

Nbkµ θ  for which the calculated values of 0j  are in close agreement with their expe-
rimental values noted in Table 1. In obtaining these results we have assumed that θNbN 
and hence θNb does not change significantly with Tc—as is seen from the data in [13]. 
Thus, up to this stage, having fixed the value of θNb as 105.7 K, we have shown that each 
subset of the { }0,  cT j  experimental values can be accounted for by a corresponding set 
of { },  µ λ  values. Since it is pertinent to ask if we could have achieved similar agree-
ment by adopting a different value of θNb, we observe that (i) (3) and (6) can be em-
ployed only for values of 1 kµ θ ≥ —otherwise we run into complex values because of 
the factor ξ µ+ ; (ii) for μ as any multiple of kθNb, the value of λ  calculated via ei-
ther of these equations must be less than 0.5 in order to satisfy the Bogoliubov con-
straint, and (iii) for any value of 0 0,  T j  increases as μ is increased. 
 
Table 1. Experimental values of { }0,  ,  c eT j n  [9], { }0,  aγ  [13], and 0∆  [17] employed for the 

study of NbN in this paper. 

( )KcT  ( )2
0  MA cmj −⋅  ( )23 3  10  cmen −  ( )2 1mJ K gatγ − −⋅ ⋅  

( )8
0

Cell parameter
  10  cma −  ( )0  meV∆

 

10.72 3.81 2.59 2.61 4.032 2.06 

14.02 11.49 1.26 3.20 4.297 2.38 

15.17 13.38 1.26 3.41 4.389 2.31 

 
Table 2. Results of calculations for θNb = 105.7 K. The value of Nbkµ θ  against each Tc is the 
one that led—via the values of EF, λ , y , and gv  (the gram-atomic volume of NbN)—to a val-

ue of 0j  in close agreement with its experimental value noted in Table 1. gv  was calculated 

with the input of a0 from Table 1 and the atomic masses of the Nb and N, as in [8]. 

( ) KcT  Nbkµ θ  ( ) meVµ  ( ) meVFE  λ  y  ( )3 1cm gatgv −⋅  ( )2
0 MA cmj −⋅  ( )0  meV∆  

10.72 1 9.11 9.19 0.4300 4.496 13.158 3.65 1.79 

14.02 4 36.4 36.5 0.4670 3.653 15.926 11.4 2.41 

15.17 4.75 43.3 43.3 0.4845 3.418 16.971 13.6 2.64 
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We now take up the results following from θNb = 397.8 K. The least permissible value 
of μ corresponding to it, i.e., Nb ,kµ θ=  led to 0 9.39j =  MA/cm2 for Tc = 10.72 K 
and 0 12.3j =  MA/cm2 for Tc = 14.02 K. Since both these 0j  values are greater than 
their experimental counterparts, in the light of observation (iii) above, one might at-
tempt to employ lower values of µ —which is ruled out because of (i). In fact the value 
105.7 K seems like the upper limit for θNb because we had to employ the least value of 
µ  corresponding to it in order to achieve agreement between the calculated and the 
experimental values of 0j  at Tc = 10.72 K. As a concrete example in support of this 
statement, we note that θNb = 125 K, led via the least permissible value of µ  corres-
ponding to it to the following results:  

2
00.4008,  10.84 meV, 5.244, 4.14 MA/ cm .FE y jλ = = = =  

Since this value of 0j  exceeds the experimental value, we need to employ a lower 
value of µ —which is impermissible because we have already employed for it the low-
est allowed value. 

Our considerations so far have been based on the derived values of θNb from θNbN = 
335 K. In order to find if there is a lower limit on the value of θNb, we now report our 
findings based on the values of θNb derived from the lowest value of θNbN that was noted 
above, i.e., 250 K. This value leads via (34) and (35) to θNb = 296.8 (Nb as the upper bob) 
and θNb = 78.9 K (Nb as the lower bob). Since the former of these values exceeds the 
upper limit noted above, we did not pursue it any further. For the latter value, we ob-
tained for any assumed value of 1,kµ θ ≥  

( ) ( )0.5392 14.02  and 0.5630 15.17 .c cT Tλ λ≥ = ≥ =   

Because both these values of λ  are in conflict with the Bogoliubov constraint, we 
conclude that θNb cannot be as low as 78.9 K. The value closest to it that yields values of 
λ  satisfying the Bogoliubov constraint at both the Tcs is θNb = 100 K, for which, e.g., 

( )0.4971 15.17 .cTλ = =  
Above considerations raise the question: Could Nb 1kµ θ <  for NbN? If so, it would 

put NbN in the category of heavy-fermion SCs [18]. Since there is no compelling reason 
to believe that this may be so, we did not pursue this idea.  

Given in Table 3 are the predicted values of various parameters concomitant with  
 
Table 3. With θNb = 105.7 K, predicted values of various parameters of NbN that are concomitant 
with the calculated values of 0 j  given against each Tc in Table 2. 

cT  ( ) ( )  *F F es E m E m=  ( )( )20 3    10  cms Fn E −  ( ) ( )3 10s F en E n −  ( )0 eVP  ( )4 1
0 10 cm secv −⋅  

10.72 18.2 3.11 1.20 91.13 7.35 
14.02 11.6 12.5 9.92 44.91 5.69 
15.17 10.95 14.8 14.8 42.84 5.74 

Notes: (i) The equations employed for the calculation of the above parameters have been derived in [8] and are as fol-

lows: ( ) ( ) ( ) ( ) ( ) ( )2 3 1 3 10 1 3 2 4 3 7 2 2
1 1 2 23.305 10  eV cm K , , 2.729 10  eV K ,F g F s F g Fs E A v E A n E A v E Aγ γ− − − −= × ⋅ ⋅ = × ⋅   

( ) ( ) ( ) ( )1 3 2 3 6 4/3 1 3
0 3 3, 1.584 10  eV cm K ,F g FP E A y v E Aθ γ − − −= × ⋅ ⋅   

( ) ( ) ( ) ( )1 3 1 3 8 2/3 1 5 3
0 4 4,  1.406 10  eV sec K .F g Fv E A y v E Aθ γ

− − − −= × ⋅ ⋅  (ii) The product [ns(EF) e v0] at each Tc yields 

the same value for j0 as was calculated via (14) and given in Table 2. (ii) The values of ( )2
3 3 0 8F e FE E E P sm E′ = =  

are 21.12 10−× , 31.2 10−×  and 49.5 10−×  for Tc = 10.72, 14.02 and 15.17 K, respectively, which justify the approxi-
mation made in obtaining (32). 
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the experimental values of Tc and 0j  of NbN at the three Tcs. Among these, the values 
of 0∆  are in reasonably good agreement with their experimental counterparts (see 
Table 1), considering that the latter are estimated values based on the data of [17].   

5. A Review of the Results Obtained in [8] in View of the  
Modified Equation for y 

For Sn and Pb, all our earlier results remain unchanged because solution of (32) for 
these elements yields the same values for y  that were obtained via (11). Since the val-
ues of kµ θ  that were needed for these elements are rather large, 55 for Sn and 108 
for Pb, this result was to be expected; it also establishes that (32) is a valid generaliza-
tion of (11). To bring out the extent to which the solutions of the two equations differ 
for low values of kµ θ , we note that if we erroneously employ (11) for Sn for 

1kµ θ = , θ = 195 K and λ = 0.2516 (these values are consistent with 0∆  of the SC), 
then we obtain y = 20.083 [8]; employment of (11) in this case is erroneous because the 
equation was obtained by assuming that 1kµ θ  . On the other hand, solution of (32) 
for this case leads to 21.613y = . 

For each of the high-Tc SCs dealt with in [8], there are two sθ —say, 1θ  and 2θ — 
and two sλ  in the problem. The EF-dependent equation for y  that we now need to 
employ is  

( ) ( )1 1 1 2 2 21 , , , , ,T r y T r yλ λ′ ′= Σ + Σ                     (38) 

where ( ), ,T     was defined in (32), ( ),   1, 2 ,i i F i ik E r iθ θ θ′Σ = = =  2 ,y k Eθ=  
θ being the Debye temperature of the SC, and E2 was defined in (13). It is hence seen 
that 2i ir y k Eθ= —as it ought to be. Without the multipliers 1r  and 2r , y  would 
denote 1 2k Eθ  in the first term on the RHS of (38) and 2 2k Eθ  in second term, 
whereas with the multipliers y  has the same definition (i.e., 2k Eθ ) for both the 
terms. 

Equation (38) generalizes (32) to the TPEM scenario; because it explicitly contains EF 
as a variable, it is also a generalized version of equation (30) in [8]. Upon solving (38) 
with the input of 1 2 1 2  ,  ,  ,  ,  θ θ θ λ λ , and EF as given in [8] for any of the high-Tc SCs, 
we obtain the same value for y  that we had obtained earlier. Notwithstanding the fact 
that all our results reported in [8] remain unchanged is fortuitous—for lower values of 

kµ θ  than were required in [8], we ought to employ the more accurate (38) rather 
than equation (30) in [8]. 

6. Discussion  

In connection with fixing θNb, we recall that Debye temperature is just another way to 
specify Debye frequency; it is not to be confused with thermodynamic temperature. We 
now note that, based on neutron powder diffraction experiments, different values of 
Debye temperature for the constituents of anisotropic LCO have been reported [19]. 
This lends support to the idea that the Debye temperature of a composite SC needs to 
be “resolved.” The results reported here depend only on the value of θNb, for the identi-
fication of which we have simply employed (34) and (35) as a vehicle. 

Among the five variables that determine 0j —see Equation (14) — gv  seems to 
stand alone. We draw attention to a discussion of this variable in [8]. 
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7. Conclusions 

The main results of this paper are: (i) a new EF-dependent equation for the dimension-
less construct y  defined in (2) has been derived, (ii) it has been shown that the expe-
rimental values of Tc, 0j , and 0∆  of NbN are explicable in the OPEM scenario by a 
value of θNb in the range 100 - 106 K, (iii) predictions have been made about the values 
of m*, ns, and 0v  that are concomitant with the Tc and 0j  values of NbN, (iv) the 
greater the value of the ratio s en n , the greater is the value of Tc, and (v) it has been 
pointed out that we need to employ the new equations for y  presented here when 

kµ θ≈ . 
The work reported here is continuation of an attempt to find via theory tangible 

clues about raising the Tcs of composite SCs. The role of experiment in this quest can 
hardly be over-emphasized. While huge amounts of such data about hundreds of SCs 
are now available, we have not come across a single composite SC for which all the re-
levant parameters identified here, i.e., θ, Tc, 0∆ , 0j , m*, 0v , ne, ns, γ , and gv , have 
been reported. 

We conclude by noting that the derivations of most of the equations employed in this 
paper and the concepts on which they are based, e.g., multiple Debye temperatures, su-
perpropagator, and the Bogoliubov constraint, can be found at one place in [10].  
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