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Abstract 
It is pointed out that the property of a constant energy characteristic for the circular 
motions of macroscopic bodies in classical mechanics does not hold when the quantum 
conditions for the motion are applied. This is so because any macroscopic body—lo- 
cated in a high-energy quantum state—is in practice forced to change this state to a 
state having a lower energy. The rate of the energy decrease is usually extremely 
small which makes its effect uneasy to detect in course of the observations, or expe-
riments. The energy of the harmonic oscillator is thoroughly examined as an exam-
ple. Here our point is that not only the energy, but also the oscillator amplitude 
which depends on energy, are changing with time. In result, no constant positions of 
the turning points of the oscillator can be specified; consequently the well-known 
variational procedure concerning the calculation of the action function and its prop-
erties cannot be applied. 
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1. Introduction 

Mechanics is usually considered as a fundamental part of physics because of its role in 
establishing the physical ideas. In fact, with its aid the motion kinds of the bodies were 
rather easily percepted and classified according to their character. A systematic study of 
mechanics was stimulated especially by astronomy. Here a fundamental guide became 
an access to a less or more accurate repetition of the observed effects and events. 
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In result, the best examined motions could be classified as belonging to two domains. 
One of them concerned the periodic motions where the body returns to its original 
position after some period of time, another domain of mechanics considered typical 
progressive motions in space and time. For this second kind of motions the top results 
could be obtained in the framework of the relativistic theory. The main feature in 
description of this kind of motions became a necessary coupling between the space 
intervals and intervals of time. 

Evidently another characteristics than for progressive motions became dominant in 
describing the periodic motions. Here a principal mechanical parameter is the system 
energy. A constant property of that parameter was at the basis of the whole mechanics 
of the examined system. As far as the motion of a celestial body—especially that present 
in the solar system—was examined, the theoretical framework based on the conser- 
vation property of energy seemed to be fully satisfactory; see e.g. [1] [2]. A difficulty 
came when the atomic systems were discovered and—at the initial stage of the quantum 
theory—the periodic character of the electron motion in the atom was attempted to be 
described in a way not much different than applied for the body motion in the solar 
system. The main change which had to be taken into account concerned the fact that a 
single electron particle in the atom—concretely the hydrogen atom—could assume 
different but strictly specified energy values called the energy states. Excepting for the 
state having the lowest energy, an occupation of the other, i.e. higher energy levels, 
could be only temporary. This is so because at some time moment—undefined by the 
theory—the electron is going from a state of a higher energy to the state of a lower energy. 
The transition process is connected with the emission of energy equal to a difference 
between the initial and final levels of energy. The Bohr theory could—with a high accu- 
racy—to define the energy levels in the atom and corresponding differences between 
them [3] [4]. A difficulty—rather fundamental—was due to the fact that the time of the 
electron transition process between the states remained an unknown quantity. 

In result the emission intensity of energy in the atom was specified solely with the aid 
of a complicated quantum-mechnical radiation theory based on a probabilistic back- 
ground [5] [6]. Complication of such calculations became evident because of necessity 
of the use of possibly accurate electron wave functions [4] [7] [8]. A difficulty of the 
access to such functions increased very rapidly with increase of the number of electron 
particles present and interacting in the atom. 

Only recently the time interval of the electron transitions could be estimated with no 
reference to the wave functions. This was done with the aid of the classical electrody- 
namics in which the Joule-Lenz theory of the dissipated energy has been adapted to the 
quantum electron transitions [9] [10] [11] [12] [13]. For, when two neighbouring 
quantum levels separated by the energy interval  

1n n nE E E E+∆ = − = ∆                           (1) 

are considered, the time of the electron transition t∆  between the levels is given by the 
formula  
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E t h∆ ∆ =                                 (2) 

where h  is the Planck constant 
The formula (2) has occurred to be valid also for other quantum systems than the 

hydrogen atom [9] [12]. Here a rather fundamental question could be raised what is the 
relation between E∆  and t∆  when  

n q nE E E+∆ = −                               (3) 

and  

1,q >                                   (4) 

so the interval E∆  in (3) concerns the non-neighbouring quantum levels. An approach 
to this problem is presented in Section 2. 

In general, the classical mechanics and quantum theory are seldom compared, since 
usually they are applied to different—respectively macroscopic and microscopic—areas 
of physics. Perhaps a best known comparison is represented by the Ehrenfest theorem 
according to which the Hamilton equations are shown to be equally applicable to the 
classical particles and quantum wave-packets [7]. In the case of the present approach a 
comparison of the quantum and classical theory could be extended to such classical 
systems like planets and satellites, or the macroscopic harmonic oscillator. 

Basing on the old quantum theory [14] it has been found for planets and satellites 
that their energy can by no means remain a constant number but should decrease 
systematically with time [15], on condition the masses of the gravitationally interacting 
bodies remain unchanged. In the present paper the case of a classical harmonic oscil- 
lator is examined. In fact an approximate agreement of the both kinds—classical and 
quantum—approaches can be considered as satisfactory. This is so because the rate of 
the energy decrease of classical systems calculated with the aid of the quantum theory is 
exceedingly small. 

The point considered in the present paper—as well as in [15]—seems to be fully new 
and never examined before. 

2. Energy Emission and Transition Times of Electrons between  
Non-Neighbouring Quantum Levels  

In this case the formula (2) does not hold. In place of it one of the factors entering (2) 
becomes  

1 1 2 2 3 1

1 2 3

n q n q n q n q n q n q n n

n q n q n q n

E E E E E E E E E

E E E E
+ + − + − + − + − + − +

+ − + − + −

∆ = − + − + − + + −

= ∆ + ∆ + ∆ + + ∆





       (5) 

on condition we take for the components in (5) the expressions:  

1 1

2 1 2

3 2 3

1

,
,
,

            
.

n q n q n q

n q n q n q

n q n q n q

n n n

E E E
E E E
E E E

E E E

+ − + + −

+ − + − + −

+ − + − + −

+

∆ = −
∆ = −
∆ = −

∆ = −
 

                         (6) 
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Evidently any difference on the right of (6) concerns the neighbouring electron 
levels. 

Time interval t∆  and energy interval E∆  enter (2) on an equal footing, therefore 
we assume that for 1q >  we have  

1 2 3n q n q n q nt t t t t+ − + − + −∆ = ∆ + ∆ + ∆ + + ∆                     (7) 

where the formulae for the components in (7) are referred to the energy components in 
(5) by:  

1
1

2
2

3
1

,

,

,

          

.

n q
n q

n q
n q

n q
n q

n
n

ht
E

ht
E

ht
E

ht
E

+ −
+ −

+ −
+ −

+ −
+ −

∆ =
∆

∆ =
∆

∆ =
∆

∆ =
∆

 

                             (8) 

The formulae (8) hold because the relations between the energy differences and time 
differences concerning the neighbouring electron levels are dictated by the formula (2). 

The validity of transition intensities  

E
t

∆
∆

                                   (9) 

calculated according to (5)-(8) (see [16] [17]) was confirmed by comparing the ratios of 
the intensities calculated in (9) with the quantum-mechanical ratios of transition 
probabilities in the hydrogen atom; see [8]. In general the agreement of both kinds of 
approach—quantum-mechanical and the present one—can be considered as satisfac- 
tory. It should be noted that the next interval of time begins immediately after a former 
one, which is a situation similar to the behaviour of the energy intervals in the emission 
process, where a lower interval of energy begins immediately after a higher one. 

In the next section (Section 3) the energy relations for a macroscopic harmonic 
oscillator are considered. 

3. Energy Relations for a Macroscopic Harmonic Oscillator  

Classically a well-known property of energy of the harmonic oscillator, which—for the 
sake of simplicity—can be reduced to a linear system, is its conservation with time [1] 
[18]. In course of the oscillator motion we have two different energy components corre- 
sponding to the kinetic and potential energy, respectively, which add together at any 
time to a constant number of the total energy dependent solely on the oscilllator ampli- 
tude a  and the oscillator constant k :  

2
2 2 ;

2 2 2n
m k kaE v x= + =                            (10) 
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m  is the oscillator mass, v -the oscillator velocity, x  denotes the position of the 
oscillating particle. 

The k  is coupled with the oscillator frequency ω  by the relation  
2 ,k mω=                                 (11) 

the frequency ω  is dependent on the oscillation period T :  
2π 2π .
T

ω ν= =                              (12) 

As far as k  and a  remain constant numbers, no change of the total oscillator 
energy (10) can be obtained. By taking the boundary conditions of [1] we arrive at the 
formula  

cosx a tω=                              (13) 

where t  is the time variable. 
The quantization of the oscillator is a simple task. We have the velocity  

d d sin ,xv x t a tω ω= = −                         (14) 

the momentum  

sin ,x xp mv ma tω ω= = −                        (15) 

and the integral  

( ) ( ) 2 2 2 2d sin d sin d .xp x ma a t t ma t tω ω ω ω ω= − − =∫ ∫ ∫             (16) 

If the integral (16) is extended over the time interval T  necessary to close the path 
of the body, we obtain the quantum condition [1]  

2 2 2 2 21 1 2πd π ,
2 2xp x ma T ma ma nhω ω ω

ω
= = = =∫              (17) 

where n  is a positive integer number; see also (12). The formula (17) gives  

2 2 ,
πn
nha a
mω

= =                           (18) 

therefore  

( )2
1

1
.

πn
n h

a
mω+

+
=                          (18a) 

Respectively the oscillator energies are [see (10) and (11)]:  
2 2

,
2 2 π

n
n

ka m nhE n
m

ω ω
ω

= = = 
                    (19) 

( ) ( )
2 2

1
1

1
1 ,

2 2 π
n

n
n hka mE n

m
ω ω

ω
+

+

+
= = = + 

               (19a) 

and their difference becomes  

1 .n nE E E ω+∆ = − =   (20) 

Evidently at nx a= ±  and 1nx a += ±  we have the turning points of the oscillator at 
which the kinetic energy vanishes in the classical case; see (10). 
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4. Upper Limit of the Oscillator Frequency Due to the  
Energy-Time Uncertainty Principle and an Upper  
Limit of the Emission Rate  

There exists a limit of the time interval t∆  necessary for the electron transition pro- 
cess between two quantum levels. First this interval is coupled with the energy interval 

E∆  between the nearest quantum levels by the formula (2), but another coupling is 
given by the formula called the uncertainty principle of energy and time [11] [12] [19] 
[20] [21]:  

( )22 22 .mc E t∆ ∆ >                            (21) 

This relation replaces an earlier formula coupling E∆  and t∆  given by Heisen- 
berg [7] [22]  

.E t∆ ∆ >                               (22) 

In fact a substitution of the quantum formula (2) deduced from the Joule-Lenz law 
into (21) gives the relation  

( )
2

22 2 2
22 2

4π
hmc E t mc h t∆ ∆ = ∆ > =

                 (23) 

from which we obtain  
2

2 2 2 .
8π 4π

ht
mc h mc

∆ > =
                       (24) 

The result on the right of (24) is similar to that obtained earlier also on the basis of 
the energy-time uncertainty principle [4] [12] [23]:  

min 2 .t t
mc

∆ > ∆ =
                         (25) 

In calculating the emission process of a single electron transition we have the in- 
tensity  

( )2EE
t h

∆∆
=

∆
                         (26) 

because (26) gives  

1 E
t h

∆
=

∆
                          (27) 

which is evidently identical with the formula (2):  

E t h∆ ∆ =                           (28) 

On the other side from (20) we obtain  

2π .hE
T T

ω∆ = = = 
                     (29) 

In effect from (27) and (29) we arrive at the equality  

t T∆ =                             (30) 

which is a situation characteristic not only for the harmonic oscillator but also for other 
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quantum systems [9] [11] [12] [24]. A substitution of (30) into (24) gives  

24π
T

mc
>

                               (31) 

therefore  
2 22π 8π mc

T
ω = <



                           (32) 

This relation, which for the electron mass m  is equivalent to  

( )22 28 10
23 1

27

8π 9.1 10 3 10
0.6 10  sec ,

1.06 10
ω

−
−

−

× × ×
< ≅ ×

×
              (33) 

represents the upper limit of the frequency ω  of the electron oscillator. 
A substitution of result (32) into (29) gives immediately an upper limit for the energy 

interval E∆  between the neighbouring quantum levels:  
2 28π .E mcω∆ = <                            (34) 

Respectively the value of the frequency limit in (34) is equal to  
2 2

max
8π .mcω =


                           (34a) 

A characteristic point is that the upper limit presented in (34a) is proportional to the 
particle mass m  as well as the square of the speed of light c . 

There exists also an upper limit of the emission rate of energy. It can be shown that 
this limit remains the same independently of that whether it is derived on the basis of 
the formula (2), or directly from the Joule-Lenz law for the dissipation of energy. In the 
case when the formula (2), or (26), is applied we have from (24) and (34):  

( )22 22 2
2 2

8π8π 8π .
mcE mc mc

t h h
∆

< =
∆

                   (35) 

On the other hand, the emission rate obtained from the Joule-Lenz law is  

2 ,E Ri
t

∆
=

∆
                              (36) 

where R  is the electric resistance of the current i  due to the one-electron transport:  
e ;i
T

=                                 (37) 

e  is the electron charge and T  is the time period in (30) equal to the time interval 
t∆  of the electron transition. For R  in quantum systems we obtain a constant 

number [9] [12]  

2e
hR =                                (38) 

(characteristic for the integer quantum Hall effect [25]), so  

( )
( ) ( )2 22 2 2 22

2
2 2 2 2 2

8π 8πe
e

h mc mcE h h hRi
t hT T ht

∆
= = = = < =

∆ ∆
           (39) 
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because of the formula (24). 
Evidently the results based on the quantum uncertainty principle are of not much use 

for the macroscopic level. 

5. Dissipation of Energy of the Macroscopic and Microscopic  
Oscillator 

Our aim is to show that the dissipation of energy concerns equally a microscopic and 
macroscopic oscillator, though evidently it is relatively much less important in the 
macroscopic case. 

In the microscopic situation we have a well-known emission of the quanta ω  
given in (29). On the other hand, for the macroscopic case it was believed that no emis- 
sion can take place, so the oscillations are going on without any loss of energy. In fact 
by applying the quantum formalism it is easy to show that this energy conservation 
does not hold. 

Let us assume a macroscopic oscillator having mass 1m =  g, the amplitude length 
1a =  cm and the time period of the oscillations is  

1sec.T =                               (40) 

This implies the quantum condition [see (17)]  

( )2 2 2 21d π 2π 2π  erg sec 1 ,xp x ma ma n h
T

ω= = = = +∫             (41) 

therefore  
2 2

27
27

2π  ergsec 2π1 3 10 .
6.62 10

n
h −+ = = ≅ ×

×
               (42) 

Equation (42) indicates that a very high quantum state 1n +  is occupied by the 
oscillator, however this state can be lowered. 

Since the energy of the oscillator in state 1n +  is  

( )1 1 ,nE n ω+ = +                             (43) 

a lowering of (43) by the amount  

E ω∆ =                                (44) 

leads to the energy  

.nE n ω=                               (45) 

In the quantum approach to the Joule-Lenz law [9] [12] the lowering of energy 
represented by (44) takes place within the time interval equal to the oscillation period, 
i.e.  

1 sec,t T∆ = =                           (46) 

So—because of (40) and inferences before it—the formula (44) corresponds to the 
amount of emitted energy:  

272π 6.62 10  erg.
2π
hE

T
ω −∆ = = = ×

                 (44a) 
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This is a very small amount of energy if we compare it with the energy of state 1n +  
in (43) which is  

( ) ( )
27

27 27
1

2π 6.62 10  ergsec1 1 3 10 6.62 10  erg.
1 secnE n n

T

−
−

+
×

= + = + ≅ × × ×
   (47) 

Practically a full loss of the energy (47) will occur when the oscillator being in state 
1n +  will perform a transfer to the lowest quantum state 1n = . This can take place 

within the time  
27 203 10  sec 10  years,nT = × ≅                     (48) 

if we note that approximately  
71 year 3 10  sec.≅ ×                         (49) 

Therefore—strictly speaking—the energy of the oscillator cannot be conserved. How- 
ever, the rate of decrease of energy is extremely small which makes uneasy to detect it 
in course of the observations or experiments. 

6. Discussion: Energy Decrease and the Damping Term of the  
Oscillator 

The decrease of the oscillator energy can be examined with the aid of the corresponding 
damping coefficient DR  [26]. It is given by the equation  

2 2 2
kin kin

d d 1 1 2 2 .
d d 2 2

D D
D D

R RE E Emx kx R x E E R
t t t m m m

∆  ≈ = + = = ≈ = ∆  
       (50) 

Here kinE  is the kinetic energy of the oscillator and kinE —the average value of kinE . 
It is easy to show that  

2

kin pot ,
2

kaE E E= = =                         (51) 

where E  is the total energy of the oscillator given in (10). For the kinetic part we have 
from (14)  

2 2 2 2 2 2 2sin 1 1
2 2 4 2 2 2

xmv ma t ma ka Eω ω ω  
= = = = 

 
             (52) 

because of (11), and the same result gives the averaged potential energy. 
Since  

( )2EE
t h

∆∆
=

∆
                           (53) 

we find that  

( )2

D
E ER
h m

∆
≅                           (54) 

or  

( ) ( )2 2

.
2π 2π D

E m m m m R
E h n n Tn

ω ω
ω

∆
= = = ≅


 

               (55) 
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For the classical macroscopic oscillator considered in Sec. 5 we obtain from (40) and 
(42)  

27
27

1 g 1 1 g10  .
1 sec 3 sec3 10DR −= =

×
                  (55a) 

A characteristic point is that a similar value for DR  can apply to a quantum system 
of electrons oscillating along the Fermi surface of a metal upon the action of an external 
magnetic field. In this case the formula (55) for DR  takes the form:  

( ) ( )2 2 2

2π 2π 2πD
F F

m m mR
n E E

ω ω ω
ω

= = =
⋅

 



  

                 (56) 

where m  is the electron mass, n ω  is assumed to approach the Fermi energy FE  of 
a metal and ω  is the electron circulation frequency due to the magnetic field; see e.g. 
[27]. Since  

28 279 10  g 10  g,m − −≅ × ≈                       (57) 

1110 eV 1.6 10  ergFE −≅ = ×                      (58) 

and  
2710  ergsec−≅                          (59) 

we arrive at:  

( )227 2 43 2

11

10 10  gsec.
2 1.62π 1.6 10DR

ω ω
− −

−≅ =
×× ×

                 (60) 

This DR  becomes not different from that obtained in the macroscopic case [see 
(55a)] on condition the equality between (55a) and (60) is satisfied:  

43 2
2710 1 g gsec 10  

2π 1.6 3 sec
ω−

−=
×

                     (61) 

so  
1 2

27 43 1 2 8 11 110 2π 1.6  3 10  sec .
3 sec

ω − + − = × × ≅ × 
 

             (62) 

The size of the frequency ω  obtained in (62) is rather often applied in experiments 
examining the Fermi surface and magnetoresistance of metals with the aid of the 
magnetic field [27]. 

7. Conclusions  

In some earlier papers by the author [9] [10] [12], an attempt has been done to establish 
the time interval t∆  necessary for the electron transitions between states 1n +  and 
n ; these states were classified to be periodic in time. By assuming that the energy 
interval E∆  between the states is a positive quantity [see (1)], the transition re- 
presents an emission process of energy. A reconstruction of the classical Joule-Lenz law 
for the dissipation of energy suitable to the treatment of the quantum transitions gives— 
in the first step—the result that E∆  is coupled with t∆  by the formula (2) or (28). 
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Another property of t∆  entering (2) or (28) became the equation  

t T∆ =                                (63) 

[see also (30)], where nT T=  is the time period characteristic for the quantum state 
n  [9] [11] [12] [24]. In practice—when nE∆  in (1), or a similar difference of energy  

1 1n n nE E E− −∆ = −                           (64) 

between states n  and 1n − , are small—the time period nT  is not much different 
than 1nT +  or 1nT − . 

The idea of the former [15] and present paper was to consider the classical mecha- 
nical systems of a periodic character on a quantum footing in spite of their macroscopic 
size. This has been done on the basis of the old quantum theory. In course of the treat- 
ment it became of importance to know—in the first step—whether nE∆  or 1nE −∆ —are 
small, in the next step—whether the formula (2) together with (63) can be satisfied also 
in the macroscopic case. 

In [15] the celestial bodies of the solar system have been examined. With the 
neglected luminosity effect represented by the mass decrease of the Sun due to its light 
emission, the validity of (2) has been checked, first, by calculating E∆  with the aid of 
the orbit parameters, next by taking into account the formula (63). The data for the 
Earth planet considered as an example were applied in the numerical calculations. 

The present paper concerns the quantum approach to the macroscopic harmonic 
oscillator. In this treatment the validity of (2) and (63) could be easily confirmed. In 
any quantum calculation done on the macroscopic body the number n  became very 
high indicating an existence of small E∆  between the neighbouring quantum states. 

A basic result obtained from the quantum approach to the periodic macroscopic 
systems is that—strictly speaking—no conservation of energy does exist for such sys- 
tems, as far as the system does not reach its ground state represented by the lowest 
possible energy. In reality any of the examined systems had a huge index n  of its 
quantum state, but these states can be gradually left by the body in a way similar to the 
spontaneous emission of light known for the small quantum systems. A difference 
between the macroscopic and microscopic bodies is quantitative, not a qualitative one: 
the speed of emission by a macroscopic body, like the Earth or macroscopic oscillator, 
is exceedingly small. In effect, since the actual quantum number n  of the body is high, 
a transition to the lowest body state at 1n =  becomes an extremely long process in 
time. 

This result can be compared with a totally different situation of the micoscopic 
systems like atoms. Here the energy emitted in a single transition is large, when com- 
pared with the total energy possessed by the electron, and the number of steps necessary 
to attain the ground state is relatively small. This makes the emission rate of energy 
relatively large. 

There remains still the problem of causality of the transition process between the 
quantum states. In fact the very existence of these states is rather postulated by the (old) 
quantum theory than derived from a more advanced formalism, for example quantum 
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mechanics. But there is no reason to reject such postulate. 
Another problem is the time of the body transitions between the quantum states. 

This point seems to be carefully avoided by many of quantum physicists instead to be 
put into a calculational practice. In fact any transition rate of energy is considered from 
the very beginning of quantum theory—also the old one—solely on a probabilistic 
footing [5] [6]. This kind of approach does not apply to the theory outlined in the 
present paper: here, in course of any period T  of time characteristic for the body 
motion, the body energy can be decreased by a very small amount equal to the Planck 
constant divided by T . The interval T  can be derived also on the basis of classical 
electrodynamics [13] which implies its deterministic and not probabilistic character. In 
effect the transitions between the quantum energy levels discussed in the paper, which 
make the periodic motion equal to an irreversible process, should be considered rather 
as a compulsory result and not solely like less or more probable phenomenon. 
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