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Abstract 
According to the classical mechanics the energy of a celestial body circulating in the 
solar system is a constant term. This energy is defined by the masses product of the 
larger and smaller body entering into a mutual attraction as well as the size of the 
major semiaxis characteristic for the corresponding Kepler orbit. A special situation 
concerns the planet interaction with the Sun because of a systematic decrease of the 
Sun mass due to the luminosity effect. The aim of the paper is to point out that even 
in the case of perfectly constant interacting masses the energy of the moving body 
should decrease when a quantum treatment of the body motion is considered. The 
rate of the energy decrease is extremely small, nevertheless it gives a shortening of 
the distance between the interacting bodies leading to a final effect of a touch of the 
larger body and a smaller one. 
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1. Introduction 

A selection of physical objects to the quantum or classical kind of a study is well known. 
In principle the microscopic bodies representing mainly the atomic and molecular 
systems are the objects belonging to the quantum kind of approach. On the other side 
there do exist the celestial bodies for which the classical treatment of their motion is a 
well-established theory. 

Paradoxally, in spite of a different kind of forces and an extremely different size of 
the geometrical parameters entering the microscopic and celestial physical world, 
respectively, the mathematical treatment developed in the Bohr atomic theory and 
Newton mechanics of the solar system are much similar [1] [2]. 
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The energy of the moving body-which is an electron in the hydrogen atom and a 
planet or satellite in the solar system-is a constant number, and the same property 
concerns the angular momentum. In fact both theories represent the two-body problem 
of the interaction between a stable heavy body with a much less heavy moving body. An 
essential difference between the atomic and solar systems is that a stationary electron 
energy in an atom-excepting for the situation characteristic for the atomic ground 
state-can be spontaneously changed, but it seems that no similar change can apply to 
the energy of a planet or satellite. 

The aim of the present paper is to examine a possibility of a spontaneous change of 
the constant energy attributed to a celestial body moving in the solar system. 

To the best knowledge of the author this problem has been never investigated before 
and no similar study has been raised in the past. 

2. Quantization of the Motion of a Celestial Body  

If the trajectory of the body is a definite closed path, the old quantum theory refers the 
quantum number n of the body state to its momentum p  by the formula [1]  

( )d d 1 ;S m n h= = = +∫ ∫p r v r
 

                     (1) 

the index 1n +  instead of n has been introduced for the sake of convenience, h is the 
Planck constant. In principle there is no limit for the integer number n. 

If the path can be approximated by a circle of radius r and the body velocity v=v  
on the circle is roughly constant, we obtain for (1) the equation  

( )2π 1 ;S mvr n h≅ = +                         (2) 

m is the mass of the body. 
Henceforth let us specialize the calculations to the motion of the Earth planet taken 

as an example. In fact no essential difference does concern the Earth case and cases 
represented by other planets or satellites interacting with their gravitational centers, on 
condition the luminosity effect of the mass decrease of the Sun in neglected [5]. We 
have for the Earth planet [3] [4] the mass  

245.976 10  kg;m = ×                          (3) 

the average velocity on the Kepler orbit  
129.79 km s ,v −= ⋅                           (4) 

and the average distance from the Sun  
6149.6 10  km.r = ×                           (5) 

With the data in (3)-(5) and  
276.62 10  erg sech −= × ⋅                          (6) 

the Formula (2) becomes  
( ) ( )1 732π 1 4 10 .n

E E ES m v r n h h+≅ = + ≅ ×                   (7) 

In the sense of the quantum theory the Earth is on a high quantum level  
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731 4 10 .n + = ×                            (8) 

With S given in (7) there is connected the energy [6]  

1
1 12 2n

n n

GMm GMmE
a r+

+ +

= − ≅ −                       (9) 

where 1na +  denotes a larger semiaxis of the Kepler orbit, r (with subscript n + 1) 
replaces r presented in (5), 

86.67 10G −≅ ×                           (10) 

is the gravitational constant when the masses in (9) are in grams and the distances in 
centimeters [5], and [3] [4]  

301.99 10  kgM = ×                         (11) 

is the mass of the Sun. 

3. Spontaneous Emission of Energy by a Quantum  
System Applied to the Case of a Moving Earth  

A quantum system being in the state 1n +  can spontaneously emit its energy by going 
to a lower state n. In this case S in (7) is changed (decreased) by the interval  

( ) ( ) ( )
( ) ( ) ( )

11 2π

2π 2π
n n

n n n n n n n n n n

S n n h h m vr vr

m v v r r v r m v r v r
+

 ∆ = + − = = − 
 = + ∆ + ∆ − ≅ ∆ + ∆ 

       (12) 

where  

1 ,n n nv v v+∆ = −                         (12a) 

1 .n n nr r r+∆ = −                         (12b) 

Respectively the energy is changed (decreased) by  

( )1 1 2
1 1

1 1 1 .
2 2 2n n n n n

n n n n n

GMm GMm GMmE E E r r r
r r r r r+ +
+ +

 
∆ = − ≅ − − = − − ≅ ∆ 

 
 (13) 

The E∆  is a positive number because  

1.n nr r +<                            (13a) 

Finally due to the virial theorem [7] valid for any n we have  

( ) ( ) ( )
kin pot kin2 0.n n n

nE E E E+ = + =                     (14) 

Here ( )
kin

nE  and ( )
pot

nE  are respectively the kinetic and potential energy averaged over 
the Kepler orbit, therefore  

( )
kin .n

nE E= −                            (15) 

In effect of another representation of E∆  than (13), the formula  

( ) ( ) ( )2 2
1 1 1 2 ,

2 2 2n n n n n n n n n n
m m mE v v v v v v v v m v v+ + +∆ = − − = − − + ≅ − ∆ = − ∆     (16) 

is also valid. As a result we obtain three Equations [(12), (13) and (16)] for three 
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unknown parameters  

, and .r v E∆ ∆ ∆                          (17) 

The equations can be easily solved by putting in the first step the nr∆  calculated 
from (13) and nv∆  from (16) into (12):  

222π .n
n n

n

ErEh m r v
mv GMm

 ∆∆
≅ − + 

 
                  (18) 

This gives  
1 1 122 21 1 2 .

2π
n n n n n n

n n n n n n n

r v r v r vhE
m mv GMm r v GM r v v r

− − −
     

∆ = − + = − + ≅ − + =     
    

   (19) 

In obtaining the Formula (19) the approximate relation  

1 n n

n

r v
v GM

≅                             (20) 

has been applied. The (20) is descending from the ratio of the kinetic energy of the 
body to the absolute value of the body energy represented by the approximate Formula 
(9):  

( )
2

2
2 1.

2

nn
kin n n

n

n

mv
E v r

GMmE GM
r

≅ = ≅                      (20a) 

valid because of the virial theorem (15). The validity of the Formula (20) is checked for 
different planets in Table 1 and for satellites of Jupiter in Table 2. 

By having the result (19) for E∆  we can apply it in the formula representing a 
quantum aspect of the classical Joule-Lenz law for the dissipation of energy [8]-[13]:  

.E t h∆ ∆ =                            (21) 

A substitution of E∆  from (19) into (21) yields 
 
Table 1. Check of validity of the formula (20) done for the planets; the gravitational constant G is 
taken from (10) and M is the solar mass from (11); v is the average planet velocity in km/sec, r is 
the average distance between the planet and Sun in 106 km. 

Planet v r v2r (in 1020 m3∙s−2) GM (in 1020 m3∙s−2) 

Mercury 47.89 57.91 1.328 1.327 

Venus 35.03 108.20 1.328 1.327 

Earth 29.79 149.60 1.328 1.327 

Mars 24.13 227.94 1.327 1.327 

Jupiter 13.06 778.33 1.328 1.327 

Saturn 9.64 1426.98 1.326 1.327 

Uranus 6.81 2870.99 1.331 1.327 

Neptune 5.43 4497.07 1.326 1.327 

Pluto 4.74 5913.52 1.329 1.327 
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Table 2. Check of validity of the formula (20) done for the satellites of the Jupiter planet. G is the 
same as that taken in Table 1 [see (10)] but the mass of Jupiter is 271.9 10  kgJM = ×  [3] [4]. The 
velocity v is calculated according to the formula 2πr T  where r is the average distance of the 
satellite from the Jupiter center (in km) and T is the time period of the satellite circulation about 
the Jupiter planet expressed as a multiple of 86,400 seconds. 

Satellite r T v2r (in 1016 m3∙s−2) GMJ (in 1016 m3∙s−2) 

Metis 127,360 0.295 12.73 12.67 

Adrastea 128,980 0.298 12.78 12.67 

Amaltea 181,300 0.498 12.71 12.67 

Tebe 221,900 0.675 12.68 12.67 

Io 421,600 1.769 12.66 12.67 

Europa 670,900 3.551 12.66 12.67 

Ganimedes 1,070,000 7.155 12.66 12.67 

Callisto 1,883,000 16.689 12.68 12.67 

Leda 11,094,000 238.72 12.67 12.67 

Himalia 11,480,000 250.57 12.74 12.67 

Lysithea 11,720,000 259.22 12.67 12.67 

Elara 11,737,000 259.65 12.68 12.67 

Ananke 21,200,000 631 12.66 12.67 

Carme 22,600,000 692 12.75 12.67 

Pasifae 23,500,000 735 12.70 12.67 

Sinope 23,700,000 758 12.25 12.67 

 

n

n

vE t t h
r

∆ ∆ = ∆ =
                        (22) 

from which  

2π 1 year.n

n

rt T
v

∆ = = =                      (23) 

This holds because 2π nr  is the approximate path length of the Earth about the Sun 
and nv  is the average speed of the Earth planet. In effect—in view of (22) and (23)— 
the energy E∆  by which the Earth planet energy is lowered is quite small:  

342 10  erg.
365.26 86400 s

h hE
T

−∆ = = ≅ ×
×

             (24) 

Results (23) and (24) are similar to those attained before in the quantum-theoretical 
calculations [8]-[13] where the Formula (21) is established. In effect of that formula, as 
well as (23), the transition time t∆  is equal to the circulation time period of a moving 
particle and the transition energy E∆  is equal to h divided by that period of time. 

4. Discussion  

A peculiar result is that the quantum of energy (24) emitted by the Earth is much 
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smaller than that emitted by a hydrogen atom for the excited states n having the 
quantum numbers equal to about 10n = . This is explained by the fact that for the 
emission energy E∆  from the quantum state 1n +  to state n of the atom we have  

n

hE
T

∆ =                            (25) 

where  
3 3

3 16
2 4 1.5 10  s.

4πn
n hT n

me
−= = × ×                  (25a) 

This time is much shorter than 1T =  year characteristic for the circulation time of 
the Earth, and h entering the numerator of the Formula (25) does remain unchanged 
equally for the electron transition as well as for the transition of a planet from state 

1n +  to n . The Formula (25a) gives  
3~ ,nT n                             (26) 

therefore for a sufficiently large n we can obtain  

1 yearnT =                            (27) 

also for the hydrogen atomic state. In this case, however, the electron energy in the 
atom would be very close to zero giving a situation corresponding to the positive 
hydrogen ion. 

All processes the effect of which can be completely annulled, are called reversible 
[14]. Evidently, the spontaneous emission of the kind of (24) makes irreversible the 
planetary, or satelitary, motion too. 

5. Conclusions  

In the framework of the classical mechanics a celestial body entering the solar system is 
circulating incessibly about its gravitational center without any loss of energy. In other 
words in the classical theory we cannot indicate a parameter existent in the system 
which will cause any slowdown of the motion. 

A different situation is obtained in the scheme of the old quantum theory. Here a 
planet, say the Earth, is located on a very high quantum level, but the energy distant of 
that level from the nearest lower level is very small. It is not compulsory for a planet to 
make a step to this lower level, nevertheless such possibility does exist. According to the 
quantum aspect of the Joule-Lenz law the time period necessary for such step is rather 
long: for example for the Earth planet it is equal to one year. Next the situation of a 
planet circulating about the Sun is repeated, but now the planet energy is slightly 
smaller than before its first step. The second step can be done to the next lower energy 
level in course of the time period which is close to that necessary for the first step. 

In effect the rate of decrease of the planet energy is very small. For the Earth it is 
about  

342 10  erg−×                           (28) 

per one year. 
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Correspondingly to the lowering of energy, the distance between a planet and the 
Sun will be shortened. 

A limiting situation will be attained when these two bodies-a planet and the Sun-will 
touch together. Such a picture is fully absent in the framework of the classical 
mechanics. 

But beyond of the shortage of the distance between two masses-in virtue of the 
formula [2]  

2 22

3 3
4πn n

n n

T T
GMa r

= ≈                         (29) 

—the time period nT  of the planet circulation about the mass M of the Sun will be 
shortened too: because of (29) we have  

3 2~ ,n nT r                            (30) 

so the shortening of nT  will be stronger than that of nr . 
On the other hand, in virtue of (30), the planet velocity about the Sun, i.e.  

3 2 1 2
2π 1~ ,n n

n
n n n

r rv
T r r

≅ =                     (31) 

will be slightly increased with a decrease of nr . 
In calculating the angular momentum  

n n nL mv r=                            (32) 

of a planet which for the state 1n +  is proportional to S in (2), the effects concerning 

nr  and nv  combine into  

1 1~ 1, ~ , ~ 1, etc.n n nL n L n L n+ −+ −              (33) 

It should be noted here that the effect of reduction of the mass M of the Sun [see 
(11)] due to the energy emission has been fully neglected. This effect leads evidently to 
an increase of the energy of a moving planet, so it acts in direction opposite to the 
quantum decrease of energy presented in the paper. Physically this means that the 
energy decrease discussed above (Section 3 and Section 4) is more sound for the 
satellites of non-radiating planets than for the planets themselves. 
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