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Abstract 
This work extends the author’s two previous works (2015), Journal of Modern Phys-
ics, 6, 78-87, and 1360-1370, by obtaining the index of refraction n of the dark energy 
for additional values of the cosmological density parameters, and for the two me-
thods of obtaining n: least squares fit, and electromagnetic theory. Comparison of the 
alternative model with the accelerating universe for the new values of the density pa-
rameters and n is given in two tables. The new values for n are used to obtain a range 
of ages for the Einstein de Sitter (EdS) universe. It is shown that the EdS universe 
must be older than the comparison accelerating universe. This requirement is met 
for the Planck 2015 value of the Hubble constant, corrected for the speed of light re-
duction by n. A supporting measurement as well as a disagreeing measurement is al-
so discussed. Possible support from a stellar age determination is also discussed. It is 
shown that the expression obtained earlier for the increased apparent magnitude of 
the SNe Ia provides as good a fit for a closed universe with ( ) 1.005totΩ = , as it does 
for the flat EdS universe. Comparison is presented in a third table. An upper bound 
on ΛΩ  is given for a closed universe that eventually collapses back on itself that is 
too small for the value needed for the accelerating universe. 
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1. Introduction 

In two previous works by the author [1] [2], hereafter referred to as I and II, it was 
shown that it is possible to explain the diminished brightness of the Type Ia supernovae 
(SNe Ia) found by Perlmutter et al. [3] [4], Riess et al. [5], and Schmidt et al. [6], and 
the increased distance to the “standard ruler” of the baryon acoustic oscillations (BAO) 
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determined by Anderson et al. [7] [8], by assuming that the speed of light through the 
dark energy of intergalactic space has been reduced to c/n, where n is the index of re-
fraction of the dark energy. Thus, in this alternative model, the dark energy no longer 
has associated with its energy-momentum source tensor a negative pressure that causes 
the expansion of the universe to accelerate (for a review see, e.g., Wang [9]), but instead 
has an index of refraction greater than unity. It was also assumed that the dark energy is 
another phase of dark matter, and that the phase transformation started to take place at 
about redshift 1.65 0.15z = ± , as discussed in Riess et al. [10], where there appears to 
be a supernova not exhibiting acceleration, and in the proposed alternative model, is 
where the dark energy started to appear as a consequence of the expansion cooling of 
the dark matter that was present in intergalactic space. Since that expansion cooling did 
not take place for the dark matter associated with the galaxies, because it is the space 
between the galaxies that expands, not the galaxies themselves, hence within the galax-
ies, n remains unity, and the speed of light is c. Since galaxies do not have a sharp 
boundary, with the dark matter halos extending well beyond the central luminous ba-
ryonic regions, there will be a transition region where n changes from unity to its in-
tergalactic value, but for simplicity this is ignored at this stage of the study. 

The purpose of this work is to extend the previous work in I and II by making use of 
additional values of the cosmological density parameters to obtain new values for n, 
and to use these new values to obtain additional estimates of the age of the universe ac-
cording to the alternative model. 

Also, since the comparisons in I and II have been between the ΛCDM accelerating 
universe, and only the flat Einstein de Sitter universe, for completeness, an additional 
comparison is made here with a closed universe. 

In Section 2, the new values of n will be obtained by using both the least squares me-
thod that was introduced in I, and the square root method based on electromagnetic 
theory that was introduced in II. Both methods will be based on the values of the cos-
mological density parameters from the Planck satellite work of Abe et al. [11]. A com-
parison with the prediction for the increased distance to the SNe Ia, and the BAO stan-
dard ruler for different values of the cosmological density parameters is presented in 
Table 1 and Table 2. In Section 3, the range of values for n obtained in Section 2 is 
used to obtain a range of ages for the universe. All of these ages are greater than or 
equal to 14 Gyr, and hence exceed that for the accelerating universe of 13.8 ± 0.1 Gyr as 
given in [11]. Significantly, a qualitative argument is presented that shows that the age 
of the comparison Einstein de Sitter universe has to be greater than that of the accele-
rating universe, as was already found quantitatively in II. Possible empirical supports, 
as well as a possible empirical objection to the alternative model, are also discussed. In 
Section 4, as mentioned above, instead of comparing the accelerating universe with the 
flat Einstein de Sitter universe, the comparison is made with a closed universe. In I it 
was briefly noted that the expression that was found there for the increase in the ap-
parent magnitude of the SNe Ia did not require the universe to be flat, and in this sec-
tion, this is demonstrated for a closed university with a total density parameter, 



F. R. Tangherlini 
 

1831 

1.005Ω = , which is the one sigma upper bound given in [11]. It is also shown that fo-
this case, both the least squares value of n, and the age of the closed universe, are the 
same (to three places) as that for the Einstein-de Sitter universe. In Table 3, a compar-
ison is made between the closed universe and the flat universe for their percentage fit 
with the accelerating universe. An upper bound on ΛΩ  for a closed universe that 
eventually collapses back on itself is also derived and discussed. In Section 5, there are 
concluding remarks. 

2. Additional Determinations of n 

In I, where the cosmological density parameters were given by 0.30mΩ = , 0.70ΛΩ = , 
the least squares value of n was found to be 1.49n = . In II, upon setting deΛΩ = Ω  
(where the subscript “de” refers to dark energy which in the alternative model has the 
same energy density as the cosmological term, but, in contrast, has negligible stress), 
and using the electromagnetic relation, ( )1 2

n KKµ= , where K is the dielectric constant, 
and Kµ  is the relative permeability of the dark energy, and the assumption that 

de mKKµ = Ω Ω  so that one has another method of determining n given by 
( )1 2

de mn = Ω Ω , it was found for the above density parameters that 1.53n = . In what 
follows, it will be convenient to denote the least squares value for n as ( )n ls , and to 
denote the value for n obtained from the square root as ( )n sr . It was also found in II 
that ( ) 1.47n ls =  and ( ) 1.46n sr = , upon employing the one sigma upper limit of 

0.308 0.012mΩ = ±  given in [11], so that 0.32mΩ = , and 0.68ΛΩ = . In this section, 
values of ( )n ls  and ( )n sr  will be obtained for the mean value 0.308mΩ = , and the 
one sigma lower limit 0.296mΩ = , with 1m ΛΩ +Ω =  as before, so that 0.692ΛΩ = , 
and 0.704ΛΩ = , respectively. 

For the reader’s convenience, the analysis leading to ( )n ls  will next be briefly re-
viewed. As derived in Section 6 of I, and briefly recapitulated in II, ( )zΛΧ  is propor-
tional to the distance in the accelerating universe out to an object at redshift z, while 

( )m zΧ  is proportional to the distance for the Einstein de Sitter universe. (See also the 
discussion in Section 4 below, where more details are given.) The general expression for 
( )zΧ  is 

( ) ( )
0

d
z

z z E z′ ′Χ = ∫ ,                           (1) 

with 

( ) ( ) ( ) ( ) ( )1 2 3
0 1m mE z H z H z Λ≡ = Ω + + Ω Ω ,              (2) 

where ( )H z a a≡   is the Hubble parameter, and H0, its value at the present epoch, 
the Hubble constant, and where a is the FLRW expansion parameter, and also 
( ) ( )0 1a z a z= + . From (1) and (2), as given in I and II, it follows that 

( ) ( ) ( ) ( )1 2 3

0
d 1

z
m mz z z−

Λ Λ′Χ = Ω + + Ω Ω∫ ,                (3) 

so that for the values 0.308, 0.692m ΛΩ = Ω = , one has 

( ) ( )1 2 3

0
0.308 d 1 2.247

z
z z−

Λ ′ ′Χ = + +∫ .                  (4) 
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As noted in I and II, this integral has to be evaluated numerically. In contrast, for the 
Einstein de Sitter universe, with 1, 0m ΛΩ = Ω = , one has the same value for ( )m zΧ  
as was found in I and II, for which the integral is immediate, and given by 

( ) ( ) ( )( )3 2 1 2

0
d 1 2 1 1

z
m z z z z− −′ ′Χ = + = − +∫ .                 (5) 

As in I and II, the difference of the logarithmic proportional distances between the 
accelerating universe and the Einstein de Sitter universe is given by 

( ) ( ) ( ) ( )( )log log logm mz z z z dΛ ΛΧ − Χ = Χ Χ = ,              (6) 

where 
( ) ( )( )log 1 1 ln 1d n z= + − +                       (7) 

is the prediction of the alternative model under the assumption (for which there is as 
yet no theoretical foundation) that the light speed has been reduced to c/n when trav-
eling through the dark energy of intergalactic space, as shown in I, Section 4, page 82, 
and where the increase in apparent magnitude δm is shown to be given by 5m dδ = . 
For the percentage comparisons, it is sufficient to work with d rather than mδ . For 

0.308mΩ = , 0.692ΛΩ =  it was found for the redshift range, 0 ≤ z ≤ 1.0, that n(ls) = 
1.48. Another value for n is obtained under the assumption that it is of electromagnetic 
origin, and as discussed in II, and above, so that ( ) ( ) ( )1 2 1 2

de mn sr KKµ= = Ω Ω . Hence, 
for 0.308, 0.692m de ΛΩ = Ω = Ω = , one has ( ) 1.50.n sr =  In Table 1, a comparison is 
given for the percentage disagreement with the accelerating universe for ( )n ls  and 
( ) 1.50.n sr = , this is analogous to Table 1 in II, and for just ( )n ls , to Table 3 in I. 

 

Table 1. Comparison of ( ) ( )( )log mz zΛΧ Χ  with ( ) ( )( )log 1 1 ln 1d n z= + − +  for ( ) 1.48n ls =  

and ( ) 1.50n sr = , ( ) ( )( )log md z zΛ∆ ≡ − Χ Χ , and for brevity, ( )log ,mR Λ≡ Χ Χ  and the 

arguments for R, , mΛΧ Χ  are omitted. 0.308, 0.692m ΛΩ = Ω = , 2.247mΛΩ Ω = . 

z ( )log mΛΧ Χ  ( )1.48d  ( )1.48∆  ( )1.48 %R∆  ( )1.50d  ( )1.50∆  ( )1.50 %R∆  

0.1 0.0208 0.0194 −0.0014 −6.7 0.0202 −0.0006 −2.9 

0.2 0.0387 0.0364 −0.0023 −5.9 0.0379 −0.0008 −2.1 

0.3 0.0539 0.0515 −0.0024 −4.5 0.0535 −0.0004 −0.7 

0.4 0.0671 0.0650 −0.0021 −3.1 0.0675 0.0004 0.6 

0.5 0.0786 0.0772 −0.0014 −1.8 0.0802 0.0016 2.0 

0.6 0.0885 0.0883 −0.0002 −0.2 0.0917 0.0032 3.6 

0.7 0.0972 0.0985 0.0013 1.3 0.1022 0.0050 5.1 

0.8 0.1048 0.1079 0.0031 3.0 0.1119 0.0071 6.8 

0.9 0.1115 0.1166 0.0051 4.6 0.1209 0.0094 8.4 

1.0 0.1175 0.1247 0.0072 6.1 0.1292 0.0117 10.0 
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In Table 2, the percentage disagreement results are given for 0.296,mΩ =  and 
0.704ΛΩ = . It was found that for this case, ( ) 1.50n ls =  and ( ) 1.54n sr = . Hence 

with Table 1 and Table 2 here, and Table 1 in II, the totality of cases are presented for 
0.308 0.012mΩ = ± , along with the corresponding values for ΛΩ . 

 
Table 2. Comparison of ( ) ( )( )log mz zΛΧ Χ  with ( ) ( )( )log 1 1 ln 1d n z= + − +  for ( ) 1.50n ls =  

and ( ) 1.54n sr = , ( ) ( )( )log md z zΛ∆ ≡ − Χ Χ , and for brevity, ( )log ,mR Λ≡ Χ Χ , and the ar-

guments for , , mR ΛΧ Χ  are omitted. 0.296, 0.704m ΛΩ = Ω = , 2.378mΛΩ Ω = . 

z ( )log mΛΧ Χ  ( )1.50d  ( )1.50∆  ( )1.50 %R∆  ( )1.54d  ( )1.54∆  ( )1.54 %R∆  

0.1 0.0210 0.0202 −0.0008 −3.8 0.0218 0.0008 3.8 

0.2 0.0394 0.0379 −0.0015 −3.8 0.0408 0.0014 3.6 

0.3 0.0551 0.0535 −0.0016 −2.9 0.0575 0.0024 4.4 

0.4 0.0686 0.0675 −0.0011 −1.6 0.0725 0.0039 5.7 

0.5 0.0804 0.0802 −0.0002 −0.2 0.0860 0.0056 7.0 

0.6 0.0906 0.0917 0.0011 1.2 0.0982 0.0076 8.4 

0.7 0.0996 0.1022 0.0026 2.6 0.1094 0.0098 9.8 

0.8 0.1074 0.1119 0.0045 4.2 0.1197 0.0123 11.5 

0.9 0.1144 0.1209 0.0065 5.7 0.1292 0.0148 12.9 

1.0 0.1206 0.1292 0.0086 7.1 0.1381 0.0175 14.5 

 

It is clear from the last column in Table 2, in which, particularly at 0.5z = , the dis-
agreement is 7.0%, that ( ) 1.54n sr =  is ruled out. However, this need not mean that 
the square root method of obtaining n is at fault, rather it could be that the problem is 
with the values of the density parameters, i.e., 0.296, 0704m ΛΩ = Ω = . If one assumes 
that ( ) de mn sr = Ω Ω  yields a valid determination of n for, say, redshifts, 0 0.7z≤ ≤ , 
then it follows that the large percentage disagreement for ( ) 1.54n sr =  is indicative 
that the above values of the cosmological density parameters are ruled out instead. If 
one demands that the percentage disagreement not exceed |2%|, for 0.5z = , then from 
Table 1, 0.308mΩ =  provides a lower bound for mΩ , while for an upper bound, it 
was found that for 0.317mΩ =  the disagreement at 0.5z =  is −1.8%, while for 

0.318mΩ ≥ , the disagreement is less than −2%, it follows that 0.317mΩ =  provides an 
upper bound. Hence, allowing 2%±  disagreement, the requirement that the square 
root method is valid, can be seen as predicting 

0.308 0.317m≤ Ω ≤ .                       (8) 

Also, since for 0.317mΩ = , 0.693de ΛΩ = Ω = , one has that ( ) 1.47n sr = . The 
corresponding range of values of n, that include least squares values as well as square 
root values is given by 0.02

0.011.48n +
−= . However, in calculating ( )n ls , for 0.308mΩ = , if 
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one restricts the redshifts to 0.7z ≤ , one finds that ( ) 1.49n ls = . Thus a possibly bet-
ter estimate of n is given by 

0.01
0.021.49n +
−= .                          (9) 

Indeed, for n = 1.49, at z = 0.5, one finds from Table 1 that 0.0001∆ = , and hence 
0.1%.R∆ =  

It will be noticed from the tables that lower values of n fit better for higher values of z, 
while higher values of n fit better for lower values of z. Interestingly, the disagreement 
for the lower values of z, i.e. 0.3z ≤ , suggest that if the alternative, model is correct, it 
predicts a slightly brighter SNe Ia than the accelerating ΛCDM universe for this lower 
range of redshifts. As noted in I, this could provide another means for choosing be-
tween the two theories. On the other hand, the percentage disagreements for, say, 

0.7z > , are probably an indication that the simplifying assumption that the index of 
refraction is constant for these higher values of z is not valid, and that at these redshifts, 
and higher, the dark matter has not fully transformed into dark energy. Thus a future, 
more accurate model should assume that ( )n n z= , with the requirement that ( )n z
approach unity for sufficiently high z. As noted above, at 1.65 0.15z = ±  [10], the un-
iverse no longer seems to be accelerating, and in the present model, this should be the 
approximate redshift where the intergalactic dark matter began to make a phase transi-
tion into dark energy, and the index of refraction started to increase from unity. But 
one will need to know more about the properties of dark matter and dark energy to go 
further. Indeed, it will be noticed that in this work, no assumptions have been made 
about the particle nature of the dark matter, nor the dynamical nature of the phase 
transition into dark energy. At this stage of the investigation, the model is purely phe-
nomenological, and it may be possible to determine ( )n z  phenomenologically, which 
could then be helpful in probing the nature of the dark matter, and the proposed phase 
transition into dark energy. 

3. Age of the Universe 

In II it was found that for 1.46n = , the age of the Einstein de Sitter universe, with 
1 1

0 67.8 0.9 km s MpcH − −= ± ⋅ ⋅  [11], which was rounded to 68 km∙s−1∙Mpc−1, was 14.0 
Gyr, which was obtained in II, Section 5, (17), and is equivalent to (11) below. In this 
section, a range of ages for the Einstein de Sitter universe based on the range of values 
of n given in Section 2 will be presented here, and discussed. The above age of 14.0 Gyr, 
and those that will be obtained below, are obviously greater than the age of the accele-
rating universe of 13.8 ± 0.1 Gyr, given in [11], and hence it is of interest to present a 
qualitative argument to show why the age of the Einstein de Sitter universe in the al-
ternative model is necessarily greater than the age of the accelerating universe. To ac-
complish this, it is convenient to divide the expansion of the universe into three eras, 
based on the different speed of light in these three eras, as discussed below: the first era 
is the expansion from the big bang to the time when the universe started to accelerate. 
At that time, the expansion parameter would be somewhat larger for the accelerating 
universe than that for the Einstein de Sitter universe, since while both universes had  
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been decelerating, the former’s deceleration would have diminished more rapidly to 
zero. Call this value of the expansion parameter for the accelerating universe a′ . 
Therefore the time for the Einstein de Sitter universe to expand to a′  would be greater 
than that for the accelerating universe, call this time difference 1t∆ , with 1 0t∆ > . The 
second era is the interval of time in which the universe expanded from a′  to its size at 
redshift z = 0.5, call this value of the expansion parameter a′′ . It would require a longer 
amount of time for the Einstein de Sitter universe to expand from a′  to a′′  than for 
the accelerating universe, so that the former would require an additional time 2t∆  
with 2 0t∆ > . The third era would be the expansion from z = 0.5 to the present epoch 

0z = , and again the accelerating universe would reach the present value of the expan-
sion parameter 0a  in a shorter time than the decelerating universe which would re-
quire an additional time 3 0t∆ > . During this last era, the speed of light according to 
the alternative model is c/n, and hence the increased length of time the light takes to 
travel from the SNe Ia to earth, over what it would be if it traveled at speed c, leads to 
the increase in time needed for the decelerating Einstein de Sitter universe to expand 
the extra distance needed to explain the increase in apparent magnitude of the SNe Ia at 

0.5z = , over what it would have been if light had traveled with speed c. On the other 
hand, during the second epoch, the speed of light through the dark energy of interga-
lactic space is gradually changing from c to c/n; however, the details of this change, to-
gether with the postulated phase change of dark matter into the dark energy of interga-
lactic space is left to future studies. In any case, it is clear that the sum 1 2 3t t t∆ + ∆ + ∆  
leads to a greater total time back to the big bang for the Einstein de Sitter universe than 
for the accelerating universe, as was already found in the particular case considered 
above, for n 1.46; but, as demonstrated above, the result is quite general. 

Now, as was discussed in II, because the determination of the Hubble constant in-
volves the first order Doppler effect for the light that has traveled through intergalactic 
space, and since the distances involved are for z < 0.5 in which, according to the model, 
the speed of light is c/n, one has to correct the Doppler expression to allow for this, so 
that it becomes ( )( )0 1 nv cλ λ= + , where 0λ  is the wavelength observed at the 
present epoch, λ  is the wavelength in the rest frame of the receding galaxy, and v is 
the Hubble flow recession velocity of the galaxy. With the red shift ( )0z λ λ λ≡ − , one 
has for 1n = , cz v= , and the basic discovery of Hubble is that 0v H D= , where D is 
the proper distance to the galaxy at z, so that the standard expression is 0cz H D= , 
from which one determines the Hubble constant as 0H cz D= . But when one takes 
into account the reduced speed of light, the new corrected value of the Hubble constant, 
denoted by *

0H , is given by 
*
0 0 .H cz nD H n= =                        (10) 

Since the age of the Einstein de Sitter universe, taken to be from the big bang to the 
present epoch, and denoted by 0T , is given by ( )( ) 1

02 3 a a −
 , for n = 1, this becomes 

1
0 02 3T H −= . However, as remarked in II, for 1n ≠ , as is the case here, this has to be 

corrected to an age *
0T  given by 
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( ) 1* * 1
0 0 0

2 2
3 3

T H nH
− −= = .                     (11) 

Since (11) is indifferent to whether one works with ( )n ls , or ( )n sr , upon intro-
ducing the value of n in (9), and with 1

0 14.4 0.2 GyrH − = ±  based on H0 = 67.8 ± 0.9 
km∙s−1∙Mpc−1 [11] one has that 

*
0 14.3 0.3 Gyr.T = ±                        (12) 

This clearly exceeds the age of the accelerating universe of 13.8 0.1 Gyr± , as was 
expected on the basis of the qualitative analysis given above. In this case, Δt1 + Δt2 + Δt3 = 
0.5 ± 0.3 Gyr. 

With regard to this revision of the Hubble constant, it should be pointed out that 
since the light from, say, the Cepheid variables that is used in determining H0, passes 
through the host galaxy as well as our own Galaxy, where in both cases the speed of 
light is c, this has the consequence that the effective speed of light for the entire path is 
greater than c/n. However a rough estimate indicates that a correction for this effect 
would be less than 0.5 percent, and in view of the sizes of the other uncertainties, it can 
be ignored at this stage of the study.  

An interesting hint of possible support for the alternative model comes from the 
fairly recent study of the star HD 140283 by Bond et al. [12], who describe it as a sub-
giant with low metallicity in the solar neighborhood, at approximately 100 lyr from 
earth. They found that when all uncertainties are included the star’s age is 14.46 ± 0.8 
Gyr. They emphasized that this age was not in disagreement with the age of the un-
iverse when allowance was made for the uncertainty in the star’s age. At that time, 2013, 
no other age than that of the accelerating universe (which was then given as 13.77 ± 
0.06 Gyr) was available for comparison, but clearly the mean age they found for the star 
puts its age closer to *

0T  than to that of the accelerating universe. However, until the 
substantial uncertainty in the star’s age has been reduced, obviously no firm conclusion 
can be drawn. But it is noteworthy that, in addition to the divergent lensing possibility 
described in Section 4 of II, the difference in the ages of the universe for the two models 
is yet another avenue of approach for deciding between the two models. 

Quite recently there has appeared the latest finding of Riess et al. [13] that yields a 2.4% 
determination of the local value of the Hubble constant of 1 173.24 1.74 km s Mpc− −± ⋅ ⋅ . 
This leads to a Hubble time to three places given by 1

0 13.4 0.3 GyrH − = ± . Hence, ac-
cording to the alternative model, since the age of the universe, as given in (11) is 
( ) 1

02 3 nH − , upon introducing the largest value of n obtained from (9), i.e. 1.50n = , 
one obtains an age *

0T  for the Einstein de Sitter universe of 13.4 0.3 Gyr± . Since, as 
was pointed out earlier in this section, the age of the Einstein de Sitter universe has to 
be greater than that of the accelerating universe, hence greater than 13.8 0.1 Gyr± , 
their value for H0 is possibly in conflict with the alternative model. On the other hand, 
the possible conflict is less than with the 3.3% determination by Riess et al. [14] of 
2011,for which 1 1

0 73.8 2.4 km s MpcH − −= ± ⋅ ⋅ . Interestingly, Cheng and Huang [15], 
on the basis of their BAO studies, found that 1 1

0 68.11 0.86 km s MpcH − −= ± ⋅ ⋅  which 
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is in excellent agreement with the Planck [11] finding that H0 = 67.8 ± 0.9 km∙s−1∙Mpc−1, 
the value used here. They discussed their disagreement with the 2011 value of H0 found 
by Riess et al. [14]. Since the alternative model also disagrees with this value given in 
[14], and to a lesser degree with their more recent value [13], this could be a sign that 
the alternative model is possibly on the right track, and has predictive powers. However, 
as noted above, the large uncertainties surrounding the various values make it impossi-
ble to draw scientifically valid conclusions as to agreement or disagreement. 

It has undoubtedly been noticed that the value of n is very nearly—if not exactly— 
the reciprocal of the two-thirds factor relating the age of the Einstein de Sitter universe 
to the Hubble time. At this writing, there is no explanation for this unexpected relation, 
and it is left to future studies to find a possible solution. 

4. Comparison with a Closed Universe 

As mentioned in I, the expression that was derived therein Section 4, p.82, for the in-
creased apparent magnitude of the SNe Ia given by 

( ) ( )( )5log 1 1 ln 1m n zδ = + − + ,                   (13) 

does not just hold for the flat Einstein de Sitter universe, it is applicable to any isotropic 
universe for which the expansion parameter satisfies ( )0 1a a z= + , which is a generic 
relationship for FLRW expanding universes. In view of the long standing interest in 
closed universes, and the author’s work on a closed pulsating universe [16] [17], it is 
appropriate to determine what values of n emerge from comparison with a closed un-
iverse. As pointed out in [11], the equivalent cosmological density parameter for cur-
vature differs from zero by an amount given by 0.005.kΩ = ±  However, it should be 
emphasized that this value represents a measurement uncertainty, and the true value of 
the curvature parameter could be much smaller, and even zero, as predicted by the in-
flationary models of Guth [18] [19], Linde [20], and Albrecht and Steinhardt [21]. This 
possible curvature contribution to Ω in the author’s approach is written differently, and 
will now be derived. 

The standard line element for a general, homogeneous, isotropic, time-orthogonal, 
FLRW universe, in isotropic coordinates, can be written as 

( ) ( )( ) ( )
222 2 2 2d d 1 4 d d , , 1, 2,3i j

ijs c t a t kr x x i jδ
−

= − + =           (14) 

with 2 d di j
ijr x xδ= , and 1,0, 1k = −  for a closed, flat, and open universe, respectively. 

The Einstein field equation for the energy density 0 0
0 0G Tκ= − , in the absence of CMB 

radiation, neutrino background, and the cosmological term, reduces to 

( )2 2 28π 3a G a kcρ− = − .                      (15) 

For the Einstein de Sitter universe k = 0, while in this section k = 1. Hence this equa-
tion can be rewritten as 

2 2

2 2

8π1
3

c G a
a a

ρ
+ =
 

.                         (16) 
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Since 3 3
0 0a aρ ρ=  from the covariant conservation law, and since ( )0 1a a z= + , 

the above becomes 

( )3 22
0

2 2

8π 1
1

3
G z ac

a a
ρ +

+ =
 

.                     (17) 

Hence, at the present epoch, z = 0, with 0 0,a a a a= =  , and 0 0 0H a a≡  , one has 
2

0 0
2 2
0 0

8π1
3 c

c G
a H

ρ ρ
ρ

+ = =


,                       (18) 

where 2
03 8πc H Gρ ≡ . And since 0m cρ ρΩ ≡ , in contrast with the Einstein de Sitter 

universe, for which 1mΩ = , one has instead 
2

2
0

1m
c
a

Ω = +


.                           (19) 

One now proceeds as in I and II. From (17), and the relations leading to (19), one has 

( ) ( )3 22
0

2 2 2
0 0 0 0 0

8π 1 1
3

G z c zH a
H H a H a H

ρ + +
= = −



.               (20) 

Then from 2
0 0 08π 3m c G Hρ ρ ρΩ ≡ = , and the definition ( ) ( ) 0E z H z H≡ , upon 

simplification, (20), becomes 

( ) ( ) ( ) ( ) ( )1 2 2 2
01 1m mE z z z c a= Ω + + − Ω .                (21) 

Upon replacing mΩ  by ( )( )2 2
01 c a+   from (19), the above may be rewritten as 

( ) ( )( ) ( ) ( ) ( )( )( )1/22 2 2 2 2 2
0 0 01 1 1 1E z c a z z c a c a= + + + − +   .         (22) 

The proportional distance function X(z), as previously mentioned, is defined as 

( ) ( )
0

d
z

z z E z′ ′Χ ≡ ∫ .                       (23) 

Now ( )zΛΧ  will be the same as previously used in comparison with the flat un-
iverse, here, on the other hand, it will be compared with the new form for ( )m zΧ  
which, from (22), is given by 

( ) ( )( )
( ) ( ) ( )( )( )

1 22 2
0

2 2 2 20
0 0

d1
1 1 1

z

m
zz c a

z z c a c a

− ′
Χ = +

′ ′+ + − +
∫

 

.   (24) 

Upon denoting the ratio 2 2
0c a  by f, the above expression can be written as 

( ) ( )
( ) ( ) ( )

1 2

1
0

d1
1 1 1

z

m
zz f

z z f f

−

−

′
Χ = +

′+ + − +
∫ .           (25) 

After combining the factor ( )1 21 22 1f f− +  that emerges from the integral with the 
pre-factor in (25), the above integration yields 

( ) ( ) ( )
( )

1
1 2 1 1 1 2

1

1 1
2 tan tan

1
m

z f f
z f f

f f

−
− − − −

−

 + − + Χ = − 
+  

.        (26) 
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The following cosmological density parameters, 0.308, 0.692m ΛΩ = Ω = were cho-
sen for the accelerating universe to obtain XΛ for comparison with the closed universe. 
Thus, the results presented in Table 3 below will be similar to that of Table 1, except 
Xm will now be that for a closed universe. However, in Table 1, in comparison with the 
flat universe, ( ) 1.48n ls =  was used, and so, before making the comparison, it is ne-
cessary to determine ( )n ls  for the closed universe. For 2 2

0 0.005f c a≡ = , it was 
found ( )n ls  had the same value as for the flat universe, i.e., 1.48. In Table 3, the last 
column is taken from the fifth column in Table 1. 

 
Table 3. Comparison of ( ) ( )( )log mX z X zΛ , where ( )mX z  is for a closed universe, with the 

logarithmic distance correction ( ) ( )( )log 1 1 ln 1d n z= + − +  for 1.48n = , ( )log .md X XΛ∆ ≡ −  

For brevity, ( )log mR X XΛ≡ , and the arguments for , , , mR X XΛ∆  are omitted. 

z ( )log mX XΛ  d ∆  %R∆  ( )%R flat∆  

0.1 0.0208 0.0194 −0.0014 −6.7 −6.7 

0.2 0.0387 0.0364 −0.0023 −5.9 −5.9 

0.3 0.0540 0.0515 −0.0025 −4.6 −4.5 

0.4 0.0673 0.0650 −0.0023 −3.4 −3.1 

0.5 0.0787 0.0772 −0.0015 −1.9 −1.8 

0.6 0.0887 0.0883 −0.0004 −0.5 −0.2 

0.7 0.0974 0.0985 0.0011 1.1 1.3 

0.8 0.1050 0.1079 0.0029 2.8 3.0 

0.9 0.1118 0.1166 0.0048 4.3 4.6 

1.0 0.1178 0.1247 0.0069 5.9 6.1 

 
As can be seen from the table, the fit for the closed universe is very nearly the same as 

for the flat Einstein de Sitter universe. Moreover, as will be shown next, the age of the 
closed universe is very nearly the same as for the flat universe for this value of mΩ  that 
is so close to unity. 

It is convenient to rewrite (15) as 
2 2

2 2
a GM c

a
− = −



,                         (27) 

where ( ) 34π 3M aρ≡ , although, to be sure, for a closed, spherical universe, the actual 
mass is actually 2 32π aρ . However, in the following, one never has to make explicit use 
of the mass, and because of the obvious similarity to Newtonian mechanics, (27) is 
simpler to work with, since the solution to the differential equation is well known, and 
is given by the parametric equations for a cycloid 

( )( )2 1 cosa GM c ϕ= − ,                      (28) 
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( )( )3 sint GM c ϕ ϕ= − .                      (29) 

From these two equations one obtains an expression for a  given by 

( )sin 1 cosa c ϕ ϕ= − ,                      (30) 

from which, together with (28), one obtains the Hubble parameter H a a≡   in the 
form 

( )

3

2
sin

1 cos
cH

GM
ϕ
ϕ

=
−

.                      (31) 

For 1ϕ  , from (31), 3 36t GM cϕ= , and 3 34H c GMϕ= , hence 

2 3,tH =                             (32) 

which is the same relation that holds for the Einstein de Sitter universe. For the larger 
value of ϕ  that is needed here, one expands t and H to the next higher order terms. 
After combining (29) and (31), one has 

( )
( )2

sin sin
1 cos

tH
ϕ ϕ ϕ

ϕ

−
=

−
.                      (33) 

After setting 3 5sin 6 120ϕ ϕ ϕ ϕ= − + , and 3 5sin 6 120ϕ ϕ ϕ ϕ− = + , upon neg-
lecting higher order terms, and then taking the product, the numerator in (33) becomes 

( ) ( )( )4 26 1 13 60ϕ ϕ− , after further neglect of higher order terms. After approximating 
the denominator as ( ) ( )( )4 24 1 12ϕ ϕ− , and upon further neglect of higher order 
terms, one finds 

22 1
3 20

tH ϕ 
= − 

 
.                          (34) 

To determine ϕ  in terms of the departure ε  of mΩ  from its value for the flat 
Einstein de Sitter universe, one uses from (19) that 2 21m c aΩ = +  , so that 2 2c aε =  , 
and one will determine ϕ  in terms of ε . From (30), since ( )22 2 21 cos sinc a ϕ ϕ= − , 
one obtains 

2
1 cosm ϕ

Ω =
+

.                           (35) 

After substituting the approximation 2 4cos 1 2 24ϕ ϕ ϕ= − +  in (35) and expand-
ing upon further neglect of higher order terms, one obtains 

2 41 4 24m ϕ ϕΩ = + + .                       (36) 

Upon setting 1m εΩ = +  in (36), there results a quadratic equation for 2ϕ  given 
by 

4 26 24 0ϕ ϕ ε+ − = .                         (37) 

The positive root for 2ϕ  to first order in ε  is 2 4ϕ ε= . Hence, for this level of 
approximation, (34) becomes 

2 1
3 5

tH ε = − 
 

.                          (38) 
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With 0.005ε = , one has 10.666t H −= , and hence for this case, as well as for closed 
universes of even lesser curvature, the age difference between a closed universe and the 
Einstein de Sitter universe is negligible. Some further observations concerning the two 
models are of interest. 

Although for the closed universe, from (30), a c> , for π 2ϕ < , this does not vi-
olate c being the limiting speed, since a  is analogous to the Minkowski speed in spe-
cial relativity, which can be arbitrarily large, since the speed of light determined in this 
way is infinite. In other words, the coordinate time t in the FRLW line element is ana-
logous to a proper time; for further discussion, see that by the author in [22]. Also, it 
should be noted that the solution for ( )a t  for the Einstein de Sitter universe, i.e., 
( ) 2 3a t t∝ , which is usually described as having the time run 0 t≤ ≤ ∞ , also holds for 

0t < , so one may think of the time running for the complete solution as t−∞ ≤ ≤ ∞ . 
In the negative branch, for which the time runs 0t−∞ ≤ < , one has a universe col-
lapsing from infinity to a cusp at t = 0, the big bang, where ρ  becomes infinite. It is 
therefore appropriate to see the full Einstein de Sitter universe as a limiting case of a 
closed cyclic universe in which the amplitude of the cycle has become infinite as well as 
the period. Thus, instead of there being infinitely many finite cycles of finite amplitude, 
there is one infinitely long cycle of infinite amplitude. The infinite cycle is split into two 
halves of a cycle, the first half being the branch descending from infinity, and the 
second half, the traditional expanding branch rising to infinity. Since the amplitude of 
the cycle in the closed universe is proportional to the total mass of the universe as given 
in (28), the flat Einstein de Sitter universe may be thought of as a limiting case of a 
closed universe with infinite mass and infinite radius of curvature as discussed in Eins-
tein [23], Silberstein [24], and the author [25]. Also, because of the time-reversibility of 
the solution, it reads the same, whether one goes from the negative branch to the posi-
tive branch or vice-versa. Since, on physical grounds, it is unlikely that before the big 
bang the universe collapsed in from infinity, but rather collapsed in from a finite size, 
the cyclic, closed universe seems preferable. The problem of the cusp in ( )a t  and the 
singularity in ( )tρ  at t = 0 can be dealt with classically [26], but a discussion of this 
lies outside the scope of this work. 

Finally, in I it was pointed out that there is a fundamental difficulty with the cosmo-
logical term Λ , based on a generalization of Newton’s first law, that led to the conclu-
sion that Λ  vanishes. It is therefore of interest to briefly recapitulate and extend an 
argument based on a closed universe that sets an upper bound on Λ , assumed non- 
negative, which would make it too small to lead to the universe accelerating now, as is 
claimed. The finding arose, nearly a decade before the accelerating universe was pro-
posed, inresponse to work by Weinberg [27] [28], who found, using the weak anthropic 
principle [29], an upper bound on Λ  that was based on assuming that the universe is 
flat, and does not collapse back on itself, that proved to be sufficiently large as to in-
clude the current value of Λ . Following Weinberg’s work, the author was able to show 
that for a closed universe that does collapse back on itself, one obtains a much smaller 
bound [30]; this was further discussed and extended in [31] which was referenced in I. 
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To show this here, note that with a cosmological term present, the field Equation (15) 
for a closed universe becomes 

( ) ( )2 2 2 2 28π 3 3a G a c a cρ− − Λ = − .                (39) 

Either from the field equation for stress, or by differentiating the above equation, 
taking into account that 3aρ  is a constant, the equation of motion becomes, 

( ) ( )24π 3 3a G a c aρ= − + Λ .                   (40) 

Under the assumption that the universe does collapse back on itself after reaching the 
value of the expansion parameter when it stops increasing and starts to recoil denoted 
by ra , with 0ra = , and 0ra < , it follows from (40) that 2 4π rc GρΛ <  From the 
conservation of mass-energy from the contracted Bianchi identities, one has that 

3 3
0 0r ra aρ ρ= , and hence, upon introducing the cosmological term’s mass density (rather 

than energy density) defined as 2 8πc GρΛ ≡ Λ , the inequality becomes 

( )( )3
0 02 ra aρ ρΛ < .                      (41) 

After dividing both sides of the inequality by cρ , which was not done in [30] [31], 
one has 

( )( )3
02m ra aΛΩ < Ω .                     (42) 

Thus, under these circumstances, ΛΩ  would clearly be too small to account for the 
accelerating universe, for which mΛΩ > Ω . However, because of the above assump-
tions, for which there is as yet no empirical support, the result is obviously not conclu-
sive, although it is consistent with the rejection of the cosmological term in the pro-
posed alternative to the accelerating universe. 

5. Concluding Remarks 

It is clear from the work in the preceding sections, as well as that in I and II, that the 
proposed alternative model, based on the slowing down of light by the dark energy in 
intergalactic space, can explain the diminished brightness of the SNe Ia, and the in-
creased distance to the “standard ruler” of the BAO, as well as can the accelerating un-
iverse, that is based on attributing a negative pressure to the dark energy, such as dis-
played by the cosmological term. However, the crucial test for the alternative model will 
be for astronomers to determine through suitable observations, such as the one de-
scribed in Section 4 of II, whether in fact the speed of light in intergalactic space for, say, 
z ≤ 0.7 is c/n, with n ≈ 1.50. If eventual astronomical observation should show that this 
is indeed the case, it will then prove theoretically challenging to obtain a general ex-
pression for n as a function of redshift, and to show further that n does not exhibit any 
evidence of dispersion in the optical range, as found by the SNe Ia studies. 

Finally, it follows from the discussion in Section 3 that the alternative model is pre-
dicting a greater age for the universe than that predicted by the accelerating universe. 
As was further discussed there, this has bearing on the maximum age of stars, and the 
value of the Hubble constant, so that their more accurate determination should provide 
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two other areas to test the model astronomically. 
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