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Abstract 
The time of the energy emission between two neighbouring electron levels in the hy-
drogen atom has been calculated first on the basis of the quantum aspects of the 
Joule-Lenz law, next this time is approached with the aid of the electrodynamical pa-
rameters characteristic for the electron motion in the atom. Both methods indicate a 
similar result, namely that the time of emission is close to the time period of the 
electromagnetic wave produced in course of the emission. As a by-product of calcu-
lations, the formula representing the radius of the electron microparticle is obtained 
from a simple combination of the expressions for the Bohr magnetic moment and a 
quantum of the magnetic flux. 
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1. Introduction 

In physics, we often look for a simple explanation of the important phenomena without 
going much into details of the examined process. A well known example is the energy 
spectrum of the hydrogen atom. The first step to approach this spectrum theoretically 
was based on the idea that the force of the electrostatic attraction existent between the 
electron particle and the atomic nucleus remained in an equilibrium with the centrifug-
al force due to the circular electron motion about the same nucleus [1]. The second de-
cisive step was that the angular momentum which accompanied the motion leading to 
the equilibrium of the atomic system should be quantized in a proper way. A combina-
tion of these two steps gave a spectacular success of the Bohr atomic model expressed in 
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terms of positions of the electron energy levels present in the atom. 
But the point not examined in the Bohr theory was the transition time between dif-

ferent quantum levels necessary to obtain the energy spectrum effect. A kind of paradox 
becomes that if we have two quantum states in the atom, say a hydrogen atom, their 
energies are well known, and the same knowledge applies naturally to the energy dif-
ference 

1 0n nE E E+∆ = − >                           (1) 

between the states n + 1 and n entering the transition process, but we cannot answer 
how long is the time interval Δt necessary to perform such transition. Certainly, the in-
terval Δt is classified as “short” but no quasi-definite answer on its size is in practice 
available. 

A reason of such situation cannot be the so-called uncertainty principle between the 
intervals of energy and time introduced by Heisenberg [2] [3]. In fact, this principle 
concerns rather a mutual relation between two definite and accessible intervals ΔE and 
Δt entering a given quantum process than an “uncertainty” of the accuracy which can 
be attained in the measurement of the sizes of the mentioned intervals [4]-[6]. This im-
plies that there does not exist an a priori difficulty to obtain Δt when ΔE is known. 

The main source of difficulty to calculate Δt seems to be a probabilistic- and statistic-
al character of examination applied in the treatment of the electron transitions. This 
kind of approach, being typical for the old quantum theory [7] [8], obtained its farther 
background in the formalism of quantum mechanics [3] [9] [10]. In effect the results 
for Δt connected with the electron transition obtained respectively by the classical and 
quantum-mechanical approaches became diametrically different [10]. For, in order to 
obtain an agreement with the transition intensity of energy provided by the quan-
tum-mechanical theory, the classical approach to that intensity required the time inter-
val Δt of an infinite size, viz. 

,t∆ →∞                               (2) 

instead of a finite (small) Δt dictated evidently by an experimental practice. 
In a set of papers [11]-[15], we tried to approach the size of Δt with the aid of an 

examination of the electron transitions in small quantum systems with the aid of the 
Joule-Lenz law; see e.g. [16] [17]. For transitions connected with the population change 
of the neighbouring energy levels, i.e. n + 1 and n, the main result was that the relation 

E t h∆ ∆ =                              (3) 

should be satisfied. In the case of the harmonic oscillator 

E hω ν∆ = =                            (4) 

where 

osc

1
T

ν =                               (5) 

is the oscillator frequency of the emitted electromagnetic wave and oscT  is the time pe-
riod of that wave. In effect we obtain with the aid of (3)-(5): 
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osc

hh t t h
T

ν ∆ = ∆ =                          (6) 

or 

osc.t T∆ =                              (7) 

Because of (3) the emission intensity of a single wave having the frequency ν  be-
comes 

( ) ( )
( )

2 2 2

2 .
2π

EE h
t h h

ω ω∆∆
= = =

∆


                   (8) 

The intensity (8) can be referred to the the quantum-mechanical expression for the 
transition intensity of the harmonic oscillator [10] 

2 3

3
d 2
d 3
E e n
t c m

ω
=

                           (9) 

by the formula 

osc
d 2π
d
E E En T n
t t t

γ γ
ω

∆ ∆
= =
∆ ∆

                    (10) 

where 
2 2

3
2
3

e
mc
ωγ =                           (11) 

is the damping term of the oscillator and oscT  is the time period presented in (5); see 
also [10]. 

2. The Aim of the Paper 

The aim of the present paper is to examine in some detail the transition time Δt be-
tween the neighbouring quantum levels of the hydrogen atom. Certainly the size of Δt, 
because of its expected very short duration, seems to be hardly possible to be compared 
accurately with the experimental data. Nevertheless, an idea how Δt can be influenced 
by the electrodynamical parameters responsible for the electron transition could be 
given. This makes, in principle, the problem of the time transfer Δt between two quan-
tum states reduced to a semiclassical one, so it can be treated with the aid of the classic-
al electrodynamics. Before the electrodynamical properties will be discussed it seems of 
use to get an insight into the quantum aspects of Δt based on the Joule-Lenz law. 

3. Electron Transition Time Obtained from the Joule-Lenz Law 

A preliminary approach to the time transfer of energy in the hydrogen atom, but not 
only in such system, can be done with the aid of a quantum insight into the Joule-Lenz 
law; see [11]-[15]. The dissipation rate of the energy ΔE within the time interval Δt can 
be expressed by the formula 

2.E Ri
t

∆
=

∆
                          (12) 
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Here the R and i are respectively the resistance and current intensity of the electron 
transition process done in course of Δt. The process leads to the energy dispense (de-
crease) equal to ΔE. 

For an unmodified (stationary) electron motion in the atom the current intensity is a 
constant 

n
n

ei
T

=                             (13) 

for any quantum state n because of a constant time period Tn representing the circula-
tion of the electron charge e about the nucleus [18]: 

3 3

4
2π .n

nT
me

=
                          (14) 

Certainly in course of the transition from one orbit, say that of the quantum state n + 
1, to the orbit of state n, the intensity is modified from in+1 to in, but in fact the change 
of i is not large, especially when 1n . Therefore, we can assume that 

1
1

.n n
n n

e ei i i
T T+

+

= = ≈ =                     (15) 

The potential V entering the electric resistance 
VR
i

=                            (16) 

let be 

n
EV V
e
∆

= =                         (17) 

where in the numerator is substituted the energy difference between quantum states 
presented in (1). For large n, the energy ΔE becomes [18]: 

( )

4 4

1 2 2 2 2 3
1 1 .

2 1
n n

me meE E E
n nn

+

 
∆ = − = − ≅ 

+   

           (18) 

By combining Vn in (17) with in calculated from (13) and (14), we obtain the resis-
tance 

4 3 3

2 3 2 4 2 2
1 2π 2π

n

E me n hR
ei n e me e e
∆

= = = =
 



               (19) 

independent of the state n. The resistance R obtained in (19) is characteristic for the in-
teger quantum Hall effect [19]. The whole fraction (12) becomes 

( ) ( )

2 10 2 4
2 2 8

2 2 2 2 2 2 36 63 3

1
2π2π

n
E h h e h e m mei m e
t te e e nnn

∆
= = = =

∆ ∆





     (20) 

where in the last step we applied for ΔE the result of (18) obtained from large n. 
In effect, Δt attains the value 

4 6 6 3 3

2 3 8 2 4
2π 2πme n nt

n e m e m
∆ = =

 

 

                  (21) 
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which is formally equal to the size of the time period Tn given in (14). 
In the next step, by multiplying the both sides of (21) by ΔE taken from the final step 

of (18) we obtain 
4 3 3

2 3 4
2π 2π .me nE t h

n me
∆ ∆ = = =







                 (22) 

This is a result providing us with a very simple relation between the ΔE and Δt. 
The relation identical with (3) has been rather extensively applied in comparing the 

quantum-mechanical spectrum of transition probabilities between the electron states in 
the hydrogen atom [20] [21] with the intensity of the electron transitions calculated 
with the aid of ΔE and Δt entering the formula (22), i.e. the formula 

( )2EE
t h

∆∆
=

∆
                         (23) 

similar to (8) for the oscillator has been applied; see [11]-[15]. More precisely, the for-
mula (23) is valid solely for transitions 

1 ,n n+ →                           (24) 

but the transition time Δt corresponding, say, to situations 
2 ,
3 ,
4 ,

n n
n n
n n

+ →
+ →
+ →

                          (25) 

etc, can be composed from the Δt calculated for the case of (23) [13] [14]. 
Another important point concerning Δt in (23) is its reference to the time period T 

of the electromagnetic wave produced by the energy difference ΔE. In fact because of 
the result 

nt T∆ =                           (21a) 

obtained in (21), the formula (23) becomes reduced to 
1 1 ,E
t h T

ν∆
= = =

∆
                      (26) 

therefore we obtain 

nt T T∆ = =                          (27) 

which is similar to (7) for the harmonic oscillator. 
In fact, the formulae (23) and (27) are not specific solely for the hydrogen atom and 

the harmonic oscillator, but their validity can be extended to other quantum systems, 
for example the particle in a one-dimensional potential box; see [11] [12] [15]. Because 
of (21) and (27), we obtain also 

.
n

h h h E
T T

ν= = = ∆                      (27a) 

In fact on the basis of of (14), we have 
4 4

3 3 3 2 .
2πn

h hme me E
T n n

= = = ∆
 

                  (27b) 
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In the last step of (27b) the result obtained in (18) has been taken into account. 
The aim of the remainder of the paper is to show—for the hydrogen atom taken as 

an example—that the result of (26) obtained mainly on a quantum footing—could find 
its correspondence also in effect of a semiclassical approach to the electron transition. 

4. Electrodynamical Parameters Connected with the Electron 
Transition and Its Current 

First of the necessary parameters will be the magnetic flux Φ  and its changes in the 
atom due to the changes of the population of the quantum levels [15]. The magnetic 
field Bn connected with the quantum state n is an effect of the electron circulation along 
the orbit n. This implies that Tn in (14) and the time period causing the existence of Bn 
should be equal. Therefore (see e.g. [22] [23]) 

2π n
n

n

eB
T mc

Ω = =                         (28) 

where the field B is directed normally to the orbit plane. 
A substitution of Tn from (14) into (28) gives the relation 

13 3 4

4 3 3
2π2π neBn me

mcme n

−
 

= = 
 





                  (29) 

from which 
2 3

3 3 .n
m e cB
n

=


                          (30) 

The magnetic flux across the area of a circular orbit having the radius [18] 
2 2

2n
nr
me

=
                            (31) 

is equal to 
2 3 4 4

3 3 2 4π π
2n n n

m e c n cn hcnB S
e en m e

Φ = = = =
 



              (32) 

because the area enclosed by the orbit amounts to 
22 2 4 4

2
2 2 4π π π ,n n

n nS r
me m e

 
= = = 

 

                    (33) 

on condition the radius rn in (31) is taken into account. 
Evidently the absolute change of nΦ  associated with the change of n by 

1n∆ =                             (34) 

provides us for any n with the value 

.
2
hc

e
∆Φ =                            (35) 

This is a quantum a) independent of n, b) well-known from the physics of supe- 
conductors [23]-[25]. Let us note that if 
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2B
e
mc

µ =
                           (35a) 

is the Bohr magneton [3], the formula (35a) multiplied by 2π  and divided by the flux 
in (35) gives 

2

2
2π 22π

2
B e e e

mc hc mc
µ

= =
∆Φ

                    (35b) 

which is a distance known as the radius of the electron microparticle; see e.g. [17]. 
In fact the steady orbital current in+1 is perturbed in course of transition from n + 1 to 

n, nevertheless we expect this perturbation is small. The effective current of transition 
let be 

( )tr n di i i t= +                          (36) 

where solely 

( )d ni t i                            (37) 

is the current part dependent on time t. Assuming that the orbits system between states 
n + 1 and n behaves like a condenser, our idea is to introduce a current 

d
d d
e i
t
=                             (38) 

representing a discharge of the condenser [17] [26]. This 

( )d di t i=                            (39) 

enters (36) and (37). 
The interval ∆Φ  in (35) is coupled with the self-induction constant L by the for-

mula 

( )1 ,tr dLi L i i
c
∆Φ = = +                      (40) 

but the differentiation process with respect to time concerns solely the term id: 

d1 d .
d d

diL
c t t

∆Φ =                         (41) 

The resistance R is 

V ER
i ei

∆
= =                           (42) 

and the capacitance C for a planar condenser is 
2

.e eC
V E

= =
∆

                         (43) 

But because of a cylindrical shape of the orbits forming the condenser the formula 
(36) should be replaced by [26] 

22 .eC
E

=
∆

                           (44) 

The L, R and C parameters enter the time-dependent differential equation for the 
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current id in (36) (see [17]): 
2

appl2
d d 1 d

d dd
d d

d
i iL R i

t C tt
+ + =                    (45) 

where appl  is the applied electromotive force. If we assume that 

appl oapple ,j tω−=                          (46) 

where 

( )1 21 ,j = −                           (47) 

the solution of (45) becomes 

0
e ;j t

d di i ω−=                           (48) 

the e in (46) and (48) is the basis of the natural logarithms. 
On condition we assume that 

appl 0,=                            (49) 

the differential process of (45) performed upon (48) gives 

2 1 0.dL Rj i
C

ω ω − − + = 
 

                    (50) 

The solution of (50) leads to the frequency [17] [26]: 
21 .

2 2
R Rj
L LC L

ω  = − ± −  
 

                   (51) 

5. Calculation of the Frequency ω 

From Equation (40), we have 

2
hL

ci ei
∆Φ

≅ =                         (52) 

because of (35), so in view of (44): 
2 22 2 .

2
e h e ehLC

ci E ei E Ei
∆Φ

= = =
∆ ∆ ∆

                 (53) 

In the next step from (42) and (52) 

1 2 .
2 2
R E ei E
L ei h h

∆ ∆
= =                      (54) 

Therefore, (51) becomes 
2 2

.E i E E E e E Ej j
h eh h h T eh h

ω ∆ ∆ ∆ ∆ ∆ ∆   = − ± − = − ± −   
   

        (55) 

Since 

hh E
T

ν = = ∆                          (56) 

we have 
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1 ,E
T h

∆
=                           (57) 

so the expression entering the square root in (55) is equal to 
2

0.e E E
Teh h
∆ ∆ − = 

 
                      (58) 

In effect ω  in (51) becomes equal to the imaginary value 
1 .Ej j

h T
ω ∆
= − = −                       (59) 

This result gives for the current in (48) the formula 

0 0
e e ,

t
j t T

d d di i iω −−= =                       (60) 

With e in (60) being the basis of natural logarithms, we obtain for id a current expo-
nentially decreasing with time t. 

Let us note that when R = 0, which is the case where no resistance does exist for the 
transition current, the expression for ω  becomes [see (51)]: 

0

1 1
R

Ei E E
LC eh Th h T

ω ν
=

∆ ∆ ∆
= = = = = =             (61) 

in virtue of (57). 

6. Emission Rate and Its Damping Time 

On the basis of (20) and (21), it is easy to calculate the emission rate 
4 4 2 8

2 3 3 3 5 6 .
2π 2π

E me e m m e
t n n n

∆
= =

∆   

                  (62) 

By substituting for simplicity 2710m −≈ ≈  and 104.8 10e −≈ × , we obtain 

( ) ( )
2 527 6810

6 6

10 10 2.84.8 10 erg sec.
2π 2π

E
t n n

−−
−∆ ×

≅ × ≈
∆

          (63) 

This is a very high number especially for small n, nevertheless it is valid solely at the 
very beginning of the emission process. The duration of that process for the energy in-
terval ΔE is approximately equal to [see (21)]: 

( )
( )

3 127 33 3 3
16

4 410

2π 102π 2π 10  sec.
5.34.8 10

nE n nt
E t e m

−−
−

−

×∆
∆ = = ≅ ≈

∆ ∆ ×

        (64) 

7. Velocity of the Electron Transition between Two Neighbouring 
Quantum Levels 

The result of (21) and (26) allows us to calculate the velocity of transition of the elec-
tron particle between the levels n + 1 and n. This is 

,n n
tr n

n

r r Ev r
t T h

∆ ∆ ∆
= = = ∆
∆

                    (65) 
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where [see (31)] 

( )2 2
2

2

1
.n

n n
r

me
+ −

∆ =                         (66) 

With ΔE represented by a difference in the kinetic electron energy 

( )
( )

22
2 2

kin 1 2 2
1 1 ,

2 2 1
n n

m m eE E v v
n n

+

  
∆ = −∆ = − = −  

+    

 

this gives 

( )
( )

( ) ( )2 2 22 24 2 2
2

2 2 2 4 22

1 1 21 1 1 .
2 2 ππ1

tr n
n n n n ne m e ev v

h nh me n nn n
+ − + −

= ≅ = =
+





    (67) 

We find that the transition velocity of the electron between levels n + 1 and n is by a 
factor of 1 πn  smaller than the velocity nv  along the orbit n. This calculation is fully 
original and new. 

8. Comments 

Heisenberg strongly criticized the Bohr atomic model as useless because it applied the 
unobserved elements of the atomic structure like the electron orbits; see e.g. [26]-[28]. 

Nevertheless the combined orbital parameters, like the orbit radius or orbit length 
and the time period of the electron circulation, allowed us to approach correctly the 
parts of the electron kinetic and potential energy which—when added together—gave a 
proper total electron energy in the atom. This energy formula has been next confirmed 
by both the modern quantum theory (quantum mechanics) and experiment. 

But the modern theory did not provide us with an adequate information on the time 
duration of the electron processes in the atom, for example the time of the electron 
transitions. In this circumstance, a step towards the old quantum theory which applied 
definite periods of time seemed to be both realistic and useful. 

In the first step, we assumed that the classical Joule-Lenz theory can couple the 
amount of energy emitted in the quantum process of an electron transition with the 
time necessary for that process. This assumption led to an extremely simple relation 
between the emitted energy ΔE and emission time Δt. In the present paper our aim was 
to approach the time necessary for the emission of ΔE on a somewhat different way 
than a direct application of the Joule-Lenz law, i.e. mainly with the aid of a classical 
analysis of the electric current produced as an effect of transition giving the energy 
change ΔE. 

In the first step of this analysis, the quanta of the magnetic induction and magnetic 
flux are introduced to the formalism. It should be noted that the Bohr magneton di-
vided by the quantum change of the magnetic flux between the neighbouring levels [see 
(35b)] gives the well-known formula for the radius of the electron microparticle; see e.g. 
[17]. An earlier derivation of (35b)—different only in a constant factor—has been done 
in [29]; see also [30]. 

Next the electric current connected with the transition between two neighbouring 
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quantum levels is considered as due to a discharge of the condenser. In order to ex-
amine this current, the costants of self-induction, resistance and capacitance characte-
ristic for such condenser have been calculated. In effect an exponential decrease of the 
time-dependent part of the discharge current is obtained; see (60). 

A very simple approach to the discharge current from state n can be attained when 
the Ohm’s law is applied [21]: 

d .
don

Q Qi
RC t

= = −                           (68) 

Here Q = e and −dQ = de is a small decrease of charge of the condenser in a small 
time interval dt. The formula (68) gives 

( ) 1d d .Q RC t
Q

−= −                           (69) 

Therefore 

log cont cont
2

t tQ
RC T

= − + = − +                    (70) 

because 
22 2 2 .E e eRC T

ei E i
∆

= = =
∆

                       (71) 

Hence the charge Q decreases with t according to the formula 

2e .
t
TQ

−
=                              (72) 

The exponent of the natural logarithm basis e in (72) is a half of that obtained in (60). 
The rate of the emission in the form of the electromagnetic field energy has been dis-
cussed in [31]. 

It can be noted that Equations (3) and (22) are formally similar to the inequality 
proposed by Heisenberg called the uncertainty principle for energy and time. In fact the 
physical background for the intervals ΔE and Δt entering he Heisenberg principle is 
much different than the properties of the intervals Δpx and Δx, concerning—for exam-
ple—the x-coordinates of the momentum and position of a particle. For, contrary to the 
momenum and position, the energy E can be measured to any degree of accuracy at any 
instant of time. Therefore ΔE can be the difference between two exactly measured val-
ues of energy at two different instants; see [4]-[6]. 

9. Conclusions 

The paper approaches a seldom discussed problem of an individual electron transition 
between two quantum levels in the hydrogen atom. Consequently, no reference has 
been done to the well-known probabilistic theory usually applied to the quantum tran-
sitions. 

In the first step, the emission time of energy between two neighbouring levels in the 
atom is calculated on the basis of the quantum aspects of the Joule-Lenz law; see (21) 
and (22). This time is found equal to the oscillation period of the electromagnetic wave 
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emitted in course of the transition process; see (27). 
Next, the problem of the emission was approached with the aid of the classical elec-

trodynamics by assuming that the electron transition in the atom was roughly equiva-
lent to a discharge of an electrical condenser. The damping time of the current obtained 
in course of such discharge is found to be close to the transition time attained in the 
Joule-Lenz theory; see (60) and (61), as well as (72) for the case of a simplified treat-
ment of the calculation. 

By assuming that the transition time between the quantum levels is similar to the 
emission time, the velocity of transition of the electron particle between the neigh-
bouring orbits in the atom has been estimated; see (67). 

A by-product of the calculations is the result that the Bohr magneton divided by the 
quantum of the magnetic flux obtained from the flux difference of two energy levels in 
the atom approaches the geometrical radius attributed to the electron microparticle; see 
(35a) and (35b). 
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