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Abstract 
General relativity (GR) and gravitation in flat space-time (GFST) are covariant theories to describe 
gravitation. The metric of GR is given by the form of proper-time and the metric of GFST is the flat 
space-time form different from that of proper-time. GR has as source the matter tensor and the 
Einstein tensor describes the gravitational field whereas the source of GFST is the total energy- 
momentum including gravitation and the field is described by a non-linear differential operator of 
order two in divergence form. The results of the two theories agree for weak gravitational fields to 
the order of measurable accuracy. It is well-known that homogeneous, isotropic, cosmological 
models of GR start from a point singularity of the universe, the so called big bang. The density of 
matter is infinite. Therefore, our observable universe implies an expansion of space, in particular 
an inflationary expansion in the beginning. This is the presently most accepted model of the uni-
verse although doubts exist because infinities don’t exist in physics. GFST starts in the beginning 
from a homogeneous, isotropic universe with uniformly distributed energy and no matter. In the 
course of time, matter is created out of energy where the total energy is conserved. There is no 
singularity. The space is flat and the space may be non-expanding. 
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1. Introduction 
Einstein’s general theory of relativity is at present the most accepted theory of gravitation. The theory gives for 
weak gravitational fields’ agreement with the corresponding experimental results. But the results for homoge-
neous, isotropic, cosmological models imply difficulties. So, the universe starts from a point singularity, i.e. the 
universe starts from a point with infinite density of matter. The observed universe is very big. Hence, the space 
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of the universe must expand very quickly which implies the introduction of an inflationary universe in the be-
ginning.  

GFST has a pseudo-Euclidean geometry and the proper time is defined similar to that of general relativity, i.e. 
space-time and proper time are different from one another. GFST starts from an invariant Lagrangian which 
gives by standard methods the field equations of gravitation. The source is the total energy-momentum tensor 
including gravitation. The energy-momentum of gravitation is a tensor. The field is described by non-linear dif-
ferential equations of order two in divergence form. The theory is generally covariant. The gravitational equa-
tions together with the conservation law of the total energy-momentum give the equations of motion for matter. 
The application of the theory implies for weak gravitational fields the same results as GR to experimental accu-
racy, e.g. gravitational redshift, deflection of light, perihelion precession, radar time delay, post-Newtonian ap-
proximation, gravitational radiation of a two-body system and the precession of the spin axis of a gyroscope in 
the orbit of a rotation body. But there are also differences of the results of these two theories. GFST gives non- 
singular, cosmological models and Birkhoff’s theorem doesn’t hold. GFST may e.g. be found in the book [1] 
and in the cited references. Additionally, non-singular, cosmological models are e.g. given in the articles [2]-[6]. 

Subsequently, homogeneous, isotropic, cosmological models will be summarized. Let us use the pseudo- 
Euclidean geometry. The received universe is non-singular under the assumption that the sum of the density pa-
rameters is greater than one, e.g. a little bit greater than one. This implies that the universe may become hot in 
the course of time. It starts without matter and without radiation and all the energy is gravitational energy. Mat-
ter and radiation emerge from this energy by virtue of the conservation of the total energy. The space is flat and 
the interpretation of a non-expanding space is natural. But it is also possible to state an expansion of space by a 
suitable transformation as consequence of general covariance of the equations. For a zero cosmological constant 
matter increases for all times whereas radiation increases and the universe becomes hot. After that radiation de-
creases to zero as time goes to infinity. Short time after the universe has reached the maximal temperature the 
production of matter is finished, i.e. the universe appears nearly stationary. Under the assumption of a positive 
cosmological constant, a certain time after the beginning, matter goes to zero and the universe converges to dark 
energy as time goes to infinity. Hence, a universe given by GFST appears more natural than that received by GR 
which gives singular solution with infinite densities. The universe starts from a point and therefore space must 
expand to be in agreement with the observed big universe. The geometry is in general non-Euclidean but the 
observed universe implies a flat space.  

Section 2 contains GFST; Section 3 contains cosmological models and Section 4 contains the comparison of 
GFST and GR. 

2. GFST 
The theory of GFST is shortly summarized. The metric is the flat space-time given by 

( )2d d i
ijs xη= −                                       (1) 

where ( )ijη  is a symmetric tensor. Pseudo-Euclidean geometry has the form 

( ) ( )1,1,1, 1 .ijη = −                                      (2) 

Here, ( ) ( )1 2 3, ,ix x x x=  are the Cartesian coordinates and 4x ct= . Let 

( )det .ijη η=                                       (3) 

The gravitational field is described by a symmetric tensor ( )ijg . Let ( )ijg  be defined by 
kj j

ik ig g δ=                                        (4) 

and put similar to (3)   

( )det ijG g= .                                       (5) 

The proper time τ  is defined by 

( )2d d di j
ijc g x xτ = − .                                   (6) 
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The Lagrangian of the gravitational field is given by 

( )
1 2

/ / / /
1
2

mn ik jl ij kl
ij kl m n m n

GL G g g g g g g g
η

 −  = − −  −   
                        (7) 

where the bar/denotes the covariant derivative relative to the flat space-time metric (1). 
The Lagrangian of dark energy (given by the cosmological constant Λ ) has the form 

( )
1 2

Λ 8Λ GL
η

 −
= −  − 

.                                    (8)     

Let 
44πk cκ =                                          (9) 

where κ is the gravitational constant. Then, the mixed energy-momentum tensor of gravitation, of dark energy 
and of matter of a perfect fluid are 

( ) ( )
1 2

ln
/ / / /

1 1 1
8 2 2

i ir km kl mn i
kl mn j r j r jj

GT G g g g g g g g L Gδ
κ η

  −  = − +   −     
              (10a) 

( ) ( )1Λ Λ
16

i i
jjT Lδ

κ
=                                   (10b) 

( ) ( ) 2.i k i i
jk jjT M p g u u pcρ δ= + +                              (10c) 

Here, ρ, p and ui denote density, pressure and four-velocity of matter. It holds by (6) 
2 i j

ijc g u u= − .                                       (11) 

Define the covariant differential operator 
1

/

2

/
i kl mi
j jm l

k

GD g g g
η

  −
=   −   

                                 (12) 

of order two. Then, the field equations for the potentials (gij) have the form 
1 4
2

i i k i
j j k jD D Tδ κ− =                                     (13) 

where 

( ) ( ) ( )Λi i ii
j j j jT T G T M T= + + .                               (14) 

Define the symmetric energy-momentum tensor 

( ) ( )ij jik
kT M g T M=                                     (15) 

Then the equations of motion in covariant form are 

( ) ( )//

1
2

k kl
kl ii kT M g T M= .                                  (16) 

In addition to the field Equation (13) and the equations of motion (16) the conservation law of the total ener-
gy-momentum holds, i.e. 

/ 0.k
i kT =                                     (17) 

The field equations of gravitation are formally similar to those of GR where i
jT  is the energy-momentum 

without that of gravitation since the energy-momentum of gravitation is not a tensor for GR. Therefore, the dif-
ferential operator is the Einstein tensor which may give a non-Euclidean geometry 

The results of this chapter may be found in the book [1] and in many other articles of the author, as e.g. in [5]. 
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3. Homogeneous, Isotropic, Cosmological Models 
In this chapter GFST is applied to homogeneous, isotropic, cosmological models. The pseudo-Euclidean geome-
try (1) with (2) is used. The matter tensor is given by perfect fluid with velocity 

( )0 1, 2,3iu i= =                                      (18) 

and pressure p and density ρ  with 
,m r m rp p p ρ ρ ρ= + = +                                   (19) 

where the indices m and r denote matter and radiation. The equations of state for matter (dust) and radiation are 
10,
3m r rp p ρ= = .                                    (20) 

The potential are by virtue of (18) and the homogeneity and isotropy 

( ) ( )
( ) ( )

( )

2 1, 2,3

1 4 .

0
ij

a t i j

g h t i j

i j

 = =
= − = =
 ≠

                               (21) 

The four-velocity is by Equation (18) and Equation (6) 

( ) ( )1 20,0,0,iu ch= .                                   (22) 

Let 0 0t =  be the present time and assume as initial conditions at present 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 00 0 1, 0 ,0 0 0,, m m r ra h a H h h ρ ρ ρ ρ= = = = = =� ��                  (23) 

where the dot denotes the time derivative; 0H  is the Hubble constant and 0h�  is a further constant; 0mρ  and 
0rρ  denote the present densities of matter and radiation. It follows from (16) under the assumption that matter 

and radiation do not interact 

( )0
1 1

0
2 23 .,m m r r rh p ahρ ρ ρ ρ= = =                            (24) 

The field Equation (13) implies by the use of (21) the two nonlinear differential equations 

1 2
1 2

3
3 4

2
d 1 1 Λ2
d 2 3 2m r

a aa h c
t a c h

κ ρ ρ
κ

   = + +  
   

�
,                       (25a) 

( )1 2
1 2

3
3 4

2 2
d 1 1 Λ4
d 2 8 2m r

h aa h c L G
t h c c h

κ ρ ρ
κ κ

   
= + + −   

  

�
                   (25b) 

where 

( )
22

3 1 2
2

1 16 6 .
2

a a h hL G a h
a a h hc

    = − + +        

� �� �                          (26) 

The expression ( )1
16

L G
κ

 is the density of gravitation. The conservation law of the total energy is 

( ) ( ) 1
2 2

2

31 Λ
16 2m r

ac L G c
h

ρ ρ λ
κ κ

+ + + =                             (27) 

where λ  is a constant of integration. The Equations (25), (26) and (27) give by the use of the initial conditions 
(23) 

4
0

4 2
0

46 2
2 1

c th a
h a c t t

κ λ ϕ
κ λ ϕ

+
= − +

+ +

� �                                 (28) 

with 
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0
0 0

0

13 1 .
6

hH
H

ϕ
 

= + 
 

�
                                  (29) 

Integration of (28) yields  
1

3 4 22
02 1.a h c t tκ λ ϕ= + +                                  (30) 

Equation (27) gives for the present time 0 0t =  by the use of the initial conditions (23) 

( )
2

4 2 2
0 0 0 0

1 88 4 π
3 3 8πm r

cc k H
k

κ λ ϕ ρ ρ
  Λ

− = + + −  
  

.                      (31) 

It follows from (27) by the use of the standard definition of the density parameters of matter, radiation and the 
cosmological constant with the abbreviation  

( )0 m r mK Λ= Ω +Ω +Ω Ω                                  (32) 

the differential equation 

( )
2 2

2 3 60
024 2

02 1
m r m

Ha K a a a
a c t tκ λ ϕ

Λ
   = −Ω +Ω +Ω +Ω     + +

�
.               (33a) 

The initial condition is by (23) 

( )0 1a = .                                        (33b) 

The solution of (33) with (30) describes a homogeneous, isotropic, cosmological model by GFST. 
Relation (31) can be rewritten in the form 

24
0

02
00

8 12Ω .m
c K

HH
ϕκ λ  

− = 
 

                                 (34) 

A necessary and sufficient condition to avoid singular solutions of (33) is 

0 0K >                                           (35) 

which yields 
4 2

02 1 0c t tκ λ ϕ+ + >                                     (36) 

for all .t∈  Hence, condition (35) implies a non-singular solution for all ,t∈  i.e. we get a non-singular 
cosmological model. It exists a 1 0 0t t< =  such that  

( )1 0.a t =�                                          (37) 

Put ( )1 1a a t=  then it follows from (33a) with 1t t=  

2 3 6
1 1 1 0Ω Ω Ω Ω .r m m ma a a K+ + =                                 (38) 

It holds for all t∈  

( ) 1 0.a t a≥ >                                        (39) 

Subsequently assume 

( )1 0 1.a a =�                                       (40) 

Then we get by virtue of (38) 

0 1.K �                                          (41) 

It follows from (32) by virtue of (41) 

01r m mKΛΩ + Ω +Ω = +Ω ,                                (42) 
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i.e. the sum of the density parameters is a little bit greater than one. Hence, ( )a t  starts from a positive value, 
decreases to a small positive value, and then increases for all .t∈  

The proper time from the beginning of the universe till time t is 

( ) ( )1 21 d
t

t h t tτ
−∞

= ∫� .                                (43) 

The differential Equation (33a) is rewritten by the use of (30) in the form 
2

2 0
0 6 4 3

1 .m mrKa H
a h a a a Λ

Ω ΩΩ   = − + + + Ω      

�                         (44) 

Hence, the differential equation for the function a by the use of the proper time is 
2

2 0
0 6 4 3

1 d .
d

m mrKa H
a a a aτ Λ

Ω ΩΩ   = − + + + Ω      �
                        (45) 

This differential equation is by virtue of (41) and a not too small function ( )a t  identical with that of GR for 
a flat homogeneous, isotropic universe. Therefore, away from the beginning of the universe, the result for the 
universe agrees for GFST with that of GR.  

These results may be found in the book [1] and in the article [5]. 
The subsequent considerations can be found in the book [1]. 
We introduce in addition to the proper time τ�  the absolute time t′  by 

( ) ( ) ( )1 2
1 1d d d .t t

a ta t h t
τ′ = = �                               (46) 

This gives for the proper time in the universe 

( ) ( ) ( )22 2 2d d dc a t x ctτ  ′= − −                               (47) 

where dx  denotes the Euclidean norm of the vector ( )1 2 3d d ,d ,dx x x x= .  
Relation (47) implies that the absolute value of the light-velocity is equal to vacuum light-velocity c for all 

times t′ . 
The introduction of the absolute time t′  in the differential Equation (45) gives 

( )
2 2

2 3 60
02

d
d m r m

Ha K a a a
t a Λ

  = −Ω +Ω +Ω +Ω ′ 
.                       (48) 

Assume that a light ray is emitted at distance r at time et′  resp. at time de et t′ ′+  and it is received by the ob-
server at time t′  resp. at time dt t′ ′+ . Then, it follows 

( ) ( )d

d
d , d d d .

e e e

t t t
e e et t t

r c t c t t r c t c t t t t
′ ′ ′+

′ ′ ′+
′ ′ ′ ′ ′ ′ ′ ′= = − = = + − −∫ ∫  

These two equations imply 
d d et t′ ′= . 

The age of the universe since the minimal value of ( )a t  measured with absolute time t′  till now  

( )

( )( )

0

1 1 1

1

1 2

1 2

1 1 2 3 6
0

0

1 2
0

0 0

d 1d 1 d d
d

1 1d .

t
m r mt a a

m r ma

at t a a a K a a a
t H

a a K a
H H

′

Λ′

Λ

 ′ ′∆ = = = −Ω +Ω +Ω +Ω ′ 

≥ −Ω + Ω +Ω +Ω ≈

∫ ∫ ∫

∫
 

Therefore, the age of the universe measured with absolute time is greater than 
0

1
H

 independent of the den-  

sity parameters, i.e. there is no age problem. 
We will now calculate the redshift of light emitted from a distant object at rest and received by the observer at 

present time. It is useful to introduce the absolute time. Assume that an atom at a distant object emits a photon at 
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time et′ . It follows from relation (46) 

( )d dea t tτ ′ ′=� .                                    (49) 

Therefore, the energy of the emitted photon is 

( )44 0
d~ ~
d e

tE g a t E
τ
′

′− . 

The energy of the photon moving to the observer in the universe is constant by virtue of (47), i.e. by the con-
stant light velocity. Then, the corresponding received frequency is  

( ) 0ea tν ν′=                                       (50) 

where 0ν  is the frequency emitted at the observer from the same atom. The redshift is given by 

( )0 1 1 1.ez a tν ν ′= − = −                                                           (51)  

Light emitted at distance r at time et′  and received at 0r =  at time 0t′  has by the constant velocity of light 
the relation 

( )0 er c t t′ ′= − . 

This gives by Taylor expansion of ( )ea t′  in relation (51) 

( ) 22
0

0 02 2
0 0

d1 11
2 d

a tr rz H H
c cH t

 ′  = + −   ′   
 

Differentiation of Equation (48) yields by neglecting small expressions 

( )2
2
02

d 11
2d

e
m

e

a t
H

t Λ

′  ≈ − Ω +Ω ′  
. 

This gives the redshift formula  
2

0 0
3
4 m

r rz H H
c c

 = + Ω  
 

.                                (52) 

The detailed calculations of Formula (52) can be found in the book [1]. 
Higher order Taylor expansion gives higher order redshift approximations. 

4. Differences of Theory and Results of GFST and GR 
1) It is worth to mention that the space of the universe by GFST is also flat by the use of (6) with (21). This is 

important because the experiment implying flatness of space of GR uses Formula (6). This is the result of the 
flat space-time geometry of GFRS. The results for the universe of GFST and GR away from the beginning of the 
universe agree for a flat space. 

2) The metric of GFST is a flat space-time and the space of GFST is flat by the use of (1) and (2). The gravi-
tational field is a tensor of rank two and it is described in flat space-time. The left hand side is a non-linear dif-
ferential operator of order two and the right hand side is the total energy-momentum tensor including that of 
gravitation which is a tensor in GFST. Proper time is defined by the use of the gravitational field. The metric of 
GR is identical with the definition of the proper time which is formally identical with that of GFST. The ener-
gy-momentum of gravitation by GR is not a tensor. The left hand side of the field equations is a linear combina-
tion of the Ricci tensor and the right hand side of the differential equations is the matter tensor. Both gravita-
tional theories are covariant. The theory of GR implies in general a non-Euclidean geometry. Experimental re-
sults indicate that our universe is flat 

3) The space of the universe by GFST is by (1) and (2) non-expanding. Experimental results of Lerner [7] al-
so yield a non-expanding universe. The space of the universe by GR is singular in the beginning, i.e. it starts 
from a point. The observed universe is very big. Therefore, the space must expand and perhaps it implies an in-
flationary universe. 
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4) The universe received by GFST is non-singular, i.e. all the physical quantities are defined in contrast to 
those of GR where the universe starts with a singularity in the beginning, i.e. the space consists of a point with 
infinite density of matter. 

5) The redshift is an intrinsic gravitational effect by GFST whereas GR explains the redshift as Doppler effect 
of an expanding universe. 

6) Linear perturbation theory of cosmological models by GFST can give in the matter dominated universe a 
quick increase of the inhomogeneity (see [1], chapter 9.4) which may explain the galaxies whereas by the use of 
GR the increase of the inhomogeneity is much too slow. 

7) The theory of GFST gives non-expanding, cosmological models. Hence, gravitational waves cannot be 
generated in the beginning. In the beginning of the universe by GR, it can imply gravitational waves by virtue of 
inflation. Signals from the birth of the universe were measured by BICEP2. But shortly after this announcement 
the result was retracted. 

8) Studies of supernovae are used to measure distances in space. It seems that the ancient supernovae aren’t as 
distant as believed. This means that the cosmological constant is smaller than till now assumed. A vanishing 
cosmological constant (no dark energy) is perhaps not excluded if a modified Hubble law is used where it is as-
sumed that every object is surrounded by a medium (see [1] chapter 12.4 and article [8]). This gives a new red-
shift formula. 

9) A non-singular, non-expanding universe with vanishing cosmological constant is already studied in article 
[9]. 
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