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Abstract 
Entropy function is used to demonstrate the Carnot efficiency, even if it is not always easy to under- 
stand its bases: the reversible movement or the reversible heat transfer. Here, it is proposed to 
demonstrate the Carnot efficiency “without” using the Entropy function. For this, it is necessary to 
enhance two concepts: heat transfer based on the source temperature and work transfer based on 
external pressure. This is achieved through 1) a balance exchanged heat, based on the source tem- 
perature and the system temperature, and 2) a balance exchanged work, based on the external pres- 
sure and the internal pressure. With these enhanced concepts, Laplace function ( )Constantp v⋅ =γ  

and Carnot efficiency 
 
 
 

1 COLD
Carnot

HOT

T
T

= −η  can be demonstrated without using the Entropy func- 

tion (𝑺𝑺). This is only a new formalism. Usual thermodynamics results are not changed. This new 
formalism can help to get a better description of realistic phenomena, like the efficiency of a rea- 
listic cycle. 
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1. Introduction 
1.1. Main Paradox about Entropy 
“Does Entropy contradict Evolution?” [1]. Creationists point out a serious contradiction or paradox about En-
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tropy. Whereas the world and the Universe should work to chaos according to the second law of Thermodynam-
ics with Entropy, since the Bing Bang and the primordial soap, stars, planets, life, more organized worlds have 
appeared and not a more chaotic world. For scientist, this paradox would only be apparent, because the Chaos 
would be created “elsewhere”. For Creationist, if there is a contradiction between the two assessments, that 
means that one is false, and it would be the Evolution one. Here, the purpose is not to debate or to argue about 
Evolution vs. Creationism. But our purpose will be to recognize this paradox, and between the two assessments, 
if one is false, it would be the Entropy function. 

1.2. History 
Let us remind ourselves where Entropy function (noted S) comes from and its role in thermodynamic efficiency 
and in the increase of disorder. 

Sadi Carnot found the engine efficiency of a thermal motor depends only of its temperatures: the higher the 
difference of temperatures is, the higher the efficiency is.For a thermodynamic cycle, the efficiency η is defined 
by 

Hot

W
Q

η =                                          (1) 

Like water falling from top to bottom to turn the wheel of a mill, Sadi Carnot compared in 1824 the tempera-
ture to an invisible fluid dropping from hot to cold which would turn thermodynamic engines [2]. But for his 
part Joule demonstrated that Heat is not a fluid, and can be proceed from the Work. 

Later Rudolf Clausius created in 1854 the Entropy function, which name means “content transformative” and 
sounds like “Energy”. Because it is not easy to define the entropy itself, difference of entropy ( S∆ ) of a system 
is defined as: 

revdQS
T

∆ = ∫                                        (2) 

where T is the absolute temperature of the system, and revdQ  the incremental reversible transfer of heat into 
that system. Using the equivalence of Heat and Work, efficiency can be written:  

1 Cold

Hot

Q
Q

η = −                                        (3) 

And thanks to this Entropy function, it can be demonstrated that the engine efficiency will be limited by the 
temperature of the sources: 

1 Cold

Hot

T
T

η ≤ −                                         (4) 

where HotT  is the temperature of the hot source, and ColdT  the temperature of the cold source. 1 Cold

Hot

T
T

 
− 

 
 is 

called the Carnot efficiency. 
In 1877, Boltzmann linked the Entropy function to the probability of the number of specific ways in which a 

system may be arranged, especially with irreversible movements of particles. 
At the beginning of the 20thcentury, Bergson stated that the entire Universe is changing over time, in a con-

stant direction. And since then, the Entropy function is linked to the Chaos. 
An easy way would be to disconnect the Entropy function from the Chaos, but even keeping the original con-

cept of Claudius with reversible transfer, it remains another paradox. 

1.3. Another Paradox 
Entropy variation is defined by reversible transfer of heat, as seen in Equation (2): 

revdQS
T

∆ = ∫                              cf Equation (2) 
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But what does a “reversible” transfer of heat mean? It would mean that heat could go from one side to another, 
back and forth indefinitely without any change in the environment!… In a way, a perpetual transfer! Let us re-
member that the reversible transfer of heat was imagined when heat was still considered as a fluid. In fact the 
heat goes from the hot source to the cold source, and so “any real transformation is irreversible in fact” [3]. Be-
cause variation of entropy is defined by reversible heat, that means that demonstrations using entropy are based 
on impossible transfers! 

Let us now try to demonstrate thermodynamic properties without using this Entropy function, qualified by 
Bergson [4] as the most “metaphysical” of the physical laws. 

2. Definitions and Hypotheses 
2.1. The “Internal” Energy 
“Internal” energy is not named as such to distinguish it from an external energy, but from the kinetic energy of 
the system and from the potential energy of the system. From a microscopic point of view, it is the sum of the 
kinetic energies of the atoms, and it is called U. From a microscopic point of view, it is difficult to define it and 
in practice, internal energy cannot be measured. It is always surprising to base a theory on a concept we cannot 
measure! 

2.2. The First Law of Thermodynamics 
If internal energy cannot be measured, its main property is easy to define and to measure: the variation of inter-
nal energy is the sum of the work and the heat exchanged with the outside. 

U W Q∆ = +                                         (5) 

It is called the first law of Thermodynamics 

2.3. The Mechanical Work 
Traditionally, the infinitesimal work Wδ  exchanged by the system with the outside is calculated thanks to the 
formula 

ExtW P dVδ = − ⋅                                       (6) 

with dV  the volume variation and ExtP  the external pressure. 
It is surprising that the work received or supplied by the “internal” system is due to the “external” pressure 

only. A work refers to a volume variation, a movement. According to the mechanical principle of inertia, a 
movement is due to a force. A force cannot exist if the internal pressure is equal to the external pressure. In fact, 
a force depends of the “difference” of pressure between the inside and the outside. Let us clarify 
• ExtWδ  is the work supplied (<0) or received (>0) by the outside, the Universe 
• intwδ  is the work supplied (<0) or received (>0) by the inside, the system 
• ExtdV  the variation of volume of the outside, the Universe 
• intdv  the variation of volume of the inside, the system 

When the volume of the inside system increases (respectively decreases), the volume of the outside decreases 
(respectively increases): 

Ext intdV dv= −                                        (7) 

Taking an axis positive from Left to Right, general expression of the transferred work is: 

( ) ( )Infinitesimal work Volume variationLeft RightP P= − − ×                  (8) 

which means, if the system is on the Left side, and the outside on the right side (see Figure 1): 

( )int int Ext intw p P dvδ = − − ⋅                                 (9) 

( )Ext int Ext ExtW p P dVδ = − − ⋅                               (10) 

Due to Equation (9), we can check that 
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Figure 1. Work exchanged from the inside (in blue) to the outside (in red). 

 

Ext intW wδ δ= −                                    (11) 

Note: when we get the same pressure inside and outside, we get equilibrium, there is no movement and so no 
work: 

[ ] [ ]0int Ext Ext intp P W wδ δ= ⇒ = =                           (12) 

2.4. The Exchanged Heat 

The energy radiated Q
dt
δ  by a body in vacuum is proportional to its temperature according to Stéphan-Boltz- 

mann law [5] [6]: 

4Q T A
dt
δ σ=                                       (13) 

with the constant 8 2 45.67 10 W m Kσ − − −= × ⋅ ⋅   , T the temperature and A the area of the body. 
What is true for a single body should be true for several bodies. Let us have an adiabatic (without loss of heat) 

enclosure with two bodies inside (see Figure 2).  
First one will emit (so it will have a negative value) the energy 

4
1 1q T Adtδ σ= −                                     (14) 

and this emitted energy will be received (so it will have a positive value) by the second body. The second body 
will emit the energy 

4
2 2q T Adtδ σ= −                                     (15) 

and this emitted energy will be received by the first body. When we do the balance, the energy emitted and re-
ceived by each body is 
for the first body 

1 2 1Q q qδ δ δ= −                                     (16) 

( )4 4
2 11Q T T Adtδ σ= −                                  (17) 

and for the second body 

2 1 2Q q qδ δ δ= −                                    (18) 

( )4 4
2 1 2Q T T Adtδ σ= −                                 (19) 

We can check at the equilibrium where the temperatures are equal that each body emits and receives the same 
amount of energy, thus the balance for each body is nil: 

[ ] [ ]1 2 1 2 0T T Q Qδ δ= ⇒ = =                               (20) 

Note: mathematically, the difference of temperature is equal to 
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Figure 2. Heat exchanged between two bodies. 

 
( ) ( )4 4 3 2 1 1 2 3

2 1 2 1 2 2 1 2 1 1T T T T T T T T T T− = − + + +                         (21) 

So the energy emitted and received by a body can also be written as 

( )1 2 1Q s T T dtδ = ⋅ − ⋅                                   (22) 

where 2T  is the outside temperature (of the source), 1T  is the inside temperature (of the system) and s is a 
factor depending on the temperature: 

( )3 2 1 1 2 3
2 2 1 2 1 1s T T T T T T Aσ= ⋅ + + + ⋅                             (23) 

Why should we use this group? Because at the usual temperature, for example at 10˚C and 30˚C, the mathe-
matical difference of s with the average temperature (20˚C) will be about 0.1%, which is insignificant: 

( )10 C;30 C 100732228s Aσ= ⋅ ⋅   

and  

( )20 C 100615028s Aσ= ⋅ ⋅  

And with regards to the difference with the entropy, s is only a calculation, it is not a state “function”. 
To conclude, we do not need to use the Entropy function to explain that Heat goes from hot to cold. It can be 

explained by a hot body emitting more heat than a cold body, and so the difference of heat looks like a heat 
transfer from the hot body to the cold body. 

2.5. The Writing Convention 
To simplify the reading (and the writing), when it is possible or easier we will use: 
• Small letters for the internal system. 
• Capital letters for the external Universe, or sources. 
• ( )cold COLD coldQ s T T dtδ = ⋅ − ⋅  is the energy emitted and received from the cold inside system. 

• ( )COLD cold COLDQ s T T dtδ = ⋅ − ⋅  is the energy emitted and received from the cold outside source. 
Another application (from Equations (10) and (11). 

• ( )int int Ext intdw p P dv= − − ⋅  is the work received or supplied by the internal system (small letters). 

• ( )Ext int Ext ExtdW p P dV= − − ⋅  is the work received or supplied by the external Universe (Capital letters). 
Let us now demonstrate the first “isentropic” law without using the entropy function. 

3. Laplace’s Law Demonstration 
3.1. Traditional Demonstration 
Traditionally the Laplace law is demonstrated by using the two equations hereafter 

intp V R T⋅ = ⋅                                     (24) 
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and 

ExtW P dVδ = − ⋅                             cf. Equation (6) 

Then, it is done the hypothesis of a reversible way (let us remember that a reversible way does not exist) in 
order to write the equality: 

int Extp P=                                          (25) 

which is clearly excessive, because when the internal pressure and the external pressure are equal, there is no 
movement! 

3.2. Traditional Formulas 
We will use the perfect gas formula and definitions hereafter: 

int int intp v R T⋅ = ⋅                                      (26) 

int intH U p v= +                                      (27) 

int

v
int v

UC
T

 ∂
=  ∂ 

                                     (28) 

int

p
int p

HC
T

 ∂
=  ∂ 

                                     (29) 

p

v

C
C

γ =                                          (30) 

With previous equations, it is traditionally demonstrated that 

1v
RC

γ
=

−
                                       (31) 

3.3. Alternative Demonstration of Laplace Law 
According to the first law of thermodynamic, with the new expression defined earlier: 

U w Q∆ = +                              cf Equation (5) 

which can also be written as: 
dU w Qδ δ= +                                      (32) 

In the case of an adiabatic transformation (and so irreversible), there is no heat exchange: 
0Qδ =                                         (33) 

dU wδ=                                        (34) 
and using Equations (10) and (26): 

( )v int int Ext intC dT p P dv⋅ = − − ⋅                               (35) 

Dividing by the temperature intT : 

int ext int
v int int

int int int

dT P pC dv dv
T T T

⋅ = ⋅ − ⋅                              (36) 

Using Equation (7) on the variation of internal and external volume 

int ext int
v ext int

int int int

dT P p
C dV dv

T T T
⋅ ⋅= − −⋅                             (37) 

And using Equation (26) of perfect gas, for internal gas and for external gas 
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1 1int Ext int
v Ext int

int Ext int int int

dT R T R T
C dV dv

T V T v T
   ⋅ ⋅

= − −   
   

                          (38) 

int Ext int
v Ext int

int Ext int int int

dT R T R TC dV dv
T V T v T

⋅ ⋅
= − −

⋅ ⋅
                          (39) 

int Ext Ext int
v

int int Ext int

dT T dV dvC R R
T T V v

= − −                              (40) 

For the outside Universe, it is considered as infinite,  

ExtV ≈ ∞                                         (41) 

So  

lim 0
Ext

Ext
V

Ext

dV
V→∞ =                                     (42) 

And so 

lim 0
Ext

Ext Ext
V

int Ext

T dVR
T V→∞

 
− = 
 

                               (43) 

Then 

int int
v

int int

dT dvC R
T v

= −                                     (44) 

Integrating it: 

0 0ln lnint int
v

int int

T vC R
T v
   ′ ′

= −   
 

⋅ ⋅
 

                               (45) 

Then using Equation (31) on the property of 𝐶𝐶𝑣𝑣: 
10

0
int int

intint

T v
vT

γ −
′
=

′
 
 
 

                                      (46) 

Which is equivalent, using Equation (26) of perfect gas 

( )0 0
int int int intp v p v

γγ′ ′ =                                     (47) 

It is nothing else than the Laplace law: 

Constantint intp vγ⋅ =                                     (48) 

The difference with the classical demonstration is that it has not been confused intp  and ExtP . Only the 
adiabatic property (and not the “reversible” property) was used. That means Laplace law has been demonstrated 
without using neither the Entropy function nor the Entropy property. 

4. Carnot’s Efficiency Demonstration 
4.1. Traditional Demonstration 
Traditionally to demonstrate the Carnot efficiency, the in-equation hereafter is used, which links the sources 
temperatures to the exchanged energies: 

0hot cold

HOT COLD

Q Q
T T
δ δ

+ ≤                                    (49) 

where hotQδ  (>0) is the energy received from the HOT source and coldQδ  (<0) the energy supplied to the 
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COLD source. This equation comes from the Entropy function.  
The trouble is it is forgotten that when two bodies (the system and the source) are at the same temperature, 

there is no exchange of heat (see Figure 3): 

[ ] [ ] 0COLD source AB coldT T Qδ= ⇒ =                              (50) 

[ ] [ ] 0HOT source CD hotT T Qδ= ⇒ =                               (51) 

Starting again from the definition of the cycle efficiency with Equation (1) and (3),  

undefined
0hot

W W
Q

η = = =                                (52) 

01 1 undefined
0

cold

hot

Q
Q

η = − = − =                              (53) 

the Carnot efficiency is mathematically undefined! 
Let us check now the situation without using the Entropy function or its property. 

4.2. Preliminaries Demonstrations 
4.2.1. A Realistic Cycle 
Let us have a cycle as shown in Figure 4: 
• From A to B, in contact with the COLD source (with a source temperature lower than the system tempera-

ture), the system is quite isotherm, cools down but with AB COLDsourceT T≠ . Let us call the average temperature 
of the system between A and B: 

cold AB A BT T T T= ≈ ≈                                    (54) 

• From B to C, the system is pressed without adding or loosing heat (it is an adiabatic process): 

0BCQ =                                          (55) 

• From C to D, in contact with the HOT source (with a source temperature higher than the system tempera-
ture), the system is quite isotherm, worms up but with CD HOTsourceT T≠ . Let us call the average temperature 
of the system between C and D:  

hot CD C DT T T T= ≈ ≈                                    (56) 

• From D to A, the system expands without adding or loosing heat (it is an adiabatic process): 

0DAQ =                                          (57) 

 

 
Figure 3. Carnot cycle. 



O. Serret 
 

 
193 

 
Figure 4. Realistic cycle. 

4.2.2. Comment about the “Quasi-Isotherm” 
In previous demonstrations, some “quasi”-isotherm parts were noticed. Let us look at a realistic example to 
check the value. The Stirling engine is an engine with outside sources.  

From Solo Kleinmotorem [7], 10 kW output, 650˚C (923 K) Hot temperature, 150 bars, 1500 rpm, Helium 
(5183 J/kg.K; 0.05 kg/m3 at 1 bar), for 161 Liters of engine displacement: 

Power Flow Capacity Temperature difference= × ×                          (58) 

Numerical application: 

161 150010000 0.05 150 5183 0.06
1000 60
 = × × × 
 

 

So the temperature difference will be of (0.06/923=) 0.01%, which is negligible. The temperature hotT  of the 
system can effectively be considered as quasi-constant. 

A B hotT T T= =                                       (59) 

4.2.3. Equality of Work 
Starting again from the first law of Thermodynamics Equation (5), 

BC BC BCU w Q∆ = +                                    (60) 

DA DA DAU w Q∆ = +                                    (61) 

Because these two parts are adiabatic, 0BC DAQ Q= =  as previously seen Equation (55) and Equation (57),  

BC BCU w∆ =                                       (62) 

DA DAU w∆ =                                       (63) 

Then, using the definition of vC  from Equation (28), we can write for perfect gas: 

( )BC v C BU C T T∆ = −                                  (63) 

( )DA v A DU C T T∆ = −                                  (64) 

And so from the construction of the cycle and the Equations (62) to (64): 

( )BC v hot coldw C T T= −                                 (65) 

( )DA v cold hotw C T T= −                                 (66) 
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The first result is: 

BC DAw w= −                                         (67) 

4.2.4. Equality of Pressure  
In §3, without using the Entropy function, we have demonstrated  

( )0 0
int int int intp v p v

γγ′ =                          cf. Equation (47) 

and so using the Equation (26) of the property of perfect gas, we can get the general equation: 
1

0 0
int int

int int

T p
T p

γ
γ
−

 ′ ′
=  
 

                                      (68) 

and in particular, for the adiabatic parts (BC) and (DA): 
1

C C

B B

T P
T P

γ
γ
−

 
 
 

=                                       (69) 

1

D D

A A

T P
T P

γ
γ
−

 
 
 

=                                       (70) 

Because we have quite isotherm part with (AB) and (CD): 

C hot

B cold

T T
T T

≈                                         (71) 

hotD

A cold

TT
T T

≈                                         (72) 

and so 
1 1

C D

B A

P P
P P

γ γ
γ γ
− −

=
   
   
   

                                     (73) 

C D

B A

P P
P P

=                                         (74) 

The second result is: 

CB

A D

PP
P P

=                                         (75) 

4.2.5. Equality of Temperature  
For an isotherm part of a cycle, for a perfect gas:  

( )int Ext intw p P dvδ = − − ⋅                       cf. Equation (9) 

Including the perfect gas property of Equation (26) 

AB
AB ext int

int

R Tw P dv
v

δ
 

= − − 
 

⋅
⋅                               (76) 

CD
CD ext int

int

R Tw P dv
v

δ
 

= − − 
 

⋅
⋅                               (77) 

Then with the same logic that we argued for Equation (44) 
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ln 0B
AB AB

A

Vw R T
V
 

⋅ ⋅= − + 
 

                                 (78) 

ln 0D
CD CD

C

Vw R T
V
 

⋅ ⋅= − + 
 

                                 (79) 

Or with the perfect gas property, the third results are 

ln A
AB cold

B

Pw R T
P


⋅≈ ⋅


 
 

                                   (80) 

ln C
CD hot

D

Pw R T
P

⋅≈ ⋅
 
 
 

                                   (81) 

4.2.6. Equality of Energy  
For an isotherm part, for a perfect gas:  

0U∆ =                                         (82) 
For the quasi isotherm part (CD), for a perfect gas 

0CD CD CDU w Q∆ = + ≈                                   (83) 

The fourth result or quasi-isotherm work is: 

CD CDw Q≈ −                                       (84) 

AB ABw Q≈ −                                       (85) 

4.3. Alternative Demonstration of Carnot Efficiency 
4.3.1. Inequality 
In Figure 5 in P-V, the pressure is represented as a function of the volume, so the area is proportional to the 
work according to the formula: 

( )w p v dv= ⋅∫                                      (86) 

Because the hot temperature hotT  of the system is lower than the HOT temperature HOTT  of the source, and the 
cold temperature coldT  of the system is higher than the COLD temperature COLDT  of the second source, the 
area of the system is always lower than the area delimited by the source temperatures. 
 

 
Figure 5. Isotherm cycle vs. Carnot cycle. 
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( ) ( )hot HOT

cold COLD

T T

T T
p v dv p v dv⋅ < ⋅∫ ∫                               (87) 

So for a same heat transferred (cf Equation (1) on the efficiency definition): 

 isotherm cycle Carnotη η<                                   (88) 

4.3.2. Carnot Efficiency 
Let us now demonstrate cycle efficiency without using the Entropy function. 

The total work of the cycle is the sum of the supplied and received works: 

AB BC CD DAw w w w w= + + +                                (89) 

As previously demonstrated with the first result: 

BC DAw w= −                            cf. Equation (67) 

So 

AB CDw w w= +                                     (90) 

As previously demonstrated with the fourth result: 

CD CDw Q≈ −                          cf. Equation (84) 

So the efficiency definition of Equation (1): 

AB CD

CD

w w
w

η +
=

−
                                      (91) 

or 

1 AB

CD

w
w

η = +                                        (92) 

Due to the third results 

ln
1

ln

B
cold

A

C
hot

D

PR T
P
PR T
P

η

 
 
 = −
 
 


⋅

⋅ ⋅


⋅
                                 (93) 

And due to the second result 

1 cold

hot

T
T

η = −                                       (94) 

And of course if we extrapolate to the limits with cold COLDT T=  and hot HOTT T= , we could get 

1 COLD
Carnot

HOT

T
T

η = −                                    (95) 

4.4. Comments 
Sadi Carnot considered the temperature as a fluid: the higher the temperature difference is, the more efficient it 
is (as for mill, the higher the water level difference is, the more efficient it is). He did not used the entropy func-
tion (which was invented by Rudolf Clausius). 

Here, we still have the same conclusion—the higher the temperature difference is, the more efficient it is— 
but for other reasons: 
• Because they are isenthalpic (without heat exchange), the work received on BC is equal to the work deli-

vered in DA: balance is nil. 
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Figure 6. Heat and work balance. 

 
• Because they are quite isotherm, the heat received in CD is transformed into work, and the work received in 

AB is transformed into “heat” to the cold source. But in the cycle, the heat received is proportional to the 
temperature of the hot source (cf Equation (81)), and the heat delivered is proportional to the cold one. So 
the system receives more heat than it delivers, and so the balance is delivered in work. See Figure 6. 

5. Conclusions 
Traditional thermodynamics was elaborated two centuries ago, when heat was understood as an invisible fluid! 
The main concepts were formalised during this period, like the Carnot’s efficiency and then the Entropy func-
tion. 

The purpose of this paper is to demonstrate the Carnot’s efficiency without using the Entropy function. For 
this, we have generalised both concepts: 
• The balance exchanged work, which includes the external pressure and the internal pressure. 
• The balance exchanged heat, which includes the temperature of the source and the temperature of the system. 

On these two general concepts, we have demonstrated first the Laplace’s law, or adiabatic compression/de- 
pression, and then the inequality of Carnot efficiency. 

In my previous essay [8], the work variation 𝛿𝛿𝛿𝛿 had not yet been generalised. So the comparison chart of 
this other article has been updated in Appendix (Chart 1).  
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Appendix 
Chart 1. Traditional form vs. proposed form. 

Thermodynamics Traditional form Proposed form 

Energy variation dU Q Wδ δ= +  dU Q wδ δ= +  

Exchanged work rev extW P dvδ = − ⋅  ( )int int Ext intw p P dvδ = − − ⋅  

  ( )Ext int Ext ExtW p P dVδ = − − ⋅  

Exchanged heat revQ T dSδ = ⋅  
Q s T dtδ = ∆⋅ ⋅  

2 1Q q qδ δ δ= −  

Reversible movement Valid Not valid 

Reversible heat transfert Valid Not valid 

Entropy Valid Not valid 

Isotherm movement Valid Not valid (it is quasi-isotherm) 

Heat goes from hot to cold A consequence of dS  A consequence of Qδ  

Laplace law A consequence of dS  A consequence of Qδ  

Carnot efficiency 1 COLD
Carnot

HOT

T
T

η = −  Undefined (it is a limit) 

Cycle efficiency Undefined 1 cold COLD
Cycle

HOT hot

T T
T T

η
−

= −
−
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