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Abstract 
The central part of the nuclear potential energy is shown to depend on the interacting masses of 
the nuclear matter. This mass dependent potential energy reduces to the usual Newtonian poten-
tial energy of the interacting masses when both the interacting masses are more than a certain li-
miting mass. This strong potential energy results when both the interacting masses are less than 
the limiting mass. The potential energy is applied to two more systems here and out of which one 
nucleus is in the middle of periodic table. 
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1. Introduction 
The gross properties of a nucleus are obtained by applying approximate potentials derived from quantum chro-
modynamics. In this note, a mass dependent potential energy is derived and it applies to any nucleus. It only de-
pends how we choose the interacting masses of the given nucleus. Whenever the masses are quite large com-
pared to the binding energy of the system, non-relativistic quantum mechanics can be used with any potential 
energy. For example, the electron and proton masses are very large compared to the binding energy of hydrogen 
atom and non-relativistic quantum mechanics provides a very good idea of the various properties of the hydro-
gen atom. The universal constant of gravitation is assumed to be universal for all values of the interacting 
masses. Once we relax this assumption for small masses like those of a nucleus, the results are stunningly accu-
rate as shown in [1]-[5]. Usually, we generally assume that an interaction is constant to depend on the distance 
of separation between the interacting masses or charges. In [1]-[5], the Potential energy is obtained assuming no 
dependence of the Universal Constant of Gravitation on the distance of separation between the interacting 
masses. Here, we overcome this deficiency and show how ar dependent G leads to the same potential energy 
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that is used in the references cited. Moreover, the earlier application leads one to believe that this potential 
energy applies only to low mass number nuclei. To overcome this misunderstanding, we apply the potential 
energy to such a nucleus like silver isotope with a mass number 95. 

What are the gross properties of a nucleus? 1) The binding energy, 2) the ground state wave function, 3) the 
total spin and 4) the principal energy levels. These are some properties with which we can decide the acceptabil-
ity of the given potential energy. The mass dependent potential energy is presented in Section 2. In Section 3, 
the mass dependent potential energy is applied to two more nuclei. These results are in addition to our results 
that are presented in [1]-[5] with this potential energy. Section 4 contains our conclusions. 

2. Mass Dependent Potential Energy 
In general, the main nuclear potential energy consists of two parts. 1). The central part and 2) the Yukawa ex-
change factor e rµ− . The Yukawa exchange factor limits the range of interaction. Let the central part of the nuc-
lear potential be given by  

( )
2

1 2
2
0

P
N

M m mV r G
rM

= − .                                 (2.1) 

where, NG  is the universal constant of gravitation and, 
2

2 12 215.34122 10 gmP
N

g cM
G

−= = ×
 .                            (2.2) 

In order to account for various gross properties of nuclei such as Deuteron Helium-4 and many other nuclei, 
we were led to choose, 

2
2 e 1 1 0.032384

0.2254 137 0.2254
g = = = .                          (2.3) 

The expression in Equation (2.1) looks different from the usual expression of Newtonian potential energy for 
interacting masses 1m  and 2m . But Whenever, 

1 Pm M≥  and/or 2 2
2 0,P Pm M M M≥ = .                          (2.4) 

Equation (2.4) ensures that whenever even if one of the masses is greater than or equal to the cut-off mass 
PM  the Newtonian potential energy is restored. For example, a neutron experiences the same acceleration as 

any other object near the earth because one of the masses (the earth) satisfies Equation (2.4). If and when both 
the masses satisfy the following condition, Equation (2.1) holds. 

1 2andP Pm M m M< < .                                 (2.5) 

The same neutron experiences a different potential energy near a proton. It experiences the potential energy 
given by Equation (2.1) where for a proton-neutron there is no prior information as to the value of 2

0M .This 
parameter is specific to each pair of 1m  and 2m . The parameter 2

PM  is same for all interacting masses 1m  
and 2m  provided they satisfy Equation (2.5). In plain words if a nucleus is envisaged or can be taken as two 
interacting masses 1m  and 2m  Equation (2.1) holds for its central part of the potential energy and 2

0M  is 
specific to the interacting masses. The potential energy is renormalizable. It is dimensionless when 1c= = . In 
Ref. 5, we used it to explain the alpha decay of Beryllium-8 nucleus. It is only when Equation (2.4) holds we can 
relate 2

0M  to 2
PM . Otherwise, it is a free parameter to be chosen by relating theory to experiment. The expres-

sion for the Potential energy given by (2.1) can also be arrived at in the following way. 
Let the universal constant of gravitation G be a function of r where r is the distance between the interacting 

masses. 

( )1 e kar
NG G −= − .                                    (2.6) 

where k is a dimensionless parameter and a has the dimensions of inverse length. The central part of the nuclear 
potential energy is given by, 

( ) ( ) 1 21 e kar
N

m mV r G
r

−= − − .                                (2.7) 
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Suppose we choose k in the following way: 

( )
2

2
0

1
1N

g ck
f NG M

 
=  

−  

 ,                                  (2.8) 

where, f(N) is a function of the variable, 2
1 2PN M m m=  such that, 

( ) 1f N =  whenever either 1 Pm M≥ , or/and 2 Pm M≥ .                   (2.9) 

The above condition ensures that the factor k becomes equal to ∞ and the exponential factor inside the 
brackets in Equation (2.6) goes to zero irrespective of the value of r. On the other hand, 

( ) 1 20 whenever andP Pf N m M m M= < < .                       (2.10) 

If a system can be imagined to be made up of two interacting masses 1m  and 2m  which are both less than 
PM  then the function f(N) is zero. In the case of any nucleus, the splitting of its masses can be arranged to sa-

tisfy this condition. So for any nucleus Equation (2.10) applies. In the product of 1 2m m  even if one mass is 
more than or equal to PM  then Equation (2.9) operates and thereby we recover the usual  

 Newtonian potential energy. From Equation (2.8), it is clear that k is dimensionless as the factor 2g  is a 
dimensionless positive real number. We observe that a in the exponential factor of Equation (2.7) must have the 
dimensions of inverse length. Let, 

1 2

0

m m ca
M

=


.                                      (2.11) 

The above factor is not a YUKAWA factor. In case of the Yukawa factor the mass appears as a single factor 
or as a sum but not as a product of masses. The factor a also indicates the dependence of 0M  on the product 

1 2m m .We can use the r dependent G with the above definitions. To see what is really happening we can restrict 
r of the exponential of Equation (2.7) by means of the uncertainty principle. Let, 

0

1 2

M
r

m m c
=



.                                      (2.12) 

That 0M  is specific to the product 1 2m m  is also evident from Equation (2.12). The product 1ar = . All the 
dependence of the gravitational constant on r is somehow now connected to 0M . This is a specific approxima-
tion to arrive at the results we have already obtained in [1]-[5]. Inserting k, a and r into Equation (2.7), we note 
that, 

( ) ( )( )( )2 2
0 11 2 1 e Ng c G M f N

N
m mV r G

r
− −= − −  .                        (2.13) 

Assuming that f(N) = 0 for interacting nuclear masses or for those products of masses 1 2m m  for which Equa-
tion (2.10) satisfies the above equation can be simplified to, 

( )
22

1 2 1 2
2 2
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m m m m Mg cV r G G
r rG M M

       = − − − = − − −               

 .              (2.14) 

From the above expression, it is quite clear why 2
PM  is given by Equation (2.2). Simplifying 

Equation (2.14) we have, 

( )
2 2

1 2 1 2
2 2
0 0

P
N

M m m m mg cV r G
r rM M

= − = −
 .                          (2.15) 

From Equation (2.15) it must be very clear that 2
PM  is same for all nuclei. In other words 2g  is same for 

all interacting nuclear matter. The factor PM  has the dimensions of mass. It contains universal constants [see 
Equation (2.2)] and therefore it does not change with speed. The factor 0M  should likewise not change with 
speed of the interacting masses. The universal constant of gravitation can be modified by a choice of k and the 
product ar. For example, let 1ar =  and ( )( )1 1k f N= − . For this case ( ) ( )11 eNG r G −= −  whenever f(N) 
satisfies Equation (2.10). That means that the universal constant is altered just numerically by a small number in 
this example. If this small change is effected in this way, the gravitational interaction plays no significant role 
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whatsoever in the case of nuclear interaction. The point is that the choice of k through Equation (2.8) appears to 
relate the strong nuclear interaction to the Newtonian Potential Energy. The factor 2 2

0 PM bM=  where b is a 
constant dependent on the product of the interacting rest masses 1m  and 2m . The very fact that many gross 
properties of a nuclear system can be obtained through the application of the potential energy given by Equation 
(2.15), is an indication that the Morphed gravitational potential energy is indeed the right choice. The factor 𝑏𝑏 
will be equal to 1, whenever Equation (2.4) or Equation (2.9) is satisfied. If PM =∈  where ∈  is as small as 
possible and tends to zero Equation (2.1) shows that the universal constant of gravitation is universal for all 
masses and gravitational interaction is ineffective in the nuclear context. 

If the results of an experiment or observation match the theoretical prediction then there is good reason to ac-
cept the theory. 

3. Applications 
The potential energy in general should also include the YUKAWA factor e rµ−  to restrict the range of this inte-
raction. For any nuclear interactions the potential energy is in general given by. 

( )
2

1 2
2
0

e rP
N

M m mV r G
rM

µ−= − .                                 (3.1) 

The factor 2
0M  is specific to the choice of the product 1 2m m  of the nuclear matter and this choice should 

follow the condition stipulated in Equation (2.10) or Equation (2.5). In Equation (3.1) the factor other than the 
YUKAWA Factor e rµ−  is what is called the morphed gravitational potential energy. In Equation (3.1), 2

0M  
becomes equal to 2

PM  whenever Equation (2.4) or Equation (2.9) holds. In [4], we applied Equation (3.1) to 
the scattering of a neutron by a nucleus and the theory explains the known experimental values. The morphed 
gravitational potential energy is earlier applied to many nuclei and all the results confirm the gross properties of 
these nuclei. In general, we have to solve the Schrodinger equation with the potential energy given by Equation 
(3.1). But the exact solution is not known for the full Yukawa potential energy given by Equation (3.1). Our re-
sults are almost correct because the morphed gravitational potential energy is tailored to suite the size of a nuc-
leus through the uncertainty relation. Below we apply this potential energy to some more nuclei one of them is 
in the middle of the periodic table.  

3.1. Boron-11 
Boron nucleus contains 5 protons and 6 neutrons. The core for this nucleus consists of 5 neutrons and 5 protons. 
There is a neutron outside this core. The total spin of this nucleus in the ground state is 3 2J −= . Hence, the 
outer neutron is in a 1=  state and therefore the principal quantum number for the ground state of this nucleus 
must be 2. The potential energy for this nucleus is given by, 

( )
2

2
0

c nm mg cV r
rM

= −
 ,                                   (3.2) 

where, 2416.73767 10 gmcm −= × , and                           (3.3) 
2 48 2
0 1.074602 10 gmM −= × .                                (3.4) 

The energy spectrum is given by, 
22

2 2 2
0

1
2

c n
n

g cm m
E

n M
µ  

= −  
 







.                               (3.5) 

Here n = 2, 3, 4 is the principal quantum number as in the case of hydrogen atom. 
The ground state (n = 2) energy for this nucleus is given by, 

2,1 76.2046 MeVE = − .                                    (3.6) 

The binding energy of this nucleus is 76.2046 MeV. The solution of the time independent Schrodinger equa-
tion led to the result given by Equation (3.5). By following 

Hydrogen atom we can write down the wave function corresponding to n = 2 and 1= . Hence, we have cor-
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rect information regarding the ground state wave function, ground state energy, ground state spin. The energy 
spectrum is also known now. These are what are called the gross properties of the nucleus. 

3.2. Silver 
The Silver nucleus has many isotopes. One isotope of silver has a mass number of 95. This isotope is β +  ac-
tive most of the time. It has a total spin of ( )9 2 + . This indicates that this silver nucleus must have a core of 48 
neutrons and 46 protons. The core mass is given by, 

24157.336404 10 gmcm −= × .                                  (3.7) 

There must be a proton outside this core of 48 neutrons and 46 protons with an orbital angular momentum 
quantum number of 4= , for the ground state of this silver nucleus. The principal quantum number n must be 
5 for the ground state of this isotope of silver. The total potential energy of this nucleus is given by, 

( )
2 2

2
0

46c Pm mg c e cV r
r rM

= − +
  ,                                (3.8) 

where 2e  is the fine structure constant in the second term above. Moreover. 
2 48 2
0 1.260571 10 gmM −= × .                                  (3.9) 

The mass defect for this nucleus is given by ( )95.758320 94.95548m u∆ = − . 
This is equivalent to a binding energy of 766.5079 MeV. With the potential energy given by Equation (3.8) 

the time independent Schrodinger Equation can be solved as in Refs. (1,2,3). The energy eigen-values are given 
by, 

22
2

2 2 2
0

1 46
2

c P
n

g cm m
E e c

n M
µ  

= − − 
 









,                            (3.10) 

where, 5,6,7, .n =                                       (3.11) 

In Equation (3.10), µ  is the reduced mass. Non-relativistic quantum mechnics still holds because the masses 
of the interacting particles, proton and the core part have more mass than the binding energy of the system. For 
example in the case of hydrogen atom the binding energy is very small compared to the masses of the proton 
and electron. From Equation (3.10) we note that, 

2

19162.71213 MeVnE
n

= −


.                                 (3.12) 

When n = 5, the ground state energy is −766.508 Mev. The binding energy of this nucleus is 766.5 MeV. To 
decide whether a neutron or proton is outside the core we have to examine the magnetic moment of the silver-95 
nucleus. 

4. Conclusions 
In this note, the Newtonian potential energy is modified through a limiting mass PM . A system like a nucleus 
can be imagined to consist of two interacting parts with their masses interacting through a potential energy sim-
ilar to the gravitational potential energy. The mass parameter 0M  is an unknown parameter and it depends on 
the product of the masses 1 2m m . In all the examples we have considered so far, 0M  is different for different 
Nuclei [1]-[5]. It has a far reaching consequence. The principle of equivalence is not necessarily valid for inte-
racting masses below PM .Whenever the interacting masses satisfy Equation (2.5) or Equation (2.10), the uni-
versal constant of gravitation is not universal. 

In general, we should use Equation (3.1) for any nucleus. Here, we use it without the Yukawa factor to ex-
plain the gross properties of silver nucleus which is in the middle of the periodic table and has 95 nucleons. Is it 
possible to explain these results for this nucleus through QCD? 
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