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Abstract 
The origin of the Johnson noise of resistors is reviewed by a new model fitting in the Fluctuation- 
Dissipation framework and compared with the velocity noise in Brownian motion. This new model 
handling both fluctuations as well as dissipations of electrical energy in the Complex Admittance 
of any resistor excels current model based on the dissipation in their conductance. From the two 
orthogonal currents associated to a sinusoidal voltage in an electrical admittance, the new model 
that also considers the discreteness of the electrical charge shows a Cause-Effect dynamics for 
electrical noise. After a brief look at systems considered as energy-conserving and deterministic 
on the microscale that are dissipative and unpredictable on the macroscale, the arrow of time is 
discussed from the noise viewpoint. 

 
Keywords 
Electrical Noise, Fluctuation-Dissipation, Cause-Effect, Complex Admittance, The Arrow of Time 

 
 

1. Introduction 
This paper improves a recent work [1] and a new model for electrical noise [2] that we will use to consider 
Brownian and Johnson noises under the Fluctuation-Dissipation framework of [3]. The improvement we will 
add in Section 2 is a relativistic remark on the measurement of a voltage difference between two points (termi-
nals) separated in space. This justifies the random series in time of uncorrelated current pulses leading to the 
voltage noise called Johnson noise in resistors or kT C  noise in capacitors. This discrete model and the veloc-
ity noise of a particle under Brownian motion are compared in Section 3 focusing on the collision time ctδ  
used in their modelling. From the Cause-Effect dynamics that this new noise model shows electrical noise at 
microscopic level, Section 4 considers the arrow of time found at this level that seems to be lacking in the 
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measured noise. 

2. Fluctuations and Dissipations of Electrical Energy in Resistors 
Figure 1 summarizes a new model for electrical noise in resistors [2] and shows the admittance where it can 
occur. The capacitance C that exists between the terminals of any two-terminal device (2TD) is the key element 
to have fluctuations of electrical energy and thus, electrical noise in these devices. Now let us add the discrete-
ness of the electric charge. We mean the electronic charge 191.6 10  Cq −≈ − ×  (Coulombs) passing as a whole 
between the terminals of the resistor each time a noise pulse occurs randomly in time (50% in each sense on av-
erage). Each of these pulses where an electron passes between terminals is an impulse-like displacement current 
of weight q in C, thus a fluctuation of electric field and energy in C. As we wrote in [4], neither media nor mate-
rial exist with null dielectric constant 0ε = . This guarantees a non-null 0C ≠  in any 2TD. Applying thermal 
Equipartition in C we deduced the new model by considering that in Thermal Equilibrium (TE) it would give the 
same numerical results given by the noise model in use, where resistance R is taken as the source of electrical 
noise. Hence, the novelty of [2] is that capacitance C is the source of electrical noise of the resistor and not its R 
nor its conductance 1G R= . This allows solving problems out of TE that current model is unable to handle [2] 
[4]-[7]. 

Each passage of a single electron between plates of C, which means a sudden fluctuation ∆E of electric field 
between the terminals of a resistor, was called a Thermal Action (TA) [2]. The energy associated to a TA be-
comes quantized by the device itself because in a discharged C this displacement of a charge q−  between ter-
minals sets this fluctuation of electrical energy: 

2

2
qU
C

∆ =                                           (1) 

For 1 pFC =  we have 261.3 10  JU −∆ ≈ ×  whereas the thermal energy at 300 KT =  is: 214 10  JkT −≈ ×  
for k being the Boltzmann constant. From 0.00003U kT∆ =  we concluded that the passage of a single electron 
between terminals of resistors was a likely event at room T and even at cryogenic ones. This led us to propose 
that random TAs were the source of Johnson noise in resistors and kT C  noise in boundary capacitors 
(Boundary Space Charge Regions BSCR) whose back gating effect gives the ubiquitous resistance noise with 1/f 
spectrum of Solid-State devices [4]. The set of electromagnetic interactions giving rise to this series of TAs in a 
2TD would form its thermal contact with the surrounding universe and would sustain in time the voltage noise 
we observe in devices like resistors and capacitors that share the admittance of Figure 1 [2] [4] [5]. 

Because the most likely situation when a TA occurs is a discharged C (the expected value of Johnson noise is 
null) we will use Equation (1) as a “useful mean value” for the energy involved in TAs. The case with a small 
charge in C due to preceding TAs falls out of the scope of this preliminary paper. Each sudden TA setting a 
voltage step of V q C∆ =  volts in C initiates a Device Reaction (DR) to relax the energy unbalance stored in 
C by the TA [2]. This relaxation is the discharge of C through the resistance R of the resistor. Let us call Dissi-
pation to this relaxation process taking place in TE, where the voltage in C is very small. This way the new 
model not only fits into the Fluctuation-Dissipation framework of [3], but also agrees with the word “Irreversi-
bility” of its title due to its Cause → Effect dynamics where a fluctuation of electromagnetic energy (Cause) 
precedes to a subsequent dissipation of electrical energy (Effect). 
 

 
Figure 1. Parallel-plate structure found in two-terminal de-
vices like resistors and their complex admittance [2].           
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This ordainment (TA first) → (DR next) can exist in a Complex Admittance but not in the real Resistance that 
uses current noise model for resistors. Considering TAs (reactive currents) and DRs (conduction currents) under 
the same voltage noise we have two orthogonal powers. The first one is reactive power PC entering the resistor 
“by” C and the second is active power PR leaving it “by” R (see [2] for details). From the well-known kT C  
noise of a capacitor at temperature T the active power PR will be the mean square voltage noise 2 VkT C  di-
vided by R. This voltage is the measurable effect we observe in the resistor (e.g. its Johnson noise) whereas the 
shot noise represented by the noise generator of spectral density 4kT/R A2/Hz (Nyquist noise) or the charge 
noise of power 24 C skT R  in C [2], cannot be measured directly because it is a charge displacement noise 
that a voltmeter cannot sense until it has produced a measurable voltage in C. Figure 2 shows this Cause-Effect 
dynamics in orthogonal domains linked by a time-related process in C that we will deal with in Section 4. 

Using Equation (1) as explained, an average rate λ  of TA-DR pairs can be estimated for a resistor of resis-
tance R in TE at temperature T. Since the reactive power PC that enters this device on average will be λ  times 
the energy ∆U set by each TA in C and PC must equate in TE the PR leaving the resistor due to its R, we have 
[2]: 

2

2

1 2
2R C

kT q kTP P
C R C q R

λ λ= × = = × ⇒ =                             (2) 

Thus, a resistor in TE would collect an average power PC by its C acting as a receiving antenna for TAs and 
would release an equal amount (on average) of electrical power converted into heat by its R. Note this picture 
for resistance R as a random set of chances to convert electrical energy into another form: usually phonons, but 
it could be photons as well (think of a radiation resistance). This discrete nature of R, or better said: of the elec-
trical noise itself, allows a direct explanation for the phase noise of electronic oscillators (their line broadening 
for example) as due to the λ  TAs associated with the resistance R of their resonators by Equation (2) [6] [7]. 

The sum in power of TA’s done in Equation (2) (e.g. CP Uλ= ×∆ ) requires to show that TAs are monoelec-
tronic events uncorrelated in time. To discard the sum in voltage of two or more overlapping TA’s (e.g. the si-
multaneous passage of two or more electrons through C) we will say that it would lead to packets of charge −2q, 
−3q, etc., not observed in experiments. Hence let us show how these TAs can be fully random in time despite 
their huge rate λ  expected from Equation (2) that gives 143 10λ ≈ ×  TA/second for a 1 kΩ resistor at room T. 
This would explain why Johnson noise seems continuous up to frequencies well beyond microwave ones, but 
this huge λ  suggests that TAs would be prone to overlap in time, except if the transit time ctδ  of the electron 
passing in each TA was null for the noise meter as assumed in [1] [2] without proof. Let us prove here that this 
is the case, thus giving a null rise time 0ctδ =  for each voltage pulse decaying with time constant RCτ =  in 
Figure 2. 

If a TA is a small fluctuation of electric field between the terminals of the 2TD, thus a time-varying electric 
field, then it becomes a fluctuation of electromagnetic field between two points of the resistor (its terminals) at 
distance d in space. As Einstein showed in 1905, an electromagnetic signal departing midway two points sepa-
rated in space by a distance d defines simultaneity at these two points. Added to this, the relativity principle he 
extended to all physical measurements means that noise ones cannot detect absolute motion in space. This 
means that each TA will be born “midway” the two terminals of the resistor. Otherwise the sense and the speed 
 

 
Figure 2. Two-dimensional model for the source of Johnson noise 
in resistors as a discrete charge noise that undergoes a time-related 
process to become measurable (see the text).                    
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of the absolute motion of the resistor would affect the electrical noise measured between terminals. Thus, the ar-
rival of a TA in the terminals as an electrical voltage will define simultaneity for two observers measuring elec-
trical voltage at these terminals. This way, each TA becomes an instantaneous event ( )0ctδ =  for the noise 
meter that measures (and subtracts) electrical voltages appearing simultaneously on these terminals. 

This means that the noise pulses of Figure 2 have null rise time 0ctδ = , a feature allowing the passage of 
electrons between terminals independently of one another. Thus, TAs are uncorrelated in time as we have sup-
posed and must be added in power to obtain the reactive power PC. This 0ctδ =  also prevents any time over-
lapping of TAs (displacement currents) with their subsequent DRs (conduction currents) as we would expect 
from these currents being orthogonal in sinusoidal regime. This expresses in time domain the orthogonal nature 
of these two types of currents being in quadrature for any sinusoidal voltage synthesizing Johnson noise in the 
circuit of Figure 1. This noise model just described is not far from the “thermal agitation of electric charge” 
written in 1928 by J. B. Johnson [8] and H. Nyquist [9] in the titles of their pioneering works. 

3. Electrical Noise, Brownian Motion and the Fluctuation-Dissipation Theorem 
The complex impedance used in [3] to deal with electrical noise under the Fluctuation-Dissipation framework is 
close to the admittance of Figure 1. We must say, however, that although this circuit has a resistance and a noise 
generator similar to those appearing in the model used today for the electrical noise of resistors, the new model 
[2] is by far more general because it not only includes C, but also generalizes R to include any ohmic and non- 
ohmic (differential) resistance defining the conductance ( ) ( )1G Rω ω=  of the admittance  
( ) ( ) ( )Y j G jBω ω ω= +  of the 2TD at hand. This ( )Y jω  leads to consider the noise voltage ( )v t  as the 

time-varying signal that links noise currents through ( )G ω  with noise currents through the susceptance 
( )B Cω ω=  at each frequency ( )2πf ω=  in the sinusoidal regime that underlies the Fourier synthesis of 

Johnson noise. 
Considering a voltage noise ( )v t  as synthesized from sinusoidal terms ( )nv t , each noise current ( )Pi t  

through the conductance 1G R=  will be a sinusoidal current given by: ( ) ( ) P ni t G v t= ×  (see Figure 1), thus 
in-phase with ( )nv t . This is a conduction current term associated to ( )nv t  in sinusoidal regime. On the other 
hand, the noise current term ( )Qi t  associated with ( )nv t  will be this sinusoidal current: ( ) ( )Q ni t jB v t= × , 
thus a current term in-quadrature with ( )nv t . From the positive B Cω=  offered by C, any current ( )Qi t  will 
have +90˚ phase advance respect to its related ( )nv t . Hence, the time integral of displacement currents like 
( )Qi t  in C will have equal phase than ( )nv t , thus suggesting that ( )Qi t  is the Cause that integrated in time 

by C, builds the Effect ( )nv t  that synthesizes the Johnson noise of resistors or the kT C  noise observed in 
capacitors. After this brief introduction in frequency domain, let us work in time domain to link this noise volt-
age ( )v t  with the velocity noise in Brownian motion. 

To study the voltage noise ( )v t  in the admittance of Figure 1 we will replace its Nyquist noise of 4kT R  
A2/Hz by a random current ( )Nyi t  with zero mean value as shown in Figure 3, where Kirchoff’s law leads to: 

( ) ( ) ( )
d

d Ny

v t
C Gv t i t

t
× = − +                                  (3) 

Equation (3) states that any band-limited ( )Nyi t  will create both a displacement current in C and a conduc-
tion current in R because to have only a pure displacement current in C, we need a δ-like current ( )Nyi t  of in-
finite bandwidth (BW → ∞) or null duration ( )0ctδ → . In this case, Equation (3) integrated in time during 

0ctδ →  gives: 

built
qv
C

∆ =                                           (4) 

 

 
Figure 3. Circuit used to show the formal 
analogy between Johnson noise and velocity 
noise in Brownian motion.                
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where the weight q (thus a charge) of the δ-like current ( )Nyi t  has created a voltage step builtv q C∆ =  in C. 
Equations (3) and (4) were obtained in [1] and arrived at this point, we wrote: “Thus, a pure Fluctuation of 

energy is not possible in resistors because their ( )Nyi t  is band-limited as Nyquist showed by an upper limit for 
their 4kT R  A2/Hz density due to Quantum Mechanical reasons [9]. Although very pure Fluctuations of en-
ergy result in this circuit for ( )Nyi t  currents with short ctδ , they always have a non null Dissipation due to the 
conduction current during the non null ctδ  elapsed. To say it bluntly: an electron leaving one plate with a ki-
netic energy of ( )2 2q C  Joules exactly in a discharged C, is unable to create builtv q C∆ =  V in C because 
part of its ( )2 2q C  J is dissipated during its non null transit time ctδ . Thus, no paradox exists if we find this 
system dissipative in the macroscale with a huge amount of such transits giving rise to a noticeable dissipation 
of energy. Assuming, however, that these passages of single electrons between plates are energy-conserving 
events because the term ( )nGv t  has no time to dissipate a noticeable amount of energy during each short tran-
sit time ctδ , we would find a paradox due to this wrong assumption…” 

For 0ctδ =  these sentences must be reviewed as we are going to do. Let us say, however, that they were 
written with these phrases in mind: “one of the great paradoxes of statistical mechanics is how a system can be 
energy conserving and deterministic on the (molecular) microscale, and yet dissipative and unpredictable/ran- 
dom on the macroscale. The paradox is resolved by recognizing that both the dissipation and the random fluc-
tuations are associated with incomplete information about the state of the system” [10]. Let us say too that we 
also were considering the academic viewpoint given in [10] on the Fluctuation-Dissipation Theorem where it 
was nicely explained by a mechanical example using the Brownian motion of a large particle of mass M through 
a sea of small particles having random motions. In this example, a short but non null collision time ctδ  was 
used together with energy conserving collisions. Therefore, we argued in [1] that the aforesaid paradox appeared 
because the premise “energy-conserving collisions” was wrong. For 0ctδ ≠  there is no way to avoid some 
Dissipation during the interaction time ctδ  and thus, the proposed energy-conserving collisions do not exist in 
the example of [10]. 

This solves the paradox in Brownian motion but the null 0ctδ =  found for TAs could translate this paradox 
to the case of Johnson noise. Before showing how this possible paradox is solved, let us consider the evolution 
of our model for electrons giving rise to TAs. Our sentence: “an electron leaving one plate with a kinetic energy 
of ( )2 2q C  Joules…” shows the “corpuscular” model we used at this time (based on the carrier drift model for 
conduction currents). We had to abandon this model, however, replacing it by one agreeing with the wave-based 
model giving rise to 0ctδ = . The new model for conduction currents that distinguishes dissipation in TE from 
Joule effect in the resistor put out of TE by an applied voltage can be seen in [11]. 

To resume our reasoning, let us recall the formal analogy between Johnson and Brownian noises that use to be 
studied by the Langevin equation. As we have written below Equation (3), a δ-like current ( )Nyi t  of infinite 
bandwidth (BW → ∞) or null duration ( )0ctδ →  prevents Dissipation while Fluctuation occurs in electrical 
noise. Nevertheless, in the Brownian motion of a large particle of mass M through a sea of small particles hav-
ing random motions this 0ctδ →  condition looks unreal because it leads to an infinite force (e.g. to an unac-
ceptable mechanical power) in each collision. Following [10] the small particles exert, through collisions, a 
random force ( )F t  on the large one whose velocity at time t relative to the mean motion of the small ones is 
( )v t . The mean drag force on the large particle is proportional to ( )v t  through the friction factor ξ  and the 

fluctuating random component is proportional, with a coefficient of proportionality κ , to the so called statisti-
cal white noise ( )tΞ . Copying Equation (1) of [10] to have the equation of motion of the large particle, we 
have: 

( ) ( ) ( )
d

Ξ
d
v t

M v t t
t

ξ κ× = − +                                   (5) 

Equation (5) formally equal to Equation (3) suggests that the role of inertial mass M in Brownian motion would 
be similar to the role of electrical capacitance C in electrical noise. Nevertheless, taking C = 0 to study electrical 
noise in resistors would be rule whereas taking a large particle of mass M = 0 to study its Brownian motion 
would be the exception (to our knowledge). Leaving aside this “curious situation” let us resume the reasoning of 
[10] where it is written: “The aim of the fluctuation-dissipation theorem is to relate ξ  to the statistics of 

( )tκΞ ”. Using a white noise process for ( )tΞ , the mean square fluctuating force 2

0
F

 
obtained in [10] was: 

( )( )222

0

2Ξ
c

F t kT
t
ξκ

δ
= =                                    (6) 
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where ctδ  is the contact time during a collision. Below this result we read in [10]: “This is the required state-
ment of the fluctuation-dissipation theorem, relating as it does the mean square fluctuating force to the friction 
factor”. From the analogy between Johnson and Brownian noise, the electrical counterpart of Equation (6) we 
found in [1] was: 

( ) ( )( )22 2 2 4 1 4Ξ
2Ny Q

c c

kT kT kTi f
t R t

t
R

t ξκ
δ δ

= = = × ≈ ×                     (7) 

where we had to approximate the mean square ( )2
Nyi t  by the product of the flat density ( ) 4iS f RkT=  

A2/Hz by an upper frequency Qf  (Hz) derived from [9] by the expression QkT hf≈  where h is the Plank con-
stant. This Qf  is required to keep finite ( )2

Nyi t  and it would reflect the frequency region where the Nyquist 
noise ( )iS f  drops due to Quantum reasons (e.g. 6 THzQf ≈  at room T). This Qf  that limits the electrical 
power in the resistor translates by Equation (7) into an interaction time TAt∆  that we have considered as a time 
interval between TAs or perhaps a time interval to prepare each TA that would be 0.08ctδ ≈  ps at room T. 

Given the null duration 0ctδ =  of each TA in the new model we should give a reason to have a minimum 
time interval TAt∆  between TAs in a resistor in TE at temperature T. This reason should be a Quantum one 
limiting the noise power entering the device because for 0ctδ = , the rate λ  and thus the reactive power 
( )CP Uλ= ×∆  entering a resistor could reach any value. Looking for reasons to limit λ  we pass to consider 
that when an electron of the resistor takes place in a TA, an energy U∆  must be defined in C [11]. This means 
that an electromagnetic energy U∆  must pass to electrical energy located in C. To simplify reasoning let us 
consider that the electron involved in the TA exits in the volume QV  of the resistor as a “free electron” in a 
conduction band. This electron would be confined in the resistor with its cloud of charge –q distributed in the 
whole volume QV  or with its wave function 3DΨ  delocalized within QV . This state means a degree of free-
dom available to the aforesaid electron because to be in this form within QV , it would take an energy that would 
be released if an ionized donor for example would trap this electron, thus changing its 3DΨ  wave function into 
a much more localized one (e.g. a 0DΨ ). 

Our firm belief that the device used to measure influences the obtained result led us to consider that when two 
terminals are placed at distance d, capacitance C is born and a new degree of freedom becomes available for the 
aforesaid electron confined in QV . This new degree means to exist in QV , but in the form of a sheet of charge 
localized on one of the terminals of the resistor. The electron wave function 2DΨ  in this case would be local-
ized on the surface of one terminal (plate of C). From time to time the 3DΨ  wave function would collapse into 
the 2DΨ  one, thus giving rise to a TA. Using this idea we could obtain a cogent explanation on the absence of 
shot noise assigned to conduction currents in resistors under an applied voltage [11]. Each  
( )3 2D DΨ →Ψ  collapse would be a fluctuation of electric field observed simultaneously at both terminals, thus 
a TA that would give Johnson noise and that also would allow the release of heat to the lattice each time the 

3DΨ  disappeared from the volume QV  in a 3 2D DΨ →Ψ  transition. 
Assuming that for each TA taking place in the resistor an energy U∆  must be defined in C, we had to con-

sider that the Time-Energy Uncertainty principle of Quantum Physics means that a state that only exists for a 
short time t∆  cannot have an energy defined better than ( )2QE t∆ ≥ ∆ . Using QE U∆ ≈ ∆  for an hypo-
thetical device with only one “free electron” in the conduction band, the lowest time interval TAt∆  required to 
prepare each TA in this device (e.g. to have a 3 2D DΨ →Ψ  collapse) would be: 

TA TA 2TD22 2π
KRU t t C R C C

q
∆ ×∆ ≈ ⇒ ∆ ≈ × = × = ×

                       (8) 

where KR  is the von Klitzing constant [12]. 
Therefore, the product of the resistance ( )2

2TD 2πKR q R= =  and the capacitance C would give a time 
constant TA 2TDt R C∆ = ×  limiting the reactive power entering C because the highest rate of TAs in this hypo-
thetical device would be: ( ) 1

2TD1  sQ R Cλ −= × . Taking a discharged C shunted by a high resistance to have 
negligible dissipation during each TAt∆ , let us imagine a series of alternating TA’s taking place in this resistor. 
The first TA with sign “up” (TA↑) would set a voltage of q C+  volts in C and the next TA with sign “down” 
(TA↓) would reset it to zero volts. A third TA↑ would set q C+  volts again and so on. This would create in C 
a square voltage wave oscillating between zero and q C+  volts with a 50%η =  duty cycle as shown in  
Figure 4. If a resistance R2TD sensed this voltage, the active power it would convert into heat on average (e.g. 
the mean power PR dissipated by R2TD) would be ( )2q C  divided by R and multiplied by η . This active power  
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Figure 4. Hipothetical generation of a square wave of 
Johnson noise at the maximum rate in a single-electron re-
sistor.                                                 

 
leaving as heat this hypothetical device should not surpass the maximum reactive power QP  entering its C by 

Qλ  TAs per second. 
Equating PQ to the power PR dissipated by R2TD in these conditions and using Equation (8) for TAt∆  we have: 

2 2 2 2

2TD 2
2TD

1 1
2 2 2 2Q Q R
q q q qP P R
C C C C R q

λ= × = × = = × × ⇒ =




                   (9) 

If a 2TD 4.1 kR ≈ Ω  really shunted C, the voltage wave would look like that depicted by dashed lines in  
Figure 4 and Equation (9) would become more complicated. Thus, R2TD would be a resistance that multiplied by 
C gives an estimation of the minimum time interval between TA’s for an electron able to give a TA in the device. 
This Qλ  is an upper limit for conducting electrons that could be observed in nanodevices with few electrons 
involved in conduction processes but the huge number of carriers in macroscopic resistors would make valid the 
limit Qf . Note that the waveform of Figure 4 only seeks to show the electrical meaning of R2TD. This periodic 
voltage wave only is an unlike situation because due to the randomness of the TAs, there would be an added 
“jitter” in each TAt∆  given by Equation (8). We refer to the fact Equation (1) for the energy U∆  considered a 
discharged C, but this null voltage only is the mean and most likely value. The actual situation, however, would 
be the one we have left aside where some positive or negative charge could exist in C due to preceding TAs. In 
this case U∆  would vary randomly with time and so would do the series of TAt∆ . This would add a jitter in 
time to the waveform of Figure 4. 

It is worth noting that with these limits ( 1
TA1  sQ tλ −= ∆  or the Qf  limit) the random series in time of inter-

actions giving rise to electrical noise is tractable as a random series of collisions suffered by corpuscular elec-
trons randomly wandering in the atomic lattice of Solid-State devices with a mean collision time TAct tδ = ∆  or 

( )1 2c Qt fδ =  respectively. This model leads to a Lorentzian spectrum for the Johnson noise of macroscopic 
resistors whose cut-off frequency Cf  uses to fall in the tens of GHz for ctδ  in the picosecond range. Taking a 
mean collision time 8ctδ =  ps for these electrons colliding within the atomic lattice of a resistor of R = 1 kΩ 
we have 20Cf =  GHz, thus 6C Qf f ≈  THz at room T. This leads to think that the random wandering of 
these electrons within the volume QV  of the resistor really takes place and prevents the observation of the Ny-
quist limit Qf  at room T for example. To say it bluntly: the flat noise density 4kTR V2/Hz decaying as 21 f  
from 20Cf f≈ =  GHz hardly would be useful (measurable) at frequencies 6000Qf f≈ ≈  GHz to show the 
Nyquist limit. Added to this, a lower cut-off frequency RCf  could appear due to the bandwidth limit set by Cstr, 
the stray capacitance added by the wires connecting the resistor to the front-end stage of the noise voltmeter or 
spectrum analyser. 

Taking str 0.1C ≈  pF, the time constant str 100RC RCτ = =  ps that results for R = 1 kΩ means that the flat 
Johnson noise 4kTR V2/Hz decaying as 21 f  from frequencies 1.6RCf f≈ =  GHz hardly would be measur-
able at Qf f≈  and even at 20Cf f≈ =  GHz. However, this RCf  limit due to the electronics recalls that the 
inner material of the resistor behaves as an RC circuit due to its non-null dielectric relaxation time matτ . Al-
though this effect of matτ  could be taken into account easily by adding a small capacitance to strC  [4], the 
physical meaning of matτ  raises a problem. For mat 1τ =  ps that would be typical for n-type silicon this means 
that a charge unbalance within the volume QV  of the resistor would disappear from its volume towards its sur-
face with lifetime mat 1τ =  ps. Thus, it is hard to imagine a negative point charge like a corpuscular electron 
wandering within QV  with mean collision time 8ctδ =  ps, whereas its lifetime only is mat 1τ =  ps within 

QV . This led us to consider a free electron in a resistor of volume QV  as a distributed dipole in this volume 
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where its negative charge cloud would screen an equal but positive charge +q also distributed in QV . Otherwise 
the electron cloud would leave the inner volume going towards the surface. The spatial distribution of this cloud 
would be described by the 3DΨ  wave function. With this model and the 3 2D DΨ →Ψ  collapse we propose for 
each TA, the absence of shot noise assigned to conduction currents in resistors was explained and a new view-
point on the Joule effect in Solid-State resistors was found [11]. 

4. The Arrow of Time and Electrical Noise 
Observed on the screen of an oscilloscope Johnson noise looks continuous as time passes and independent of the 
sense time flows. We would say that this random waveform would not show an arrow of time, thus being similar 
to the undamped oscillation of [13] concerning this point. Nevertheless, the Cause → Effect dynamics of this 
noise at microscopic level indicates that the law of causality plays a key role. The deceptive absence of an arrow 
of time in the macroscopic waveform would show limitations of our noise meter lacking the speed (bandwidth) 
and amplitude resolution required to resolve the huge rate of voltage pulses like those voltage decays of Figure 
2 that would form this noise. Thus we have a discrete model for electrical noise where the arrow of time that ex-
ists at the microscopic level in each DR seems absent in the macroscopic Johnson noise measured between ter-
minals. 

Arrived at this point, let us consider these sentences about vacuum in [13]: “In fact, the ‘vacuum’ is generally 
recognized as a kind of quantum field, or quantum ‘media’ in modern physics. From experiments, the ‘vacuum 
fluctuations’ has been discovered. Therefore, similar to the previous case with macroscopic dissipative force in 
the above section, ‘the arrow of time’ should also exist in the microscopic world”. Agreeing with these sen-
tences we would add a quotation to the last one by considering an experiment based on the “empty resistor” of 
Figure 1 (two parallel, metallic plates in vacuum) that could be considered a parallel-plate capacitor as we used 
to do before writing [5]. This empty resistor allows avoiding subtleties linked with conduction currents in solid 
matter, which is replaced by vacuum at temperature T revealed by its background radiation for example. Now let 
us consider this empty resistor embedded in this vacuum and in TE with it at temperature T. This 2TD where the 
capacitance C of its parallel-plate capacitor structure would be shunted by its dynamical resistance R at this T [5], 
is thus a 2TD that would show flat Johnson noise 4kTR V2/Hz up to its cut-off frequency given by  

( )1 2πCf RC=  [2]. 
This 2TD also would be a capacitor at temperature T that would show a mean square noise voltage of kT C  

V2. No matter we consider Johnson or kT C  noise because they are equivalent, this voltage noise would be 
sustained in time by a series of TA’s taking place between its terminals (plates of C). Thus, C would be an an-
tenna collecting TAs of energy U∆ . This leads to a parallel-plate capacitor of capacitance C coupled with its 
surrounding vacuum through a random set of discrete TAs that we could assign to some resistance R in parallel 
with C by Equation (2). This R would be the dynamical resistance R we met in [5] trying to find an inexistent 
lossless capacitor at 0T >  and it would lead to dissipation of electrical energy reflected by an active power 

RP  dissipating the active power CP  entering this device through the TAs collected by its C. Note that for 
0T > , a weak electron cloud would surround each plate due to thermionic emission, thus giving rise to this R 

[5]. This way, the equality C RP P=  would hold for this 2TD in TE with its surrounding vacuum at 0T > . 
Let us note here that TAs are fluctuations of energy in electromagnetic form, thus a form “not tied” to the 

time flow required to observe dissipation of electrical energy: recall the way a pure fluctuation of electrical en-
ergy was obtained in Equation (4) by freezing the time flow around an instant. From this idea we could say that 
TAs causing noise are not in the “world” (axis) where their effects requiring a time flow to be observed and 
measured are (see Figure 2). One would say that the random train of δ-like current pulses called TAs is a charge 
noise insensitive to the passage of time in one sense or another (e.g. its random power along the arrow of time is 
equal to the random power we would find going backwards in time). Thus we could say that this electromag-
netic cause of electrical noise would be quite insensitive to the arrow of time. 

The time-asymmetry viewed as an arrow of time associated to dissipation [13] appears once this cause suffers 
a time-related process due to C. We refer to its integration in time by the capacitance C that is an unintentional 
but unavoidable process in our physical world where two conductors at some spatial separation d show a ca-
pacitance C. This integration has an important effect because it converts electromagnetic energy (the fluctuation 
of the electric field) into electrical energy located in C, a form of energy bearing a measurable voltage difference 
between the terminals of the resistor. This energy conversion strongly recalls dissipation, where electrical en-
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ergy stored in C is converted by R into heat that leaves the resistor towards its surrounding universe. Note that as 
soon as electromagnetic energy from “the vacuum between plates” suffers this time-related process in our device 
at hand (the empty resistor of Figure 1), dissipation is born because the energy thus accumulated in C tries to 
diffuse outwards and starts to decrease with time. This shows an arrow of time in each microscopic DR although 
the macroscopic noise would not reveal it. Only at very low T and with very high R values (e.g. at λ  rates of a 
few ATs per second) this Johnson or kT C  noise would look like that of Figure 2 (e.g. discrete). 

“Dissipation is born” also means that we start to have conduction currents in-phase with any sinusoidal volt-
age synthesizing Johnson noise in the resistor. This is Ohm’s Law leading to a striking “arrow of energy conver-
sion” in sinusoidal regime. We mean that the product of a sinusoidal voltage by a sinusoidal current due to the 
existence of such voltage (thus proportional to it or in-phase with it) always leads to dissipation of electrical en-
ergy as time passes no matter the sense of this passage. This is so because the mean value of such product (mean 
active power) always is a non-negative value. This electrical energy per unit time must leave the 2TD where 
these magnitudes are found in phase because for voltage and current in-phase, this energy loses its electrical 
form and it no longer can remain in the electrical admittance of the 2TD. This means leakage of electrical en-
ergy in the circuit as time passes, hence the name “dissipation” for this leakage, usually in the form of heat. 

Quite the contrary, the product of a sinusoidal voltage by a sinusoidal current that is in-quadrature with it, 
only gives a sinusoidal fluctuation of electrical energy in the 2TD where these sinusoidal magnitudes are found. 
This is a lossless fluctuation at twice the frequency of the voltage or current terms. In this case the electrical en-
ergy keeps its electrical form as it fluctuates with time. This in-quadrature condition appears when the current is 
proportional to the change with time of the voltage (e.g. to v t∂ ∂ ) not to its existence. To keep electrical energy 
without losses in a 2TD requires keeping sinusoidal voltage and current oscillating in-quadrature. When this ex-
act 90˚ phase difference between voltage and current is lost, dissipation or some in-phase current appears to-
gether with the arrow of time linked with the damping oscillations considered in [13]. 

Thus the quotation we would add to this sentence: “the arrow of time” should also exist in the microscopic 
world” [13] would be to say that in electrical noise the arrow of time appears at microscopic level once each 
fluctuation of electromagnetic energy in vacuum suffers a time-related process by which it becomes located in 
some volume of the space by a quantizing element like C. This is a process that changes the electromagnetic 
form of the energy into a located form like electrical energy in C and once the energy has been located in space, 
we would start to observe its dissipation, its related arrow of time and even its gravitational field considering its 
mass. Let us end this Section by recalling that measuring needs a time flow because in a null elapsed time no 
energy/mass can be exchanged with the 2TD under test. Thus, no information can be obtained nor measured 
without a time flow. Note that TAs are not an exception to this impossibility of instantaneous displacements of 
energy/mass in space because the electrical energy U∆  suddenly appearing in C after a TA already was there, 
but in electromagnetic form. The time interval TAt∆  to prepare a TA, see Equation (8), likely is the time the 
fluctuation U∆  needs to appear or to be built in this electromagnetic form measured as an instantaneous dis-
placement of charge in space. Finally we will say that this instantaneous passage of the electron as a whole in 
each TA that we have handled for electrical noise led us to leave aside existing models that consider electrical 
current as a continuous fluid where a fraction of electron can pass between terminals of a 2TD in a given time 
interval. This approach that is prone to appear when one oversees the capacitance C of a 2TD should be consid-
ered with care, however. These cautious words: “conductor of pure resistance R” written by H. Nyquist in [9], 
likely reflect that the device “resistor of pure resistance R” does not exist in our physical world as we have con-
sidered and wrote in [5]. 

5. Conclusions 
Our firm belief that electrical noise in resistors should reveal the discrete nature of electrical signals led us to 
propose a new model on its origin. This model that is discrete in time treats electrons as electromagnetic waves 
(displacement currents) across two-terminal devices like resistors. In some circumstances, this model could ex-
cel or complement other models based on point charges wandering and colliding within the solid matter. 

This new model on the origin of electrical noise considers that the two-terminal device required for its meas-
urement becomes a system that offers degrees of freedom for the energy form that gives the measurable effect. 
For Johnson noise this form is electrical energy, hence the key role played by the electrical capacitance C be-
tween terminals of resistors. This C would define the packets of electromagnetic energy to be converted into an 
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electrical form located in the resistor by its complex admittance. Once the energy is located in this way, the 
consequences associated to energy/mass located in a volume of space would start to be observed. 

One of these consequences is the appearance of dissipation of the electrical energy stored in C by its inner 
electric field and the appearance of the arrow of time related with this process. Since our noise model shows dis-
sipation for each microscopic event building Johnson noise in resistors but this macroscopic noise would not 
show such a clear arrow of time when viewed by an oscilloscope, this new noise model we have used could help 
to better understand the arrow of time at microscopic level in other noisy processes. 
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