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ABSTRACT

There are two kinds of spin particles in nature, the Boson and the Fermion.
Those with integer value spin 07, 14, 2h...are called Bosons, with half-integer value
spin #/2, 3h/2, 5h/2...are called Fermions. It is well known that everything in the
universe is made of Bosons and Fermions.

The spin representations of Boson and the Fermion in conventional quantum
mechanics are expressed by Hermitian matrices, which are finite dimensional
matrices.

Are there so-called the Third Kind Of Particles (TKP), for an example, whose
spin maybe #/3, h/4, h/5, h/6..., which are neither Bosons nor Fermions?

This article concerns about the possible math figure of TKP. More detailed
material related to derivative process and ideas evolvement of TKP are given.

keywords

The Third Kind Of Particles TKP; Boson; Fermion; Hermitian matrices;
non-Hermitian matrices; Hermitian self-adjoint; positive definite non-Hermitian
self-adjoint; finite dimensional matrices; infinite dimensional matrices

Introduction

All physical observables of conventional quantum mechanics are Hermitian
operators. These Hermitian operators Z are defined in Euclidian Space. They satisfy
the so-called Hermiticity relation Z*=Z and have real eigenvalues.

But we know that some non-Hermitian operators could also have real
eigenvalues; some operators possessing real eigenvalues might be non-Hermitian
operators. The Hermiticity of an operator is only a sufficient condition, which
guarantees real eigenvalues, it is not a necessary condition.

In recent years, much intensive research efforts have been made in the field of
non-Hermitian Hamiltonians with real eigenvalues by PHHQP cite: [1], International
Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

This paper focuses on the topic of the construction of non-Hermitian angular
momentum:

1) Non-Hermitian orbital angular momentum operator LLj are given, we find the
eigenvalues of non-Hermitian orbital angular operator L3 can be nonintegral and the
wavefunctions of L3 still remain to be single-values

2) Non-Hermitian spin angular momentum operator éj(;) (=1, 2, 3) are given, we
find the eigenvalue n of non-Hermitian spin operator 51%) can be those of neither

Bosons nor Fermions, such kind of spin particles are called The Third Kind Of
Particles, TKP. TKP exist in three system, which are not Anyons.
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O Why DOeS conventional spin angular momentum only......

Conventional Spin Angular Momentum Only

Possess Eigenvalues with Integer and Half-integer ?

a) Using commutation (1) that between angular momentum operator J?> and
operator Js

[32,3:]- = 0 (1)
and two eigen-equations (2),(3)
P, 2y = pp,A), p =0 a (2)
Blw, Ay = A, A, 2> >0 9 3)
obtain
(2 - P = (@ - ) A) 4)
b) As J2 = J3+J3+J3, another eigen-equation (5) is given as
G + DAy = Q2 = BRI d) = (- D), A) (5)

Due to J? + J} is positive Hermitian operator, (5) implies

PREPEISN (6)
or A* < pu (7
(7) means So A2, or A is restricted by u! (8)
or by following two recurrence conditions (12),(15) 9)
or by following two formulas (14),(17) (10)
or by being restricted under conditions (21),(22) (11)
c) Further, there exist a top state |u, Amax) Such that it can’t be raised, suppose
I, Amax) = 0 (12)
then
J_J+ |‘Ll, /Imax> = O
(\]2 - J% - J3) |t Amax) = 0
(,u - )vgnax — /ﬁtmax) |,U, /lmax> =0 (13)

(13) showing that
‘LL = /Ir2nax + ;Lmax * (14)




d) Similar processing, there exist a bottom state i, Amin) such that it can’t be

lowered, suppose A = Amin. that is
J7 |ty Amin) = 0
then
It U, Aminy = 0
(32 = 33 + 33) |, Amin) =
(1 = Ajin + Amin) |1 Amin) = O

(16) showing that

e) From % (14) and &, (17), get

H = lrznax + Amax = lrznin = Amin

obtain
)vmin v = _A«max

f) There are k states between |u, Amin) and |g, Amax)
k = Amax - Aminv = lmax - (_lmax) = 2lmax
hence the maximum value of angular momentun of particle is

Amax = K/2
where k = 0,1,2,3...

Two important expressions (23) and (24) are given, see below:

g) Substituting (21) into (14), obtain the eigenvalue (23) of J?
o= Adax + Amax K = Amax(Amax + 1) = K2 (K2 + 1)
h) The dimensional formula D of angular momentum is given by (24) ,
D = 2Amax + 1 = k+ 1

Formula (24) is suitable for both orbit and spin.

i) For orbital angular momentum, its eigenvalue state |u, A) (3) leads

take k = 0,2,4,6,...
eigenvalue of orbital Amax = k2 = 0,1,2,3,... integer
dimensionality of function D = 2Amx + 1 = 1,3,5,7...

(15)

(16)

(17)

(18)

(19)

(20)

21)
(22)

(23)

24)

(25.1)
(25.2)
(25.3)



J) For spin angular momentum, its eigenvalue state |u, A) (3), there are two
choices of k. leads two kinds of spin particle as below

The First Kind of Particles : Boson Particles:

take k = 0,2,4,6,...
eigenvalues of spin  Amax = k2 = 0,1,2,3,... integer
dimensionality of matrix D = 2Amax + 1 = 1,3,5,7...

The Second Kind of Particles : Fermion Particles:

take k = 1,3,5,7,...
eigenvalues of spin  Amax = K2 = 1/2,3/2,5/2,7/2,... half-integer
dimensionality of matrix D = 2Amx + 1 = 2,4,6,8, ...

O Wh at Wl” Happen If Condition (6) Is Broken ?
If Condition (6) Is Broken ?

A) Obviously if: the restriction (6) or equivalent to (9) or (12), (15) on

operation J*|u, A) and operation J-|u, ) are removed, then there will appear infinite

eigenvectors |, Aj) of Js:

Jslu, Aj) = Ajlw, Aj)
or J = Amax = +©

j = lmin = —©

B) Specially further if: the restriction (6) or (7) is broken, and is changed
into the restriction (30) or (31)

u-—-A* <0

or A* > pu
(30) implies: eigenvalues (5) of J} + J3 should be less than zero, that is
(I3 + )|, A) = (u — A?)|u, A) = (negative eigenvalues) |, A)

(32) shows:
J? + J% is no long a positive definite operator

Hence J; is non-Hermitian operator !

J2 is non-Hermitian operator !

C) Formula (34) is one of author’s motivation for being engrossed in
Non-Hermitian angular momentum and TKP.

(26.1)
(26.2)
(26.3)

27.1)
(27.2)
(27.3)

(28)
(29.1)
(29.2)

(30)
€2))

(32)

(33)
(34.1)
(34.2)



O The Flow of This Paper
Consists of Three Parts:

Part 1
Why does ...... ? 5 What Will happen If .....

Non-Hermitian Spin Angular Momentum T

0

1

2 Non-Hermitian Orbital Angular Momentum L

3 Eigenvalues and Eigenvalues Functions of L

4 The Recurrence Formulae of Normalized Wavefunctions ®mn: CmEmn

Part 2

5 Semi-Infinite Dimensional Matrices I1{): Spin Hierarchy (SH)

6 Infinite Dimensional Representations ct,fin) : Chaos Spin Hierarchy (CSH)
7 Spin 0 CSH {0,+0, (+)}, Qj+0

8 Spin #/2 CSH {3/4,+1/2, (1)}, Qj.n

9 Spin 7/3 CSH {4/9,+1/3, (+)}, Ajii

Part 3

10 Non-Hermitian Momentum ﬁ’), Phase Factor of Fractional Statistics
11 Conclusion
Appendix : Infinitesimal Rotation of TKP

In chapter 0, After reviewing the math picture of angular momentum in
conventional quantum mechanics, author postlates the key to TKP is to define the
construction of non-Hermitian angular momentum operators and to extend the
dimensionality of matrix representations of those operators to semi-infinite
dimensional, infinite dimensional space.

The possible math figure of TKP

Ji and J, should be infinite (semi-infinite) dimensional non-Hermitian matrices (35)

J2 and J; are infinite (semi-infinite) dimensional Hermitian diagonal matrices (36)

ﬁ
Chapter 1 introduces non-Hermitian two dimensions spinor matrices T, which
. . ﬁ .
contain one space variable ¢. In space 0=h(p), T are good spin operators.



In chapter 2, T are applied to construct non-Hermitian orbital angular
momentum operator L in space 0=h(¢)g(0).

Chapter 3 shows that L3 can present nonintegral eigenvalues and the
wavefunctions of Lj still remain to be single-values.

In chapter 4, it is marvellously revealed that the recurrence formulae obtained
from rising operator L, and lowering operator L_, are no bounded.

The substance from chapter 2 to chapter 4 are related to space coordinates.
And the mathematical underpinnings of the next five chapters, chapter 5 to
chapter 9, are tightly relevent to matrices whose math elements are pure complex

numbers.

Chapter 5 introduces notions, ket vector |m, n) and bra vector (m,n|| = (m, nja
with m = 0,1,2,3..., to construct the bases of linear space, in which
semi-infinite dimensional matrix representations Hj(;) of orbital angular momentum
Lj of TKP are given. HJ-(f]) are called Spin Hierarchy (SH)

Chapter 6 extends the range of quantum number m to be m = 0,%1,£2 3. ..,
then infinite dimensional matrix representations, E_,J(in) are obtained. E_,J(in) are called

Chaos Spin Hierarchy (CSH)

The values of quantum number m quoted in chapter 5 and chapter 6 is ranging
between 0 and oo, as expected in chapter O.

In order to illustrate the character of CSH, three typical spin particles are
analysed in Chapter 7, 8, 9.

Chapter 7 is Boson case Qj.o of CSH, where quantum number n = n, = 0.
Q.0 named Island Operator, has three diagonal blocks in its matrix representations.

Chapter 8 is Fermion case Qj.i» of CSH, where quantum number
N = Nup = +1/2. Qj1» named Island Operator, has three diagonal blocks in its
matrix representations.

In chapter 9, quantum number n is taken to be the greatest non-integer and
non-half-integer, Ny = +1/3. Use symbol Aj.i3, named Ocean Operator, for
CSH matrix representations, that has two diagonal blocks.

Chapter 10 studies non-Hermitian momentum ﬁ, investigates a special practical
applications of gauge invariance in space f(r)g(f)h(e). It is argued that the
phenomenon of phase factor of fractional statistics could be explained by the
concept of TKP which are more physical realistic than Anyons are.



1 Non-Hermitian Spin Angular

—

Momentum T

We start from an example of 7#/2 spin angular momentum, its spin representation
(1) 1s the well known 2x2 dimensional matrix. Its three components Si, S, S3 are
all Hermitian matrices (2) and their eigenvalues are all +#/2.

§:L01L0—iL10
2V10 ) 2040 ) 20 041

St =S, S5 =S, Si =S

ﬁ . . .
S satisfies commutation relations

SjSk — SkS; = iAS

J,k,1 = 1,2,3 are circulative. For convenience, sometimes we choose #A=I.

1.1 Non-Hermitian Spin Angular Momentum T

Now introduce a set of new operators as following

N
T

1 0 e 0 —in  —ixe® 0 K ne’e
2 etie () > 2 icetio ”7 > 2 _ne+i(p K

where «,n are real numbers and

Ti = T3 = T3 = ., K2 —n2 =1
Ty, T2, T3 obey commutation relation
— — =
T xT = 1T

Obviously T; is a Hermitian matrix, but T, and T; are non-Hermitian matrices.

Ti = Ty, T3 # T, T3 # Tj

but the eigenvalues of T, T», T3 are still real numbers +1/2.

(1)

2)

€)

4)

©)

(6)

(7

Note

when n approaches to zero, ﬁ(4) back to §(2)
In the following paragraphs, it is shown that the math defect (7) of T

could be corrected from researching the inner product space of spin operator.




1.2 Hermitian Self-Adjoint Representation of Operator Z:
Hermitian Operator Z+ = Z

Frist, we define the inner product space
()= [drfg = (@0 (8)

superscript sign * is complex conjugatioin. (8) represents integral for continuous
variable, and represents matrix scalar multiplication for discontinuous variable. f
and g are the vector functions in inner product space.

Then, adjoint operation representation of an operator Z in inner product space
(8) can be defined as the operator Z* such that

(g, 2f) = (f,Z9)* = (Z9.1) %)

Where
(g.2*f) = ((,209)* < Zt = (Z*)~ (9.1)
.29 = (Zg.f) <= (9 = (@D 9.2)

~ denotes transpose of a matrix Z. If the right side of (9) satisfies

(Z9,f) = (9, 2f) (10)
then (9) becomes
(9,27) = (£, Z29)* = (Z9,f) = (9,Zf) (11)
we get operator relation
Zt =7 (12)

In case of (12), operator Z is said to be "Hermitian self-adjoint", or to be
"self-adjoint" or "Hermitian". As yet all the operators of conventional quantum
mechanics are postulated to be Hermitian operators. Sometimes, space (8) is called
Hermitian Space. Operator Z satisfying formula (9) is said to be "positive definite
operator" in inner product space (8).



1.3 Positive definite non-Hermitian Self-Adjoint Representation of Operator Z:
Non-Hermitian self-adjoint Operator Z¢ = Z

Extending the definition (8) of the inner product space to space (13)
(af, ) = [ de(ag = (g, af)"

Here o is a metric coefficient operator. o*=0, o is introduced to be the sign
of the curve of space. when a - 1, (13)—(8), space is flat.

Hermitian Space (10) is flat space; when o #+ 1, space becomes bent and
warped.

Positive Definite Non-Hermitian adjoint operation of an operator Z in inner
product space (13) is defined by operator Z®, "@" called circled dag, such that

(0g, 2f) = (af, Zg)*
If z® = 7

then the Z is said to be "Positive Definite Non-Hermitian self-adjoint Operator".
in case of (15), cite: [2]

Next we are going to seek for the explicit expressions of Z®, in the case of Z
that are derivative operator (A) and matrix operator (B).

(13)

(14)
(15)



A) Firstly, turn to the definition (14) of adjoint representation 6% of a derivative
operator 0x = -Z-,we have

[ dx@gy-agt = ([ dx(an-o.9)*

We know what is O, but not know what 0f means, we want to find out the
explicit expression of operator 0F in the left side of (16).

From the right side of (16), (F = af), we have
(_[ dx(af)*oxg)* = Idxafaxg* = IdxFaxg* = Fg*§ - J.dx(axF)g*
=0 - J.dx(axF)g* = —I dx(oxaf)g* = —I dxg* (oxaf)
S j dxg*[a(dxf) + (Bxo)f] = — j dxg*[0dx + (Bxa)]f
From the left side of (16), we have

j dx(og)*oPf _[ dxoxg*oPf I dxg*(o*)~oFf

_[ dxg*otoPf I dxg*ooff

Comparing formula (18) with formula (17), we deduce that

[ dxgraopt = - [ dxg*[0ox + (@)
further
oY = —0ox — (Ox0)
0¥ = —0x — o' (0xa)
and
(—iox)® = —iox — o 1(oxe)
(—i0x — i a10x)® = —idx — i3- a0k

B) Secondly, turn to the definition (14) of adjoint representation Z® of a matrix
operator Z in inner product space (af, g). Postulating

a1 a
o = PP ot = o, Deta = 1
a3 04

then base on (0g, Z®f) = (af, Zg)* (14), following we can find the explicit
expression of matrix operator Z9:

(16)

(17)

(18)

(19)

(20)
21

(22)
(23)

24)



From the right side of (14), we have

(af,Zg)* _ (fl,f2)*( a; o )( 7y Iy >( 01 ):|
B a3 o4 13 14 o))
- (gl,gz)[( o )
B a3 04
= (91,92)* ( a1 )
| as 04

= (01,02)* ( a1 o

o3 04

(Zl 22) (M 25)

From the left side of (14), we have

@
f

(ag, Z2%f) = (g1 02 )*( o )( oo ) .') (26)
as o4 13 14 fa

Comparing formula (26) with formula (25), we deduce that
® +
o] o2 VAR A o] o) VAR A)
a3 04 13 74 a3 04 13 14
+ + +
I3 14 a3 04 13 14 a3 04
Further obtain
&) -1 +
13 14 o3 04 13 14 o3 04

2% = a7 'Zta (29)

or

Note
Positive definite non-Hermitian Self-Adjoint Representation Z® of Operator Z

when Z is derivative operator Z = 0y, then 0¥ = —0x — a1(6x0) (21)
-
will be used in constructing non-Hermitian ortital angular momentum operator L

., . _)
and non-Hermitian momentum operator [P

when Z is matrix operator, then Z% a'Zta (29)

ﬁ
will be used in constructing non-Hermitian spin operator T, just see next......




1.4 Non-Hermitian Spin Angular Momentum Operator T Is a Good
Operator

Again pay more attention to the fact: T{ = T,, T3 # T,, T3 # T3 (7)

T, is Hermitian operator, however, T» and T; are not, so math symbol
Hermitian adjoint "+" is not a good adjoin operator operation for non-Hermitian

Spin Angular Momentum Operator T.

Now, instead of Hermitian adjoint operation, dag "+", by a new math symbol
adjoint circled dag "®"

"+ (9) = "@" (14)

Hermitian Adjoin =  Positive Definite Non-Hermitian Adjoint

Base on the definition formula (29), we try to find out a suitable metric
coefficient operator o (24), which can ensure the following math operations

T® =T, T® = T,, T? = Ts

In what follows we are going to show how to approach the goal.

Matrices T, T», T3 can be expressed by matrices Si, Sz, S3 as following

Ty = cos@S; + sin @S,
T, = x(cos @S, — sin ¢S;) — inS;
T3 = +in(cos Sz — sin S;) + KS3

Firstly, taking the adjoint operator [T]ea of T. we gain

[T,]® = cos @[S1]® + sin @[S,]®
+cos @S| + sin Sy + cos {[S1]® — S} + sin @{[S2]® — S,}
Ti + cos @{[S1]® — Si} + sin @{[S2]® - Sy}

[T2]® = +4k(cos @[S2]® — sin @[S;]®) + In[S3]®
= Kk(cos ¢S, — sin ¢S;) — InS3
+ k4 cos p{[S2]® — S2} — sin@{[S1]® — Si}} + in([S3]® + S3)
= T> + x{cos {[S2]® — Sy} — sin @{[S1]® — Si}} + in([S3]® + S3)

Lo |
=
(98]
—_
®
I

—in(cos @[S2]® — sin @[S;]®) + k[S3]®

= in(cos S, — sin pS;) + kS3

— in{cos ([S2]® + S2) — sin@([S1]® + S1)} + x([S3]® — S3)
T3 — in{ cos @([S2]® + S2) — sin@([S1]® + S1)} + «([S3]® — S3)

(30)
€2))

(32)

(33.1)
(33.2)
(33.3)

(34)

(35)

(36)



From the above three formulas, it is obviously that if [ﬁ]@ = T: the following
three formulas must be satisfied

cos ([S1]® — S1) + sin([S2]® — S2) = 0 (37)
+ k4 cos p{[S2]® — S2} — sin @<{[S1]® — Si}} + in([S;]® + S3) = 0O (38)
— in{ cos p([S2]® + S2) — sin @([S1]1® + S1)} + x([S3]® — S3) 0 (39)

Up to now, math expressions (37),(38),(39) are just formalities, we should design
a concrete Positive Definite Non-Hermitian Adjoint operation.

After careful exploration, at long last the suitable candidate (24) is found out ! ,
that could satisfies requirements of (37),(38),(39). we get

g-io
a:(‘“‘“) :h(¢)=K+2nT1=( oon ) (40)
as o4 net'?

Det h(p) = 1. k%2 -n* =1 (41)

where

Applying (1) and the definition (29) of adjoint operator of operator 7-5S in
inner product space (of, g)

% = o''Z'a = S® = a’lSta (42)
after calculation (43)
[S1e = L[@1° = Lnp)'Shp) (43)

then the adjoint operator S can be expressed in terms of Sj and Ty, namely

[01]® = o) + 4insineT; = [Si]® = S; + 2insin Ty (44)
[02]® = 062 — 4incos ¢T3 = [S2]® = S; — 2incos ¢T; (45)
[03]® = o3 + 4inT = [S3]® = S3 + 2inT>» (46)

Put the above three expressions into (37),(38),(39), and use following formulae
(47.1),(47.2),(47.3)

Ty =+ cos @S; + sin @S, (47.1)

kT, + inTs —sin @S; + cos ¢S, (47.2)

S (47.3)

KT3 — iT]Tz



Then, we can obtain following expressions (48),(49),(50), further (37),(38),(39)
are verified. see below processing:

The left side of (37)
cos p([S1]® — S1) + sin @([S2]® — S»)

cos @(+2in sin T3) + sin @(—2in cos ¢T3)
0 The right side of (37) (48)

The left side of (38)

= +x{ cos p{[S2]® — S2} — sin{[Si]1® — Si}} + in([S3]® + S3)
= +x{ cos p{-2in cos ¢T3} — sin @{+2in sin T3} } + in(2S; + 2inT>)
= +2in{ — kT3 + S3 + inT» } = 0 The right side of (38) (49)

The left side of (39)

= —in{cos ([S2]® + S;) — sin@([S1]® + S1)} + x([S3]® — S3)
= —in{ cos (2S, — 2incos T3) — sin @(2S; + 2insin ¢T3} + x(2inT>)
= -2in{ cos ¢S, — sin @S, — inT3 — kT>2} = 0 The right side of (39)  (50)

The above three formulae could ensure TF(34),T$(35),T$(36) to equal to
T1,T2, T3, [ TP=T,, T$=T2, T$=T3 (32) ] or (51)

[T1® = T (51)

Next, using (29), we can again directly prove (51).

h™' (@) TTh(e)

e -neie Y, (0 e—i<0 ok peie
—nete i 2 g+ netie
L ( K —ne—ifp 0 e- ip K ne ip
o 2 \ _T’e+i(p K e+l(p T’e+l(p
B [ & —ne- Keie
B \ —nete  x Ke“‘/’

_ [ 0 | (k2-n?)e-ie _ L 0 e-io _ T, (52)
\ (K2_n2)e+l(p 0 2 eHo

[T,]®

o=

o=



[T2]® = h™'(p)T3h(p)

N
B K —ne*iq’ ( —-in  —ike ? K ne’e
—neie \_ Fike"?  +in nete

l\)l»—ﬂ

0 [ & —ne' ( +in  —ike e K ne’e
2 \_ —net? \_ tixete  —in nete  x
o [ & —ne-'e ( 0 —i(k? — n?)ee
2 \ _ne+lgp \ |(K2 _ nZ)e+l(p 0
_ L (ke —ie1*
N 2 \ _ne+IgD Ie-H(p
[ —ip  —ixeio
- L 1o = T, (53)
\ +Hike™?  +in

[T5]® = h™'(p)T3h(e)

. + .
_ K -neie [« ne-ie Kk ne’e
_ne+i(p K \ _neJrigD —K ne+i(p K

[« o

N

1
2 \ _neJri(p

ZL( K _neltp (K-2_n2
2 \ _ne+i<p \ 0 —(k? - 772)

1L ( K -ne- ip ( 10

= 9 \ _ne+i(p \ 0 —1

_ % ( K" ne"tp ) _ T, (54)
\ -net'?  —x

Formulae (52), (53) and (54) show

N _1 =t =
[TT" = h ()T h(p) = T (55)
In the new space o=h(¢) (40), S becomes a non-positive definite non-Hermitian
—

operator, but T is a positive definite non-Hermitian operator, which are good
angular momentum operators, which contain one variable ¢.

Note Space Curvature o
a =1 oa = h(p) = « + 21T,
[Si1]" = S = [S1]® = S = [T]®° = T (56.1)
[S:]" = S = [$]® # S, = [T0° =T, (56.2)
[S:]7 = S5 = [$5]° # S35 = [T3]® = T; (56.3)




2 Non-Hermitian Orbital Angular

-

Momentum L

2.1 Hermitian orbital angular momentum are expressed by

I} = +isin@dy — cot6 cos pl;

l, = —icos@dy — cotB sin ¢ls

l, = —icos@dyp — cot@ sin pl;
they satisty

I = 1, P=lh, 1§ =1

Now we extend the definition of metric curvature o from one coordinate
function h(¢) (1-40) to two coordinate functions h(p)g(f) (5). Choose @ to be the

metric curvature of ¢ and 6 space, given by

o = h(go)g(G); h((p) = k + 21T, g(g) — gin'*Mg

In space o (5), by means of 0f = —0x — a~!(6xa) (1-21), we have

95 = =0y — (h(@))"(dsh(p)) = -0y — 21T>
0f = —0o — (g(0)"'(Cog(®) ) = —0p — (1 + 4my) cot O
19 = 1, + i4mg sin @ cot & + 2in cot @ cos ¢T;
I$ = 1, — i4mg cos ¢ cot @ + 2in cot O sin @T>
|§B = |3 — I2T)T2
Note |? * |1, |§B * |2, |§3 =+ |3 (11)

Now in space (5) o = h(p)g(0); h(p)=x+2nT;, g(0)=sin'*™0
- —® —

define new operators L= 2{1 +1 (12)

further obtain

Li = +isin@(ds + 2mg cotd) — cot 6 cos plL3 (13)

L, = —icos@(0p + 2mg cotB) — cot O sin plLs3 (14)

L; = I3 —inT, = —id, — inT> (15)
Obviously

L = Ly, L? = L, LY = Ls (16)

Further

ﬁ
L are Positive Definite Non-Hermitiana self-djoint Operators

each component of operators L; includes Hermitian orbital angular momentum l;

and some non-Hermitian operators

(1)
)
3)

(4)

)

(6)
(7)

(8)
)
(10)



It can be shown that non-Hermitian operator i obeys the angular

momentum commutation relation just as the conventional Hermitian orbital

p—
angular momentum operator | does.

- - e
L xL = IL

Commutation rules (17) shows that non-Hermitian operators, IL;(13), L2(14),

L3(15) are orbital angular momentum operators.

2.2 Properties of L2 Ly, L, Ls

Square operator

2

L L? + L3 + L2

Some results about rising operator L, and lowering operator L_:

Using (13),(14) we have

Ly = L; + i, = e+“P{ + 09 — cotl (L3 - 2my ) }
L- L; — i, = e—i¢{ — 0gp — cotf (L3 + 2my, ) }

The following formulae ban be expressed by (15),(19) and (20),(21)

L.L. = L*> — L} - 1Ls
LL, = 1> —132 + Ls

L.L- — L.L, = 203
L.L. + L. L, = 2{L* - L}

[]Lv}, ]LH-]— = +L+
[L}, ]Lpr], = +L+

L> = L (LiL- + L-L.) + L3
Li+ L3 = +(L.L- + L-Ly)
L,L. + L L, = 2{L> - L}
Li = +{L:++ L}
L, = —-{L+ - L-}

(28) and (22) (23) show
[L*, Ls]- = 0

(33) shows L* and L3 have common eigenfunction.

— {03 + (1 + 4mg) cot 00y — (sin )2(L3 — 4m3) — 4m3 — 2m,}

(17)

(18)
(19)

(20)
21

(22)
(23)

(24)
(25)
(26)
27)
(28)
(29)
(30)
(31)
(32)

(33)



3 Eigenvalues and
Eigenvalues Functions of Lj

3.1 Now let us turn to discuss eigenvalues of non-Hermitian operator L

. ) —in —ixe®
Ly = |3 - InTz = |3 — %In|: . n . :|
ket In

I L Tl ok R o N 0
+Lqretime I3+ Lp?

Operator L3 (1) yields two groups of eigenvalue functions, ¢i7™ and ¢n ™.
Starting with ¢i™

Lagi™ = pgi™ = 0 @
m-1-4+n-p —Lnre’e D, ei(m-De 0 3)
+ - nketie m+ 402 - u D,eime
Equivalently determinant Det
m-1- +n?- — Lk
> 1 H P _ 0 @)
+- 1K m+ Ln? - pu

Evaluating the determinant of (4)
Det = (M —p— 50> = DM = g+ 50 + 50
=M —p— )M - p+ ) - M=+ pnd) + K
w)? — %,74 - (m - p - %772 + %,72,(2

= M-w2-Mm-p - =0+ 02> - n?)

Il
El
I

:(m—‘u)z—(m—‘u)—%nzzo (5)
The solution of quadratic equation of the determinant (5) is given as
m-u= L@ Jl+n2) = LGt (6)
we get the eigenvalues of equation (2)
po= o= m- L@+1) = m-2m, (7)
po=p o= m+ (-1 = m+2m (8)
where
4k = 1) = 2m, )



Likewise for ¢m™
L —2my _ —2My 10
sgm = pm (10)

we have

m— Ln2— — L nie-ie ime
k. ] Cie _ (11)
+Llnkete m+ 1+ L2 u Caelmhe

Equivalently
m- 5n - u — 5 K Ci | _ .
L 12 B (12)
+ 5K m+1+ 57 U C

Evaluating the determinant of (12)

_ gy - L2 _ 1 2 A 2.2
M-p— 5 )Mm-p+ 50+ 1)+ 0

(M= + M= - 50> =0 (13)

Det

The solution of quadratic equation of the determinant (13) is given as

m-pu = %(—11,/1“72): 4 (-1 +x) (14)

we get the eigenvalues of equation (10)

po= =M= k- D) (15)
o= pa = m+ G+ 1) (16)
Because when n approaches to zero (kx = 1), L3 equals to s, the eigenvalues

of L3 and the eigenvalues |3 should be the same. So the reasonable solutions are
H2 and H3.

for ™ (2 pe = o= M+ (- 1) = m+2m (17)
for gu™ (10):  p- = ps = Mm— =@ —1) = m - 2m, (18)
Ligit™ = puigid™ = (M + 2me)pit™ (19)
Lign™ = pgm™ = (M - 2mo)pm™ (20)



normalized functions

¢a—12m0 _ 1
Jan
—2m, _ 1

Orthogonality-normalization integrals are

_ ,K' _ 1 ei(m_l)(/’
+JK + 1 eime

+JKk + 1 eme
_ /K _ 1 ei(l’TH—l)(p

given as follows

2T
[ do GE™)h@)pE™ = Gm,m,
0

2T
[ do @™ h(@)@R™)* = 0
0

3.2 Let us look at two limiting cases of our special interest in (2) and (10)

1) As
2my, = 0,

o

Q

Non-Hermitian operator L3 backs to Hermitian operator I3, and two spinor
s d)#m“ degenerate to a scalar solution ¢m of I3

solutions ¢#™

2) As
m

Ho = i2m0

2moh is just the so-called intrinsic and inherent orbital angular momentum of the

quantum particle.

L;

0, L3gs™™ = poh ¢5™™

= 15 = -idd,
o0 =  Pm = 1 gime

Jorn

= izm()h ¢Oﬁm°

1)

(22)

(23)

24)

(25)
(26)

(27)
(28)

Note

It should point out that I3 is an non-Hermitian operator,
however its eigenvalues p+ (19),(20) can be real numbers.
When m £ 2m, is nonintegrals, its eigenfunctions ¢it™ (21) and ¢mi™ (22)

still remain to be single-valuedfunctions!

In conventional quantum mechanics, eigenvalues of orbital angular momentum
should be integral numbers, however,

eigenvalues of non-Hermitian orbital angular momentum L3 could be nonintegral.




4 The Recurrence Formulae of
Normalized Wavefunctions ®mn=CmnEmn

Note
After discussion of eigenvalues and wavefunctions of Ls,
it is natural to wonder about what will happen ?
if we use the other two non-Hermitian orbital angular momentums
L1(2-13), L2, (2-14) or their combination,
raising operator L.(2-20), lowering operator L._(2-21) to act on

two spinor ground state wavefunctions of Ls, (3-27), ¢nt°, and ¢,

The Recurrence Formulae of ®ny,, with infinite series, appear !

here @, are the common normalized wavefunctions of L? and L3 (2-33)

4.1 The Influence of L.? on Eigenfunctions ¢#™ of L;

Firistly, consider the eigenvalue equation of L2
L2¢%2mo — v¢%2mo
Using (2-19), the left side of (1) becomes

L2gps™ = —{8% + (1 + 4m) cot 09y — sin20(L3 — 4m3) — 4m2 — 2m, pE™
{0 + sin20{(m £ 2m,)2 — 4m2} + 4mi + 2mg ;@™
{(M2 + 4mm,) sin20 + 4m3 + 2mg )™

The eigenvalue v that in the right side of (1), should be a real constant, so the
coefficient m2 + 4mm, of function sin in the right side of (2) must be zero.
that is

m2 + 4mm, = 0

Formula (3) shows: only in the case of quantun number m=0, can 2m, remain to
be an independent quantun number of quantum number m, that is

m = 0 = 2m, be independent

(1

2)

)

(4)



Hence (2) turns to (6)

L3¢3°™ = +£2m, ¢g°™ (3-27) (5)
L ¢o™™ 2me(2mo + 1™ (6)

As a matter of convenience, we introduce the following marks

n, = +2my = t/2 @)
n_. = —-2my, = /2 (8)
Hence
Lsgs™ = nsh ¢5™™ ©)
L2¢g®™ = ne(ne £ 1)A2 g™ (10)

4.2 Two Families (Ai?™, Ax*™) of Spinor Ground states (¢*™, ¢o°™) of
Orbital Angular Momentum L3

From L,(2-20),L_(2-21) and (3-21),(3-22) of L3, we have

Lign™ = —cotO(m + 2m, — 2mo)dpi (b
L_¢rin2mo = —cot G(m + 2m0 + 2m0)¢ir;]2,ni]0 (12)

Next, we analyse the details of (11),(12) carefully. Because of the restriction on
quantum number m (3), it is better to start from ground state ¢i*™, m = 0 to

research the regularity of the action of L, and L_ on ¢#™, hence

For groundstate ¢¢°™
L™ = 0 (13)
L_¢¢®™ = —4m, cot Op2m (14)
For groundstate ¢y°™
Li¢y™™ = +4m, cot O -™ (15)
L_-¢gy"™ = 0 (16)

Comparison (13),(14) with (15),(16), it ia shown that the effect of L. and LL_

on ¢5°™ are quite contrary to the effect on ¢g°™.

4.3 Normalized Wavefunctions ®, of The Family Members En of Spinor
Ground State Family Ax™

Focus on researching the effect of L, and L_ on ¢;*™ (n-=n = s/2). After a
lengthy detailed calculations, we obtain the recurrence formulas below



Eo = ¢g"™

IL+EO = _2n El
L.Ep = 0

Ei =cotf¢™
]L+E] = E2
L_-E; = Eg

E» =4{ —(@2n +2)sin20 + 2n + 1)} ¢ 3™

ILerEz = + (2n + 2) E;

L-E> = -22n + 1) E,
Es = {(n + 4)sin?0 — (2n + 1) } cot O ¢ 3™

L+E3 = + E4

L7E3 = -3 E2

Eq ={—-(2n+6)(2n+4) sin ™0 + 2(2n+4)(2n+3) sin 20 — (2n+3)(2n+1) } ¢;3™

L+E4
L_E4

+ (2n + 4) Es
—4(2n + 3) E;3

Es ={(2n+8)(2n+6) sin™*0 — 2(2n+6)(2n+3) sin20 + (2n+3)(2n+1)} cot O 2™

]L+E5 = (' . ') E6
L.-Es = —-5E4

Called Em { Eo, E1, Eo, ..., } the family members of ground state Ami™

Note

Unluckily, it seems no hint about the regularity of the recurrence formulas of
family members { Eo, Ei, E»,....} in the above results from (17).till (22)

There must be something ommitted by us.

(17)

(17.1)
(17.2)

(18)

(18.1)
(18.2)

(19)

(19.1)
(19.2)

(20)

(20.1)
(20.2)

21

21.1)
(21.2)

(22)

(22.1)
(22.2)



4.4 Normalized Wavefunctions @,

-2my
m

Normalized wavefunctions ®n of the family members Em of A are defined

as

®n = CnEm = Cnén(0)dn™ () (23)
En = Em(s) = Ea(n = n- = -2my) = &n(O)¢n™(p) (24)
A™ = {Eo,E|,E2,...Em...... >

{60(@)¢5°™ (0), £1(0)¢71°™ (9), £2(0)9°™ (@), - . - Em(O)P ™ (9). - . . .. Foo@9

Cm are the constants, normalized constant, could be found from the
normalization condition (26)

T 2r
J = j do g(0, A) j dp @i h(p, n) On = 1 (26)
0 0
Where g0, 1) = sin**0 = sin*0, h(p,n) = « + 2nT; (2-5) and some
marks (27) below

20 = 14+4my =k = J1+n? =1-2n=1-5 (27)

1) Put ®yn(23) into J (26), recall (3-23), (26) is simplified as

T 2
J = [Cnl? f do g(0) I dp {E:m(0)r™ (@)} h(9) {Em(O)dn™ ()}

0 0
T 2

= |Cn|? f do g(0) {&m(0)}> I dp {pr™(@)}* h(p) {¢n™ (9)}
0 0

= [Cul? [ dOsin*0 {En(@)}2 = 1 (28)
0

Where
Cn = Com /JIn (29)

=
I

j d0 sin*0{Em(6))2 (30)
0



The integrand polynomials &m(0) come from the families (17), (18), (19), (20),
(21), (22)

So(0) =1
(@) = cotf
(@) = —(2n+2)sin20 + (2n+1)

Ea(0) = {+(2n+4)sin20 — (2n+1)} cot @

Eq(0) = —(2n+6)(2n+4) sin™*0 + 2(2n+4)(2n+3) sin 20 — (2n+3)(2n+1)

Eis(0) = {(2n+8)(2n+6) sin~*@ — 2(2n+6)(2n+3) sin~20 + (2n+3)(2n+1)} cot O
Com = =1, 4i

Com is phase factor, has the effect of adjusting ®m to the best form that could
ensure the recurrence formulas of ®n to be the most symmetrical construction.

2) Recall

Ty g T@A+ D
) = [dosin?0 = % O T

further we obtain the following results:

D [ sin?0 - corodd = ---12)
0
2) j sin0 - sin?0 cot26ds = —-L- 20— 1 |(2)
0
3) j sin*0 - sin*0 cot2gds = - =1 I+l
0

With the help of the above math preparation, substitute (31), (32), (33), (34),
(35), (36) into integral (30), we find

lo = 1(A)
= —5=1()

L, = +20+1 %)
. a0

L, — 24(2n + 3)(2n +
47 2n(2n + 2)

D)

€2))
(32)
(33)
(34)
(35)
(36)

(37)

(3%)

(39)

(40)

(41)

(42)
(43)
(44)

(45)

(46)



Further, we get normalized constants Cny (29) of integral (30) with subscript
immdex m = 0,1,2,3,4

Co = Coo /Jlo = Coo/I(A)
Ci = Cau /Jli = Cuv=2n/JI(x) = iCov2n/J1(})

C: = Co /Yl = Cay/n/2n + 1) /JI(A)

C; = Co3 /I35 = Cos/-n(2n + 2)/3(2n + 1) //I(A)

= iCo3,/N2N + 2)/3(2n + 1) /J1(L)

Cs = Cos /14 Ca42n(2n + 2)/24(2n + 1)(2n + 3) //1(A)

Choosing phase foctors Co; above as below

Coo = +1, Coo = +1, Cp = +1, Cpz = -1, Cos = -1

Finally, we arrive at the normalized wavefunctions ®n of the family members
Em of Ax™

{ Dy, Dy, Dy,..Dpy,.. + = {CoEo,CiE1, C2E,, ... CnEm,..

Oy = +1-12 . Eo

o, = +i4/2n 1712 . E;

®, = +J2n2!(2n + 1) 112 . E,
®; = —i,/2n(2n + 2)/3!2n + 1) 1712 . E;,
@y = —/2n2n + 2)/4!2n + 1)(2n + 3) 1712 . E4

They satisfy normalization condition (26).

(47)
(48)

(49)

(50)

€Y

(52)

(53)
(54)
(55)
(56)
(57)

(58)



4.5 The Recurrence Formulas of ®n, resulted from L., L_

Base on normalized wavefunctions ®n(54),(55),(56),(57),(58), we spell out the
more meaning of the following operators calculation processing

L.®y = +I712(4) « LiEq = +I""2(1) + - 2nE,

= +iJ2n - +id2n I712E,

_ 4 i o (59)
L.®y = +I-"2(4) « L.Eq = +I712(1) -+ 0

— 0 (60)

L.®; = +iv/2n I72(4) « L.E; = +iv/2n I712(1) + E,

= +if2@n + 1) -+ 202120 + 1) I712E,

= +im®2 (61)
L@ = +ivJ2n1"2(1) - L.E; = +iv/2n I7'2(4) - Eo

— +iJ2n - I'2(Q)E,

— +i/2n @ (62)

Li®; = + /202120 + 1) 112 « LL,E;

= + ,2n/2!(2n+1) 172 « +(2n + 2)E;
= +i/32n +2) - -i/2n2n + 2)/3!2n + 1) I"12E;
= +i1/3(2n + 2) (O} (63)

L-®; = +/2n2!(2n + 1) 112 « L_E;
= +./2n212n+1) 1712« 22(2n + 1)E,
+i,22n + 1) - +i/2n I""2E; = +i,/2(@2n + 1) ©, (64)




L+®3

L_®3

]IA+®4

L_®y4

—iJ2n2n + 2)/3!12n + 1) 1712 « LL,E;

—i/2n(2n + 2)/3!2n + 1) 1712 . E4

+if4@2n + 3) .« —/2n(2n + 2)/41(2n + 1)@2n + 3) I712E,
+i/42n + 3) 04

—i/2n(2n + 2)/3!(2n + 1) 1712 . L_E;

—i/2n(2n + 2)/3!2n + 1) 1712 . 3E,

+i/32n +2) -+ /202120 + 1) I"12E,
+i,/3@2n + 2) @,

—J2n@n + 2)/4!12n + D@2n + 3) 1712 . L.E,
—J2n@n + 2)/4!2n + 1)(2n + 2) 172 < +(2n + 4)Es
+i/52n + 4) - +i/2n2n + 2)(2n + 4)/5!(2n + 1)(2n + 2) I-12E;s

+i,/5(2n + 4) ©s

—J2n@n + 2)/4!12n + D2n + 3) 1712 . L_E,4
—J2n(2n + 2)/4!2n + 1)2n + 3) 1712 « —4(2n + 3)E;
+i/4@2n + 3) - —i/2n@2n + 2)/3!@2n + 1) I712E;
+iJ42n + 3) @y

(65)

(66)

(67)

(68)



Briefly

L:®y = +i,/12n + 0) @y, L-® = 0

L.®, = +i,/2Q2n + 1) @y, L-®, = +i,/12n + 0) O
L.®, = +i/32n + 2) @, L-® = +i/22n + 1) @,
L.®; = +i,/42n + 3) @y, L-®; = +i,/32n + 2) ©,
L.®s = +i,/52n + 4) ©s, L-®; = +i/42n + 3) s

Obviously! the above results show the regulation of the recurrence formulas of
quantum wavefunctions ®n, the regulation can be extend to the case of m = oo

By orthogonality-normalization integral (3—23), the normalization condition (26)
can further be written into orthogonal-normalization condition (74)

2

J' do g6, 1) J dp Oyh(e)®@; = dy
0 0

(54),(55)(56),(57),(58) show: ®p is also the function of parameter n, introduce
vector state |[m, n) to represent function ®n = ®n(n), then

(Dm = (I)m,n = |m, n>

Further, the recurrence formulas (69),(70),(71),(72),(73) can be written as the
following universal expressions (76) and (77)

Lim,ny = i/(m + D@n + m) |m + 1,n)

L_jm,ny = i/m@2n +m — 1) |m — 1,n)

where

2n = s = —4my

The values of m in (78), can be extend to less than zero (80), although (76)
and (77) are derived from condition m = 0,1,2,3,4,......

Later, we will see in case of (80)
m = 0,£1,£2,43,......

L, and L. still remain all the properties of angular momentum, and recurrence
formulas (76),(77) are still valid.

(69)
(70)

(71)
(72)

(73)

(74)

(75)

(76)

(77)

(78)
(79)

8Q)



Utilize (76),(77), we obtain

L.« Lim,ny = i)J(m + D@n +m) - L_m + 1,n)
= iJ(m+ DHEn +m) -iJ(m+ D@2n + m) m,n)
= —(m + 1)(2n + m)|m, n) (81)

Ly « Lm,n)y = i/m@n +m — 1) - Lim — 1,n)
iym2n +m - 1) -i/m2n +m - 1) |m,n)
-m(2n + m — 1)jm, n) (82)

Then obtain
(LiL- — L-Ly)m,n) = {~m(2n + m) + m + m(2n + m) + 2n + m}|m, n)
= 2(m + n)m,n) = 2L3|m, n) (83)

(LiL- + L-Ly)m,n) = {~m(2n + m) + m — m(2n + m) — 2n — m}|m, n)
= {-2nm - m? + m — 2nm — m? — 2n — m}|m, n)
= 2{-2nm — m? — n? + nZ — n}m, n)
= 2{n(n — 1) = (M + n)2}m, n)
= 2{n(n - 1) — L3}m,n) (84)

Recall
L.L. — L. L, = 2L3(2-24) and L.L_ + L. L, = 2{L? — L3}(2-25)

So from (84), we obtain

L*m,n) = n(n — 1)|m, n) (85)
from (3), (3-20), we get

Lsjm,n) = (m + n)m, n) (86)
(4-10), is a special case of (85), when for n- = n and ¢;°™ = [0, n)

L?0,n) = n(n — 1)[0, n) (87)

Note
Formulas (69),(70),(71),(72),(73) {(76),(77)}
are elegance
such kind of recurrence formulas, never have been seen before
in the frame of angular momentum theory

they should have to bring something unexcepted to physical picture !




5 Semi-Infinite Dimensional Matricesl'lj(i):
Spin Hierarchy (SH)

Representation of Orbital Angular Momentum L; in linear space (xm, n||,
Em,n), (m S 0)
Semi-Infinite Dimensional Matrices Hj(i’ are called Spin Hierarchy (SH)

5.1 It will be convenient to use Dirac bra-ket notation to represent the bases
of o linear space, when we deal with matrix representations of orbital angular
momentum L;j.

The bases of o space are marked with the symbols (m, n|| and |m, n):

(Dm,n
(m,njoc. = (m, njh(p)g(d) = Pmnh(e)g(0)

ket vector (rightvector) Im, n)

bra vector (leftvector) (m,n||

Then orthogonal-normalization condition (4-74) turns into
b 2n
lm,n) = Sum = [ d0 80,2 [ dop ®ih(p)Pn = S
0 0

From (4-76) and (4-77), we have

(,n[Lim,n)y = (unliy(m + D@n + m) m + 1,n)
= iJ(m + 12N + m) Sume
(u,nL_jm,ny = (u,nliym2n + m — 1) [m — 1,n)

i/m2n +m — 1) §um

After substituting explicit sequence numbers of u and m into (4),(5), two series,
(4)) and (5.)) are given

For (4,
Y (I, n|Lyjo,n) = (Lnfif1@2n + 0) [1,n) = i/1(2n + 0)
@ nlLeft,ny = 2 nfij2en + 1) 2.0 = iJ20n + 1)
3,nlLej2,m) = @,nfif32n +2) 3,0 = i3@n +2)
@, nLaj3,n) = (4 nlif42n +3) [4,n) = iJ42n + 3)
(S, nlLef4,n) = (5,nlif52n + 4) |5,n) = i/50n + 4)

(1)
2)

€)

4)

)

4.1)
4.2)
(4.3)
(4.4)
4.5)



For 5.))

(. n|Lj0,n) = 0

0. nlILL,n) = (@ofiy/12n + 0) [o) = iJ12n + 0)
(LllLof2.n) = (@fi2@n + 1) [@1) = iJ2@n + 1)
2, nL-3,m) = (@232 + 2) [®2) = i/32n +2)
(3,nlL-l4,n) = (@sfli/4@n + 3) [@3) = i/42n + 3)

By means of (4), (5), obtain

(wlLijm,m) = - (g N+ + Lo)im, n)

= %(i,/(m + 12N + M) Sume + i/m2n + m — 1) §um-i)
</’l’ n||]L’2|ma n> = %([J, n||(]L+ - ]L—)lma n>
= L (JM+ D@+ M) Suma — M2 + M = 1) Sum-1)

From (4-86), obtain
<ma n||]L3|m7 n> = (m + n)|m9 n>

From (4-85), obtain
(m,n|IL*m,ny = n(n — 1)|m,n)

From (4-81),(4-82), obtain

(m, n||L+L-|m, n)
(m, n||L-IL+|m, n)

-m2n + m - 1)
—(m + 1)(2n + m)

then we have

(m, n[|LiL- — L_L4m, n)
(m, n|L-Ly + L_-L4jm, n)

2(m + n) = 2(m,n||/Lsjm, n)
{n(h - 1) = (m + n)*}

= 2((m, n|[L?m, n) — (m, nl|L3m, n))
= 2(m,n|L7 + L3m, n)

5.2 Semi-Infinite Dimensional Matrix Element Representations 1,116,117,
(I1O)2 of L, L_, L3, L% which arising from Spinor Ground State Family Az?™

We will set up some tables which based on the matrix elements obtained in the
previous work, then use these tables to make out semi-infinite dimension matrix Hj(_).

(5.1)
(5.2)

(5.3)
(5.4)
(5.5)

(6)

(7

®)

©)

(10)
(11)

(12)
(13)
(14)
(15)



Using the series of matrix elements (4.j) (5.j), obtain the tablel,table2

tablel (u, n|[L.jm,n) < matrix 11"

€0, nli
(L
2,
3, nll
Sl

<‘Ll, n||L+|m9 n> |Oa n>

0
iv2n
0
0

0

11, )

0
0

i/22n + 1)

0
0

12, n) 3, ) [4,n) -
0 0 0
0 0 0
0 0 0
i/32n + 2) 0 0
0 i/42n +3) 0

table2 (u, n[L_jm, n) < matrix I1C)

(p, N||L|m, n) [0, n) |1, n) 12, 1) 3, m) [4, 1)
O, n|| 0 iJ2n 0 0 0
{1,n|| 0 0 iJ22n + 1) 0 0
2, || 0 0 0 i/32n + 2) 0
3, n|| 0 0 0 0 i/42n + 3) -
4, n|| 0 0 0 0 0

Using matrix elements (8), obtain
table3 (u, n[[Lsjm, n) < matrix 113’
(u, fLsim, n) [0, ) [1,n)y 2,n) [3,n) [4,n)
(0, n|| n 0 0 0 0
{1, n| 0O n+1 0 0 0
2, n|| 0 0 n+2 0 0
3, n|| 0 0 0O n+3 0
A, n|| 0 0 0 0O n+4.
Using matrix elements (9), obtain
table4 (u, n[[L%m, n) < matrix (I1O)2
GonllL2mmy o jo,myLmy2m) 3By 4
0, n|| n(in — 1) 0 0 0 0
(1, n|| 0 n(in — 1) 0 0 0
2,n|| 0 0 n(n — 1) 0 0
3E,n|| 0 0 0 n(in — 1) 0
@, n|| 0 0 0 0 nn —1) -




5.3 Semi-Infinite Dimensional Matrix Element Representations HS”,H@,H?),
(II®)2 of L., L_, L;, L2 which arising from Spinor Ground State Family Ai?™
On the analogy of the above tablel,2,3,4 related to H-(_),Which arising from

Art™ . table5,6,7,8 related to matrix HJ-(+), which from A#™, could be obtained:

table5 (—u, n[L.J-m, n) < matrix 1"

(=g, N|Ls-m, n) j0,n) |-1,n)  |-2,n) -3, n) -4, n)
(0, n|| 0 J2n 0 0 0
-1,n| 0 0 J2@n-1) 0 0
(=2, | 0 0 0 J3@en - 2) 0
(=3, n| 0 0 0 0 Jaen -3) -
(—4,n| 0 0 0 0

table6 (—u, n||L_|-m, n) < matrix 1

(=g, NJIL-|=m, n) [0,n)  |-1,n) -2, n) -3,n)  |-4,n) -
(0, n|| 0 0 0 0 0
-1, n] J2n 0 0 0 0
=2,1] 0 J2n - 1) 0 0 0
(3,1 0 0 J3@n -2) 0 0
(-4, n|| 0 0 0 Ja2n -=3) 0

table7 (—u, n[[Ls|-m, n) < matrix 115

(=, N[Ls[-m, n) 10, n) |=1,n) [-2,n) [-3,n) [-4,n) -
(0, n|| n o0 0 0 0
(-1, n|| 0O n-1 0 0 0
(-2, n|| 0O 0 n-2 0 0
(-3, n|| 0 0 0 n-3 0
(=4, n|| 0 0 0 0 n-4

table8 (—u, n|L?-m, n) < matrix (ITM)2

(-, nL*=m,n) [0,n)  |-1,n) |-2,n) |-3,n)  [-4,n)
0, n|| nin + 1) 0 0 0 0
(-1, n|| 0 n(n + 1) 0 0 0
=2, n|| 0 0 nin + 1) 0 0
(-3, n|| 0 0 0 n(n + 1) 0
(-4, n|| 0 0 0 0 nin + 1) -




+) =)

i —(
5.4 Matrices Hj ,Hj

—(+) —()
Right-circumrotatory spin matrix Il; comes from the same way of IIj

Li-m,ny = Jm@n —m + 1) |-m + 1,n) (16)
L_|-m,ny = J(m + )@2n — m) |-m — 1,n) (17)
Where
N = 2N, = —t — +4m, (18)
m= 0,123 ... (19)

Left-circumrotatory spin matrix ﬁj results in (4-76), (4-77)

Lo+m,ny = iJ(m + 1)(2n + m) [+m + 1,n) (20)
L_l+m,ny = i/m2n +m — 1) +m + 1,n) 21)
Where
N = 2n. = —s — —4m, 22)
m=01,23...... (23)
—(H)

- . .
I1; and Il; are angular momentum operators, which satisfy angular momentum
commutation relations.

—@®) —@®) o)

MO, x I = i j = 1,23 (24)



6 Infinite Dimensional Representations:
in Chaos Spin Hierarchy (CSH)

(€3]
j,n

Infinite Dimensional Representations are called Chaos Spin Hierarchy

(CSH)

6.1 Recalling spin hierarchy (SH), I1®) and ITIO) (in previous chapter), that arise
from the matrix elements table5, 6,7, 8 and tablel, 2, 3,4 of orbital angular
momentum operators L.L_LsL>2

These matrix elements marked by indexes p and m, which appear in the uth
row and the mth column, are shown in table9. Where quantum numbers g, m > 0,
u and m vary from zero to positive infinite. The minimum of pg=m is zero, which
lies at the most top left corner of all matrix elements.

Table9 Spin Hierarchy down-semi-infinite dimensional matrix elements

I, m=0m=1m=2

Fu, Ly, Lo, Ly, L2Fm, n) [0,n)  [F1,n) |¥2,n)
u =20 (0, n|| ° o °o°
u = &1, 1| - - -
u = 2 F2,n|| oo oo oo

If remove the restrictions on the values of u and m in table9, and postulate that
i m could be greater or less than zero, then down-semi-infinite dimensional

matrices Hj(in) will turn to infinite dimensioal matrices & = ﬁj ... then table9 turns

j,n
to tablel0 and tablell

tablel0 Spin Hierarchy from SH to CSH

Spin Hierarchy (SH) Hj(in) = Chaos Spin Hierarchy (CSH) ﬁ.(i)

j.n
down-semi-infinite dimensional matrix = infinite dimensioal matrix
um = 0,1,2,3, ... +0 =2 0 = u,m = 0,+1,£2, 43, ... + o




Tablel1 Hierarchy infinite dimensional matrix elements of Chaos Spin

TR o TR

®)
j.n

(Fu, Ly, L, Ly, L2Fm, n) « -

= =2 &2, n||
= -1 (£1, n||
=0 (0, n||
= +1 (*1, n||
= +2 (*2, n||

=-2m=-Im=0m=+1m

[+2,n)  [£L,n) [0,n)  [F1,n)

X X X X X X X X
X X X X X X X X
X X X X oo
X X X X o o o o
X X X X o o o o

= +2

2, n)

Call attentation to the following pair of correpondences:

Spin Hierarchy
matrices I1{,)

M, m
= 0,..+0

in table 9

eigenequation Js|u, Aj)=Aju, Aj)
] = Amax = +©
j = Amin = O
formula (6) is broken

in chapter 0

Chaos Spin Hierarchy
; ®
matrices & ;
M, M

= —0,...,0,...40

3

in table 11

formula (6) is broken

in chapter 0

6.2 Extent of Spin Hierarchy matrices H,-‘i)
to Chaos Spin Hierarchy matrices &,

Using formulas L;=--{L++L_} and Lo=--{L+-L_}:

1) From matrix elements of table5, table6, table7, table8 of SH Hj(+),
we have Chaos Spin Hierarchy matrices &7

2) From matrix elements of tablel, table2, table3, table4 of SH Hj(f),
we have matrix representations of CSH ﬁj(;)




1) For Chaos Spin Hierarchy (CSH) éj(;) ( simplified &;(n.=n) )

6.;1(n+=n) = % *

0

. J2(2n+3)

0

0
0
0
0

%2(n+:n) = % y

§3(n+:n) =

0

. i /2(2n+3)

0

0
0
0
0

J-2(2n+3)

0

J-12n+2)

[ /2(2n+3)
i [-1(2n+2)

0

0
0
0

0
0

0
0
0

0 0 0 0 0
J-1@2n+2) 0 0 0 0
0 Jo@2n+1) 0 0 0
Jo@2n+1) Lo  J1(2n+0) 0 0
0o Jien+0) 0 J20n-) 0
0 0 J2n-) 0 3n2) -
0 0 0 J3@en2) 0
(1) -
0 0 0 0 0
-i/-1(2n+2) 0 0 0 0
0 -i,f0@2n+1) 0 0 0
ijoen+l)  [0o]  -i/@n+0) 0 0
0 i/(2n+0) 0 -i20n-) 0
0 0 i/2(2n-1) 0 -i/3(n2)
0 0 0 i,/3(2n-2) 0
(2)
o 0 0 0 0
2 0 0 0 0 0
n+1 0 0 0 0
0 0 0 0
0 0 n-1 0 0
0O 0 0 n-2 0
0o 0 0 0 n-3-.




E%(
n.
=n
)




2) For Chaos Spin Hierarchy (CSH) éj(;) ( simplified &(n—=n) )

6.;1(n—=n) = % *

0

. i/2(2n3)

0

0
0
0
0

E.,z(n—:n) = % y
0

. J2(2n3)

0

0
0
0
0

&3 (I’LZI’]) =

i,/-2(2n-3)

0

i /-1(2n-2)

J-1(2n2)

S O O O O O

(e

o o O

0
0

0
0
0

-/-2(2n-3)

0 0 0
i/-1(2n-2) 0 0
0 ijo@n-1) 0
i/0(2n-1) Lo] i/1(2n+0)
0 iJi@n+0) 0
0 0 i/22n+1)
0 0 0
(5)
0 0 0
-JIen2) 0 0
o -Jo@n-n) 0
Jenny [ -/iewo)
0 J1@2n+0) 0
0 0 J2@n+1)
0 0 0
(6)
0 0 0 0
2 0 0 0 0 0
n-1 0 0 0 0
0 0 0 0
0 0 n+1 0 0
0 0 0 n+2 0
0o 0 0 0 n+3-

0
0
0
0

i /2C2n+1)

0

i /3(2n+2)

0
0
0
0

-J2(2n+1)

0

J3(2n+2)

0
0
0
0

0

i /32n+2) -

0

0
0
0
0

0

-/3@n+2) -

0




n(n-1) 0 0 0 0 0 0
0 n(n1) 0 0 0 0 0
0 0 n(nl 0 0 0 0
E*(n_=n) = 0 0 0 |[nin-)]| o0 0 0
0 0 0 0 n(nl) 0 0
0 0 0 0 0 n(nl) 0

0 0 0 0 0 0 n(n-1) -

u © |

There are two branches of Chaos Spin Hierarchy:

1) matrices & (n,)(1), &,()(Q2), &,(n)(3), E()@) of &)
2) matrices &,(N-)(5), &N-)(6), & ()T, EXN-)(S) of &)

ij(ni) are the fundamental roles in describing TKP’s behavious we seek

the objective of this paper is attained

Next paragraphs, we will give some explicit matrix representations of Chaos
Spin Hierarchy, through three examples of ij(nJr:n) with n,=+0, +1/2, +1/3.



7 Spin0i CSH {0, +0, (+)}, Q.0

Symbol {0,+0,(+)} = { & = 0,n = 40, (+) =n,=n }
Here O = OUI, = &)

7.1 Spin 04 particle is the simpliest rotational particle. In conventional quantum
mechanics frame, the spin angular momentum operator of spin 0% particle is a
zero-value 1x1 dimensional matrix. Its three components are as following

Sio = So0 = S30 = 04

The commutation rule is given below

SioSko — SkeSjo = 7S
Or:
0jo0 * Oko — Oko = Ojo = 1 « Oy
>
0 = (0,0,0) is an indefinite orientational vector, but zero-value. Sjo is a point

model, lacks of stereo!

We will see that Sjo actually just is the intrinsic angular momemtun of spin 0/
particle, 1s merely the part of Island Ooperator Qj.0 = E.’j,+0 (15).

7.2 The following are the concrete expressions of Qj.o base on (6-1),(6-2),(6-3)

Island operator Q; o =

-0 iJ10 o0 0 0 0
-iJio o iJe o 0
0 iJ6 0 iJ/3 0
0 0 iJ/3 0 iJ1
0 0 0o iJ1 o Jo
-+ o0 o
Jo o iJ1 o 0 0
iJ1 o0 iJ/3 o 0
0 iJ3 o iJ6 o -
0 0 iJe6 o iJ10 -
0 0 0 0 iJ10 o

(6)

(D
2)

)

(4)

)



Island operator Q;.9 =

-0 J10 o0 0 0 0
.-J10 0o Je o0 0
.0 -J6 0 J3 o0
0 0 -J3 o J1
0 0 o -J1 o Jo
+ -Jo 0 Jo
-Jo o J1 o 0 0
-J1 o /3 0 0
o -J3 o Je o
0 0 -J6 0o Jio
0 0 0 0 -J10 0
(7
450 0 0 0 0 .
0 +4 0 0 0
0 0 43 0 0
0 0 0+ 0
0 0 0 0 +1
Island operator Qj.9 = . Izl
-1 0 0 0 0 -
020 0 0 -
00 -30 0 -
0 0 0 -4 0 -
-0 00 0 0 —5-
(8)

(6),(7),(8) obey angular momentum commutation relation

Qj+0Qx+0 — Qu+0Qjr0 = 1Qiso, J k1 = 1,2,3 )]



7.3 Evaluation of Qf , Q3 9, Q3,, and Q2

get: QF
-25 0 -Jeo 0 0 0
.0 -16 0 -J18 0
.J60 0 9 0 -3
0 -J1g8 0 -4 0
0 0 -3 0 -1 o0
- 0o 0 o
-1 0 -J3 0 0
0 -4 0o -Jig 0 .
30 -9 0 -J60o -
0 -J18 0 -16 0
0 0 0 -Jeo 0 -25
B (10)
and O3, =
-25 0 +/60 0 0 0
.0 -16 0 +18 0
- +J60 0 -9 0 +J3
0 +/18 0 -4 0
0 0 +43 0 -1
- 0 0
-1 0 +/3 0 0
0 -4 0 +/18 0
+/3 0 -9 0 +/60 -
0 +18 0 -16 0
0 0 0 +/60 0 -25

(11)




From (10) and (11), hence

.25 0 0 0 O 0

0 -16 0 0 O

0 0 900

0O 0 0 40

0 0 0 0-10
Q%,‘FO + Q%,+0 = . 0 0 o
0o -1 00 0 O
040 0 O
0 0-9 0 O
0 0 0-16 0
0 0 00 0 -25
) (12)
From (8), get

425 0 0 0 O 0

0 +16 0 0 O

0O 0 +9 0 O

0O 0 0 40

0O 0 0 0 +1 o0

Q3 = . 0 0 o

o+1 0 0 0 O
040 0 O
0 0+9 0 O
0 0 0 +16 0 -
0 0 0 0 0 +25.

(13)




Although the eigenvalues of Qf ,, + Q3 (12) are equal and less than zero, but
the eigenvalues of Q2 (13) are equal and greater than zero. Further the total square
operator Q2, (14) remains to be a zero matrix

Q% = Q.+ Qi+ Q1 = 00 + Dl = 071y

where lo ia an infinie dimensional uint matrix.

7.4 Island operators (6), (7), (8) can be written as Qj.o as below. (j = 1,2,3)

o # 0 0 0
Qo = &, = 0 Sj+o = Sjo = 0
0 0 Py # 0

Ff+0: Up Background Spin Angular Momentum
Sj+0: Intrinsic Spin Angular Momentum
FE+03 Down Background Spin Angular Momentum

note

Island operators Qj.o possess the highest symmetry in the frame of CSH, which
can be seem through (6), (7), (8).

The principal diagonal matrix elements of Q7 (10) and Q3 (11) are the same,
whereas the off-diagonal matrix elements take the contrary sign.

The values of the third component Q3 , (13) are always to be larger than or
equal to those of total square matrix Q2, (14) !

If postulating Q2, (14) to be the conservation vacuum angular momentum, what
does the transitions among the different eigenvalues of 3.9 (8) mean?

(14)

(15)



8 Spin A/2

Symbol

Here

(3/4, +1/2,

Qj i1

CSH {3/4,+1/2, (1)}, Q1.2

(B} =

{ &

(+)=ns+
Qj,n=n+=+1/2

= 3/4,n

= +1/2,

)
j,+1/2

(+) =n.=n }

The following are the concrete expressions of Qj.i» base on (6-1),(6-2),(6-3)

Island operator Q;.1p, =

.0 iJ15 0
iJ15 0 i/8
0 iJ8 o0
0 0 i3
1
2
0

Island operator Q;.1p =

o JI15 0
c=J15 0 8
0 —J8 0
0 0 —J3
1
2
0

0 0
0
iv3
0 iJ0
iJo 0 J1
JI 0 ijo
iJo o iJ3 o 0
iJ3 o iJ8 o .
0 iJ8 0 iJ15 -
0 0 iJ15 0
3) )
0 0
0
J3
o Jo
-Jo 0 -iJ1
iJy1 0 Jo
-Jo o J3
-J3 o J8 o -
0 —J8 o J15 -
0 0 —-J15 o0

(4)

(1)
2



49 0 0 0 0
0o +7 0 O
0O 0 45 0
0O 0 0 +3
+1 0
Island operator €312 - 0
1
-3 0 0 O
0O -5 0 O
0O 0 —7 0
0 0 0 0 —9 -
)

The eigenvalues, from top left to down right, of Island operators 3.1, (5) are
arranged from positive infinite to negative infinite.

(3),(4),(5) obey angular momentum commutation relation

Q10412 = Q1212 = 1Quapn, Lk = 1,2,3 (6)
Evaluation of Qf,,,, Q3.5 and Qi + Q3.
2
Qi 1p
-39 0 -4 120 0 0
0 -23 0 -4J24
—4 120 0 —-11 0
0 —424 0 -3
n +1 0
4 0 +1
=3 0 -4 24 0
0 —11 0 -4/ 120
—4/ 24 0 -23 0
0 0 —4/ 120 0 -39

(7)



2
QZ,H/Z

then obtain

2 2
Qi in + Qp

+4/120 0
0 +m
—11 0
0 -3
- =78 0
0 —46
0 o0
0 0

0 +1

-3 0 +.4/24
0 —11 0
+./24 0 -23

0 +4120 0

0
+2 0
0 +2
-6 0 0 0
0 —22 0 0
0 0 —46 O
0 o 0o —-78 .

©)




0 449 0 O
0 0 425 0
0 0 0 49
+41 0
Q3.1n -+
i 4 0 +1
+9 0 0 0
0 425 0 0
0 0 +49 O
0 0o O 0 +81
L 10) |
note

Although the eigenvalues of Qf ., + Q3. , (9) approach to negative infinite
(from the matrix center where the eigenvalues are +1/2) in the direction of top left
and down right, the eigenvalues of Q3 (10) are greater than +1/4. Further the

eigenvalues of total square operator Q2,, (11) remains to be a finite number =-72.

2 2 2 2 _ 3 _ 141
Qlp = Qfap + Qp + Q5p = 1 = 5 (5 £ D%l

(11)



9 Spinln/3 CSH {4/9, +1/3, (+)}, Aji13

Symbol {4/9,+1/3,(+)} = { & = 4/9,n = +1/3, (+) =n.=n } (1)

(+)=n+ _ )
Aj,n:n+=+1/3 = j,+1/3 (2)

Here A

vy 0
Ocean Operator: A 13 = |: 14473 ] - % .

O l_[[13,+1/3
.0 iJ50 o0 0 0 0 0
Si/50 0 i34 0 0 0
0 i34 0 iJ2T 0 0
0 0 iJ/21 0 iJII 0
0 0 0 iJII 0 iJ4
0 0 0 0 iv4 0 0
0 0 1 0 0 0 0
1 0 iJ1T 0 0 0
0iJI 0 iJ6 0 0
0 0 iJ6 0 iJ14 o0 .
0 0 0 iJ14 0 /25 .
0 0 0 0 0 iv25 0

3)



Iy 0
Ocean Operator: A, 13 = [ 2,+4/3 ] _

0 V50

--J/50 0
0 -J34
0 0 -
0 0
0 0
0

s

OH2D,+1/3
0O 0 0 A
o 0 0
J2. 0 0
0 J1I 0
JIT o0 V4
0 -J4 0 0
O 0 -i 0 0 0 o0
4 0 JT 0O 0 0
0-JT 0 J6 0 0
0 0 -J6 0 J14 0
0o 0 o0 -J14 o J25
0 0 0 0 -/25 0
4)

Iy 0
Ocean Operator: Az 3 = [ 3,+4/3 ]

- +19/3
0

o o o o

0
+16/3
0

0
0
0

0

0
+13/3

0

0

0

D
0 I—[3,+1/3'

0O 0 0 0
0O 0 0
0O 0 0
110/3 0 0
0 +73 0

0 0 +4/3 0

0 413 0 0 0 0 0

0 =23 0 0 0 0

0 =53 0 0 0

0 83 0 0

o o o o

0
0 0 0 -11/3 0
0 0 0 0 -—14/3.

)




A2
Obtain A3,

. +256/9 0 0 0 0 0
0  +169/9 0 0 0
0 0 +1009 0 0
0 0 0 +49/9 0
- 0 0 0 0 +16/9
- +19 0 0 0 0
0 +4/9 0 0 0
0 0 +259 0 0
0 0 0 +64/9 0
0 o 0 0 0 +121/9 .

(6)

(3),(4),(5) obey angular momentum commutation relation

Aj2,+1/3A§,+1/3 - Aﬁ,+1/3Aj2,+1/3 = iA|2,+1/3a j» k1 =123 (7
We have
A%,HB %
-84 0 -J714 0 0 0
. 0 =55 0 -4 231 0
. -J714 0 -32 0 -J44
0 -4 231 0 -15 0 0
0 0 -Ja4 0 —4 0 0
0 0 +1 0 +iy1 0 0
0 0 0 0 -J6 0
#J1 0 -7 0 -/84
0 -Je6 0 20 0
0 0 0 -J8 0 -39




2 —
A2,—%—1/3 -

84
0

- +4714
0
0

0
=55
0
+4231
0

+4 714
0
=32
0
e

A2 2
Obtain A7, ;53 + Az

- =252/9 0 0
0 -1659 0
0 0 -96/9
0 0 0
0 0 0
0

Hence

Ahs = Alas +

0 0 0
+J231 0
0 +J44
15 0 0
0 4 0 0
0 0 +1 0 -iJyT 0 0
0 0 0 0 +J6 0 -
[iJ10 -7 0 +/84 -
0 +/6 0 20 0
0 0 +/8 0 -39
)
0 0 0
0 0
0 0
—45/9 0
0 -12/9
+3/9 0 0 0 0
0 0 0 0 0
0 0 -21/9 0 0
0 0 0 -609 O
0 0 0 0 -117/9 .
(10) B

2 2 _
As s+ Ass =

4
9'0

- LL
_3(3i1)|0

(11)



note

Let us go back to Aj.i5(5). first note that As,y; is an infinite dimensional
diagonal matrix, from top left to down right, its eigenvalues are arranged from
positive infinite to negative infinite. And its diagonal elements construct an
arithmetic series, the difference between every two neighbour matrix elements of
As .15 are always integral number +1.

Each matrix element on the principal diagonal of A3,,; (6) is the positive real
number. The least value is 1/9, that lies at the center of A§’+1/3. Upward to top
left side and downward to down right side of Aj_,;, the eigenvalues of A3,
vary toward positive infinite.

Af.i3 (8) and A3.; (9) are non-Hermitian matrices , but the sum Af, ;+A3 ;3
(10) of them is a Hermitian diagonal matrix, except +3/9 and 0, the rest of
principal diagonal elements of (10) are all negative. Obviously, this result comes
from the non-Hermiticity of matrices Aj.i3 and Aj ..

Fortunately, the increasing speed of diagonal values of matrix elements of A3,
(6), toward positive infinite, is slightly faster than that of Af,,;+A3, 5 (10) toward
negative, that assures the total square spin angular momentum A2, ;(11) to be a

positive infinite dimensional diagonal matrix.
There are only two diagonal matrix blocks for Ocean Operator.

The difference between every two adjacent elements of main diagonal of Qj./;
(5) are always integral number 1, to a certainty, is same as those of €23_0(7-8)
and, Q3.1»(8-5) mentioned before. it is an essential regularity associated with
CSH &,(n:=n).



10 Non-Hermitian Momentum ﬁ
Phase Factor of Fractional Statistics

10.1 Non-Hermitian Momentum @

Momentum and angular momentum are the most fundamental concepts in
quantum mechanics, which describe the linear motion and rotational motion of the
particles in physics.

After the disscussion of positive definite non-Hermitian self-adjoint angular
momentum i, in this paragraph we turn to positive definite non-Hermitian
self-adjoint momentum P.

Hermitian Momentum I3) is defined as

L 1 . sin @
Py = —Isinfcospdr — I cos@cospdy + 1 g 0°
L . . . . COS @
P, = —Isinfsingdr — 14 cos@sing dp — | s 0 Oy
P; = —icos@0dr + i~ sin6dy
In spherical coordinates, we have the radial metric coefficient f(r) = r?, then

the total metric coefficient o of space is extended to three coordindate functions as
follows (2)

o = fDgOh(p); f(r) = r2, g@®) = sin™*™0, h(p) = « + 29T,

Then take the Positive Definite Non-Hermitian Adjoint Operation of momentum

(1.1),(1.2),(1.3)

B L - . 1 .

(P1)® = +isinfcos 0P + i+ cospdy cost — i S0 0 sin ¢
. . 1 - 1

(P2)® = +isinOsing oP + I+ sin ¢ 0f cos 0 + rsin 0 9 cos @

(P3)® = +icos@oP — '+0§e sin 6

Substitution of (2) into the adjoint representation of derivative operator (1-21)
separately, yields the adjoint representins of derivative operator Or, 0g, Op as follows

oF = -0 - &+
0f = —0p — (1 + 4mg) cot O
®

08 = -0, — 2T,

(1.1)
(1.2)
(1.3)

)

(3.1)
(3.2)
(3.3)

(4)
©)
(6)



On using the (4),(5),(6), therefore

sin @

(P1)® = —isinfcos ¢ Oy — i% cos 0 cos ¢ (Op+4m, cot 0) — rsin @ (I-2nT2)
(P2)® = —isin@Osin ¢ o — i+ cos 6 sin ¢ (Op+4m, cot ) + rcglsn% (I5-12nT2)
(P3)® = —icos@0r + I+ sin @ (0p + 4m, cot 0)
Because of
PH® = Py
(F’z)ea + P>
(P3)EB + P3

Consequently, the so-called well-definited momentum operator in space (2), the
ﬁ
positive definite non-Hermitian self-adjoint operator P is introduced by following
definition

P = L1l(@e+P}

Then we have

Pi= —isinfcos @ dr — | + cos 0 cos p(0g+2my cot 0) — + :Egg 3
Py= —isin 0 sin ¢ Or — i+ cos 6 sin p(0p+2M, cot 0) + + (;(1)33

P3= —icos0or + i+ sin 0(0p + 2mq cot 6)

After carefully evaluation, momentum square operator is written by

P = P{ +P5 +P; = P} + L L7

r2
Note where
Pr = —iar - |+
L?> = —{83 + (1 + 4my) cot03p — (sin §)2(L3 — 4m3) — 4m3 — 2m,}

Here L? is what we have obtained in (2-19) namely, non-Heemitian orbital
angular momentum square operator.

10.2 By means of the orthonormal bases €, €y, €, in spherical coordinates

sin 6 cos ¢ cos 6 cos ¢ —sin @

€r = sinfsingp |, €0 = cosfsingp |, €p = + cos ¢

cos 0 —sin 6 0

(7.1)
(7.2)
(7.3)

(8.1)
(8.2)
(8.3)

)

(10.1)

(10.2)
(10.3)

(11

(12)
(13)

(14)



Using (14) to rewrite (10.1),(10.2),(10.3), we have (15)

So

B = —i€or — i--% (80 + 2mocot0) + -2, Ls (15)

Position operator T

T = re (16)

On account of basis rules
€ x € = €y, €9 x €y = €r, €p X Br = €y (17.1)
(€2 = (€92 = (€n? =1 (17.2)

We conclude cross product T x P of position operator T (16) with momentum
_)
operator [P (15), obtain

P xP (18)
= I8 x {~i€ 0 — i+ €9 (s + 2mgcotO) + rsilne €, L3}
= 0 - i4+%, (8 + 2mycot§) — snlle T L3 (19)

and three components of (18) are

(P x B); = +isinp(@ + 2mocotd) — cotf cos glLs (20.1)
(P x B), = —icose(Gs + 2My cot§) — cot 0 sin plLs (20.2)
(P x B)s = —id, — inT> (20.3)

Comparing (20.1), (20.2), (20.3) with (2-13), (2-14), (2-15), we see that the

definition 7 x P (18) is namely positive definite non-Hermitian self-adjoint orbital
angular momentum previously obtained.

PxP =L 1)
—sin @ cos 0 cos ¢
L = il +cos ¢ |[(G9 + 2mg cot ) — sirll i cosfOsing |[Ls (22)
0 —sin 6

ﬁ
Next we will use non-Hermitian momentum operator P to give some interesting
and heuristic ideas which related to gauge invariance in O space (2) and the phase
factor of fractional statistics of particle wavefunctions.



10.3 The Gauge Invariance in Space f(r)g(@)h(¢p)
a) Non-Hermitian momentum P (15) can be expressed by derivative O.

s =
P = -0 (23)
Where
U = ®or + +%0 (0 + 2mocotd) + i rsian €, Ls (24)
-
= 0 + +€p2mycotd + rsilnH €y NT2(0)
o g —
O =0+A (25)
Where
- - -
0 = —i€ 0 — i4+E€pdo + rsian 2, 15 (26)
2 _ 13 1 =
A = - €g2mocotd + rsng Ce nT2(p) (27)
. - - N
If no confusion, we use symbol V = 0. The components of A as follows
ANy = 0, Ap = 2m0% cotf, Ay, =7 rsilnB T2 (@) (28)
sinfa, = +nTa(p) (28.1)
_ 1
Ay = g MT2() (28.2)
rhg = 2mgcot® (28.3)

_)
Using the above results to evaluate V x Z, obtaim

VxR = —L _[9(sin02,) — 3,(20)] B (29)
T [ Oo(ar) = 0r(rg)] Bo
+ - [0r(rre) — 8o(Ar)] €,y

=~ [30( - nTa(p) ~ dp(2mo+ cotO)] %

I sin 0
+ 1 g %0 — o MT2(o)] Eo
+ %[ar(2mo cot§) — 09(0)] €,
0 (30)
further
V2 =0 1)
Cx2 =T+ x2 =0 (32)

(31) and (32) show that A is irrotational field respect to V and derivative O,



b) In space (2), Schrodinger equation and minimal coupling theorem are defined

as

(P - €M) +edp¥ = iho¥
Using (25), have

@ - 2K 4 ey = ooy

(- D) + epp¥ = ihow

where
- — . —
D =0U-i%A

H
D is called the covariant derivative of wave function ¥ respect to the gauge
_)
vector potential A in space (2).

By means of gauge transformation (37),(38)

Yx) = ¥ = exp [ i1 1'¥X)
A = A0 = A0 + [0A(0]
here i A(x) is phase factor of wave function W(x) as follow
X
AX) = j A . DI
Xo[C]
where DI is differential length [cf.(60)]

We make following gauge transformations of covariant derivative I)j and
wavefunction Y.

DjY(x) = { Uj - ih;ccAj} YX) = {0 + 4) — ih;ccAj FY(X)

v
D' (R) = {0, = i (A0 + [6200] ) } + expli £ 2(0] ¥(x)
= { o+ A, — =S (A0 + [A00] ) } - expli & A(0] ¥(X)
= exp [i-£ (0] { 0 + 1= [6,A(0)]
+A) = =S (4100 + [3200] } YK
= oxp IS A0]{ 0 + A& - i-& A,-<x>}‘1'(x)
= exp [i-5 2001 U, - i Aj(x)}LP(x)
DY) = exp [i45A00){ U, — i Aj} Y00
DY () = exp [i-S400] D \P(x)

(33)

(34)

(35)

(36)

(37)
(3%)

(39)

(40)

(40.1)

(40.2)

(41)
(42)



Using (41),(42), Further

DY) = { T, - i A VW = {0+ - iS4 P (43)
U
! / - 2 .
DY (x) = {0, =i (A + [3A0] )}« exp [i55-A(0] ¥(x)
2 :
= {0+ 45 — 1= (A + [6AX)] ) }7 + exp [I7=200] ¥ (%)
= {0 + 4 — 1= (A + [6AX] ) } -
Cop+ 05 — =S (A + [BA00] ) } + exp [i-EA00] P09
= {0+ 4] - ( Aj(x) + [6iA()] ) } -
exp[ l(x)]{ (S - 1= e S Aj 1Y) [using (40.1), (40.2)]
= expli x(x)] 0, ~ i A - (U~ T2 A ¥
DY () = exp [i-5 (0] Df Y(x) (44)
Then using (44) and (35), we have
2 =, ' . 2 =
(- L @)+ ep )W = exp [ 220] - {— L (D)2 +ep ¥ @4 (49
= exp [ih;ccl(x)] . ihoY (35) (40)
ihot W' = ihot { exp [i%/l(x)] W o= iho Y (47)
So the gauge invariance of Schrodinger equation in space (2) is demonstrated by
the above expatiation.
10.4 Phase Factor of Fractional Statistics
Then focus our attentation on the phase factor of fractional statistics by using
line integral on (42) for any closed counterclockwise loop C(¢), encircling the
origin, which is the most fascinating phenomenon of line path integral (67).
C) As a matter of convenience, in the next paragraph use e=hA=C=1. Now we
will consider with a special gauge vector potential A of wave function W(X) in
space (2) as
— . l N
A 2rsind °° (48)
we see A is an irrotational field
= v 1 . . 1 B N
VoA = rsin 0 [Oo(sin 0 2rsin 0 ) — Op(0)] €r
+ sm9 0(0) = Or(r + 5 slinH 1€
+ - [0r(r - 0) — 96(0)] By (46) (49)
VxA =0 (50)



In space (2), differential length is defined as

—

| = € dr + €rsin*™0df + €, rsindh(ep) de (51)

Using (39), evaluating factor A(X) integral

X

AX) = A-DI (39 (52)
Xo[C]
_ 1 2 .R .
= §c Srsmd €° €, I'sin 0 h(p) do
= L §_hpydp = 3§ do{x + 2Ti(p)
A(X) = nkly = n(l + 4m0)|0 = (1l + 2n)ly (53)

(52) shows the contour integral of gauge vector A s directly connected with the
spin quantum numbers n of particles of CSH! without any phenomenological
postulation.

d) For clearer, resume physical units, gauge potential (48) turns to (54)

>

_ 7 1
= So3rsing ® (54)

o = I = o2 (55)

where @, is fundamental magnetic flux.

According to (37), the period of phase factor of wavefunction are written as

X
exp [i-5-A00] = exp [i-S j A . DI (56)
C(p)
X
_ e e 1 . DI
= exp [I5-® I € Srsmg " D! (57)
C(o)

take ® to be fundamental magnetic flux @y, and use (37),(39),(53),(57), we
have

PX) = P exp [ i§c i€+ By rsin0h(p) do ] (58)

= WX)exp [ in(1 + 2m)l, ] (59)



e) Using (59), make classfication of spin particles by quantun number n.

1) For Bosons:
n = n,, are integers, such 0,+1,+2,+3,...,

then phase are +x, +37, +57, +7x. ..
n = n_, are integers, such 0,—-1,-2,-3,...,

then phase are +r,—m, -3m, —57....

2) For Fermions:
n = n,, are half-integers, such +1/2, +3/2, +5/2,+7/2. ..,

then phase are +2x, +4r, +67, +87. . . .;
n = n_, are half-integers, such —1/2,-3/2,-5/2,-7/2, ...,

then phase are +0n, 27, —4r, —67. ...

We see all Bosons lie at the negative real coordinate axis and all Fermions lie
at the positive real coordinate axis

3) For TKP: n, and n_ are neither integers nor half-integers.

n = ng, are +1/3,42/3,..., then phase are +57/3, +7n/3(+n/3), ...
n = n., are —1/3,-2/3,..., then phase are +n/3,-7/3,....

n = ny = +1/4, then phase is +37/2;

n =n. = —1/4, then phase i1s +m/2.

We can choose different vector potential K, for different physical pictures in
space (2), then we will have different represents of (59) or (37).

10.5 The Third Kind of Particles, TKP are not Anyons cite: [5]

1) The generators of Anyons do not satisfy the commutation rules of angular
momentum, so Anyons are not real spin particles; The generators of TKP obey
angular momentum commutation relations, they are true spin particles.

2) Anyons are classified according to braind group Bn; TKP are the extension
of groups SO(3) and SU(2).

3) Anyons exist only in two dimensional system; TKP are exist in three
dimensional system.

4) Anyons do not depend on space metric, that be formulated from topological
quantum field theory; The physical concepts of TKP arise from angular momentum,
which are tightly connected with the three-dimensional space construction.



11 Conclusion

Now back to chapter 0, in conventional quantum mechanics, the eigenvalues pu
of total square operator J? of spin angular momentum are expressed by (0-23) and
the representations of matrix dimensionality D of spin angular momentum are
related to the values of the spin particles as shown with formula (0-24).

Note
It is seen, that due to the eigenvalues A of the third component matrix Js
could extend to £ o ,
formulae (0-23) and (0-24) are untenable !

as follow

1) For an example, in conventional quantum mechanics, Amax is integer and
half-integer in the dimensionality formula D (0-24). We see, the less the value of
Amax,  the small the matrix dimensionality of spin angular momentum. From
spin 14, to spin #/2,to spin 0#, the dimensionality is 3, to, 2, to 1.

What will happen ? if Amax continues to decrease in interval (#/2, 07).

If Amax = spin #/3, spin h/4, spin A/5, spin h/6, . ..
Then D = 2Amax + 1 = 23 +1,2/4 +1,2/5+1,2/6 +1,...
5/3,6/4,7/5, 8/6, ... dimensionality D is fractional !

This means that if formula (0-24) were still valid, you should construct so-called
fractional-matrix ! which is imcompatible with the skeleton frame of the present
math, at least. So there are only two kinds of spin particles in conventional
quantum mechanics.

Whereas, after the exposition of chapter 5 and chapter 6, and later three
examples of typical spin particles of CSP ( chapters 7,8,9), it is shown that in
the system of Chaos Spin Hierarchy, the dimensionalities D of spin 04 #/2, h/3
extend to infinite!

Actually, in Chaos Spin Hierarchy (in chapter 6), all the members of spin
angular momentum, &7 (6-1),(6-5), &5 (6-2),(6-6), &S (6-3),(6-7) and (£57)2
(6-4),(6-8) are expressed by infinite matrices, which are indenpendent of the spin
values A of the particles.

Further the axiom (0-24) should be abandoned. If we want to still hold down
the (0-24), after all, D = 2Amax + 1 = +oo, in this sense, that seems to
somewhat "reasonable".



2) When A extends to A = Amax = oo, further formula (0-23) that concerns
about the eigenvalue u of total square operator J?> of spin angular momentum, is
invalid too.

Actually, in Chaos Spin Hierarchy, ther are two dimensionality formula (6-4)
and (6-8) which highly resemble (0-23)
Ho= Aon(aa + D) = K22+ 1) = n(£1) = ne(n: £ 1) = (&)
(0-23) = (6-4), (6-8)

But their derivations are quite different:

a) In (0-23), the eigenvalue u of total square operator J? is symboled by
k/2 (k/2 + 1) that be derived from Apax(Amax + 1). Here A is the maximum of
Js3 in conventional mechanics, corresponds to quantum number m.

b) (6-4), (6-8) represented by quantum number Nn.=+2my (4-7), Nn_-=-2m, (4-8).
Here 2m, is a parameter that depicts the curvature of space o=h(p)g(0) (2-5),
which initially appears in the eigenvalue expressions m + 2m, of non-Hermitian
angular momentum [L;.

This paper shows how Non-Hermitian angular momentum. comes to what
TKP is today




Author places some hope on the adoption above, to give a good deal of
enlightenment for both students and researchers, and wish the formulations of TKP
is compatible with the axiomatic of quantum mechanics known as yet, further an
idea in the uses of future physics.

In this paper, some fundamental research, which results in non-Hermitian
angular momentum (both orbit and spin) of author’s work for past years, are
given cite: [3],[4].

TKP methodology is applied to Energy Harmonic Oscillator Hierarchy (EHOH)
and infinite dimensional matrices of Lorentz Group, much of which have never
been published in public journals before cite: [3].

This article mainly comes from author’s English-Lectures that designed to serve
the needs of workshop and seminar in China.
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Appendix: Infinitesimal Rotation of TKP

Al) Infinitesimal Rotation of Particle of Spin 04 CSH

Infinitesimal rotation operator W;.,o = 1/ J2 .

0 /10 0 0 0 iJy10 0
-iJ10 0 iJv6 0 0 iJv6 0 —iJ10 -
ive 0 iv3 0 iv3i 0 -iJ6 .
iv3i 0 iJT ivi 0 -iJ3
ivi 0 JO 0 —iJ1
Jo 0 Jo
ivi 0 J0o 0 iJ1
iv3i 0 —iy1 ivi 0 iJ3

: iv6e 0 -iJ3 iv3 0 iJ6 :
/10 0 /6 iv6 0 iJ10 -
0 -iJ10 iv/10 0
) (1)
Infinitesimal rotation operator W, = 1/4/2 -

-0 iJI0 -iyi0o o -
. iJ1I0 0 iJ6 -iJy6 0 iJ10 .

iv6 0 /3 -iy3 0 iJ6
iv3 0 iJT -iJT 0 i3
ivi 0 Jo 0 iJ1
Jo 0 JO

-iy1 0 Jo 0 iJ1
-iJ3 0 iJ1 ivi 0 iJ/3

. -iJ6 0 iJ3 iv3i 0 iJ6 .
. SJI0 0 iJ6 iv6 0 iJI10 -
.0 iJ10 ivyi0 0

2)




A2) Infinitesimal Rotation of Particle of Spin 142 CSH

Infinitesimal rotation operator W, = 1/4/2 -

.0 iJ9
/9 0 iJ/5
iv5 0 iJ2
iv2 0 iy0 ivO
ivo 0 iJT 0
-iJT 0 iJT
iyo 0 —JyT 0
iv2 0 -iJ0 ivO
. iv5 0 —iy2
<iY9 0 -5
0 —iJ9
3)
Infinitesimal rotation operator W, = 1/4/2 -
.0 iJ9
- iJ9 0 iJ/5
ivs 0 iJ2
iv2 0 iJO -iJ/0
ivo 0 iJT 0
—iJT 0 T
-iJoO 0 iJT 0
-iy2Z 0 iyo ivO
. V50 iY2
L (N VE
0 iJ9

(4)

cite: [3]
ivo 0 -
ivs 0 -iJ9 .
iv2 0 -iyJ35 .
0 —iJ2
-iJ0
ivO
0 iv2
iv2 0 /5 .
ivs 0 iJ9 .
ivo 0
-iJ9 0o .
—-iJ5 0 iJ9 .
-iJ2 0 iJ5 .
0 iJ2
ivO
ivO
0 iJ2
iv2 0 iJ5 .
iv5 0 iJ9 -
ivo 0




A3) Particle of Spin 042 CSH and Particle of Spin 12 CSH have the same
math figure in their third Infinitesimal Rotation operators, that is

+3i 0
+4i 0
- +5i 0

(5)
Operators Wj.n obey angular momentum commutation rules

Wj,+an,+n - Wk,+nWj,+n = thL+n (6)

Here space indexes j,k,I = 1,2,3 are circulative;
particle spin quantum numbers n = 0, 1

A4) Operators Sj, Fj, Wj are 3x3 matrices.

000 00 i 0-i0 |
S = 00 —i , Sy = 000 , S3 = +Hi 00 (7)
0i 0 i 00 000
0io0 000 00— |
Fi = 00 , F2 = 00 —i , F3 = 000 (8)
000 0i 0 i 00 |
SiSk — S = ihS) 9)
FiFk — FFj = ihFy (10)
0 i 0 0i 0 00 —i
WF# i 0 i ,szﬁ -0 i , Ws=| 000 (11)
0 i 0 0i 0 i 00

WiW, — WW; = P4 W, (12)



In case of Spin 17 CSH, we select W;j as the matrix center parts of Wj.;, due
to the most symmetrical design of the math harmony of Infinitesimal rotation of
TKP. Operators Fj, Wj will be chosen as the center of W;j., in other physical
pictures.
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