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ABSTRACT 

The two dimensional quantum dipole springs in background uniform electric and magnetic fields are first studied in the 
conventional commutative coordinate space, leading to rigorous results. Then, the model is studied in the framework of 
the noncommutative (NC) phase space. The NC Hamiltonian and angular momentum do not commute any more in this 
space. By the means of the  1,1su  symmetry and the similarity transformation, exact solutions are obtained for both 

the NC angular momentum and the NC Hamiltonian. 
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1. Introduction 

The discovery of new fundamental interactions and the 
development of quantum field theory have opened the 
way to many research works. Then the Standard Model 
has become the best theory that fits our actual under- 
standing of particle physics. However, many reasons 
bring us to think that it is not the end of the story. More- 
over, these last decades have given birth to some new 
theories addressing some of the still unresolved enigmas 
of the nature. One of them is the hypothesis that funda- 
mental structure of spacetime should be entirely revised, 
considering for instances that it is based on a NC geo- 
metry. 

In recent years, there have been increasing interests in 
studying physical aspects of quantum theory on NC 
space-time, NC space as well as on NC phase space. NC 
physical effects have thus aroused great interest and 
related theories have been studied extensively (see for 
example [1-7]). The motivation for this kind of theory is 
that in the low energy effective theory of D-brane with a 
background magnetic field and an extreme situation such 
as in the string scale or at very high energy levels, not 
only the space noncommutativity may appear, but also 
the effects of momentum noncommutativity can be signi-  

ficant, which is called NC phase space. Hence, a lot of 
specific problems have been investigated on the theory of 
NC spaces such as the quantum Hall effects [8,9], the 
harmonic oscillator [10-12], the Fock-Darwin system 
[13], the coherent states [14], the classical-quantum rela- 
tion-ship [15], the motion of the spin-1/2 particle under a 
uniform magnetic field [16], the Dirac equation with a 
magnetic field in D [17] and with the time-dependent 
linear potential [18], etc. The main approach is based on 
the Weyl-Moyal correspondence which amounts to repla- 
cing the usual product by a star product in NC space [19]. 
Each of these NC theories is defined by a NC algebra 
where the spectrum of the NC quantum Hamiltonian is 
worked out. In reference [7], the analog of the Landau 
problem applied to dipoles in NC spaces is studied. In 
their paper, the authors studied the analog of Landau 
quantization, for a neutral polarized particle in the pre- 
sence of homogeneous electric and magnetic external 
fields in the context of the NC quantum mechanics, 
where the Landau energy spectrum and the eigenfunc- 
tions of the NC space and NC phase space coordinates 
have been obtained. In reference [20] which is an exten- 
sion of the model developed in [21], a supersymmetric 
description of an analog of our model without the electric 
field is provided in the commuting cordinates space and 
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the energy spectrum, as well as the spectrum of the 
angular momentum and the supercharge are determined. 
Furthermore, to the best of our knowledge, the explicit 
expressions of spectra for both the quantum Hamiltonian 
and the angular momentum in NC phase space have not 
been reported in the literature so far. 

In this paper, we extend and study in the NC phase 
space with an uniform background magnetic field, the 
model describing a system of two nonrelativistic charged 
particles of identical mass, of opposite charges and 
linked by a spring through an harmonic potential1. This 
extension constists of considering an electric field in 
addition to the magnetic field and a confining potential. 
The considered model may be viewed as a dipole obser- 
ved from a network of charged particles. Through the 
developments given hereafter, we note that the Hamil- 
tonian and the angular momentum do not commute in 
NC phase space. Our approach which combines algebraic 
and analytical technics, using group theory tools, allows 
to diagonalyze these observables. 

The outline of the paper is as follows. In Section 2, we 
solve the two dimensional quantum dipole coupled to 
external background electric and magnetic fields in the 
ordinary commuting coordinates space. This lights the 
way for us in Section 3, where we deal with the study of 
the system in NC phase space. In Section 4, we present 
an algebraic framework to show that the corresponding 
NC quantum Hamiltonian and NC angular momentum 
possesse a hidden  algebraic structure and we 
obtain the exact eigenvalues and eigenfunctions of these 
operators by means of the similarity transformation. 
Section 5 is devoted to the conclusion. 

 1,1su

2. Quantum Dipole in the Ordinary  
Commuting Coordinates Space  

Consider a system consisting of two nonrelativistic char- 
ged particles of identical mass  but of opposite elec- 
tric charges  and , moving in the two-dimensional 
Euclidean space, coupled to some background gauge 
fields 

m
q q

A  and  . The magnetic field  B A  is 
chosen to be static, homogeneous and perpendicular to 
the plane, while the electric field E 

r

 lies in that 
plane. Their positions—with respect to some inertial 
frame-are represented by two vectors  and , respec- 
tively. These two particles interact with one another 
through an attractive harmonic force of constant spring. 
Furthermore, this model is generalized2 by confining the 
center of mass of the system in an harmonic potential. 

s

The system may be described by the following 
Lagrangian  

     

      

2 2
0

2 22 2
0 0

1

2
1 1

.
2 8

i i i i i i i i

i i i i i i

L m r s qr A r qs A s

m s r mk s r q r q s 

   

     

   


(1) 

In order to keep the rotational covariance of the system 
explicit, the circular gauge will be used for the vector 
potential  

  01
, , 1,2,

2i i ij jA r B r i j           (2) 

while, the scalar potential is 

  0 .i ir r E   i               (3) 

Let’s introduce now the following change of variables,  

  1
,

2i i i i i i  ,x r s u s r             (4) 

where ix  thus being the position vector of the center- 
of-mass of this two-body problem, while  represents 
the relative position of the particles. 

iu

The Lagrangian may be expressed as follows  

 2 2
0

2 2 2 2
0 0

1 1

4 2
1 1

,
2 2

i i ij i j i

i i i i

L mx mu B x u u x

u E m u mk x





   

  

    j

,

     (5) 

where . 0 0, i iB qB E qE 
The Euler-Lagrange equations of motion for the 

system are, 
2
02 0i ij j imx B u mk x             (6) 

2
0

1
0.

2 i ij j i imu B x m u E            (7) 

2.1. Hamiltonian Formulation 

By the means of the “auxiliary” variables i  and p i , 
the Lagrange function may also be written as follows,  

0 ,i i i iL x p u H0               (8) 

where  
2 2

0

2 2 2 2
0 0

1 1 1 1

4 2 2

1 1
.

2 2

i ij j i ij j

i i i i

H p B u B x
m m

u E m u mk x

  



       
  

  



  (9) 

Indeed when solving for the equations of motion for 
 i ip  , these are seen to correspond to the conjugate 

momenta of  i ix u  and then one recovers the original 
Lagrange function. Proceeding like that the action is 
already in first-order Hamiltonian form, both for the 
 ,i ix p  sector as well as for the  ,i iu

1This description leads to the term “quantum dipole spring” that we call 
simply “quantum dipole” in the title of the paper. 
2For the sake of this problem and the next, the Coulomb interaction 
between these two charges is ignored. 

  sector. Pois- 
son brackets are then readily read off the Lagrangian in 
first-order form, while 0H  is its Hamiltonian. Thus the 
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Dirac quantization algorithm is left implicit and one finds 
the following Poisson/Dirac brackets,  

   , , ,i j ij i j ijD D
x p u .   

,

     (10) 

Quantisation of the system is then straightforward 
from these Poisson brackets and the above Hamiltonian 
through the correspondence principle, in an obvious 
manner. 

2.2. The Quantum Dynamics 

We now promote each degree of freedom to an operator 
acting on a Hilbert space to be defined. Following the 
canonical quantization procedure, we define the 
commutation relations as  times the Dirac bracket 
of the classical quantities:  

 i

ˆ ˆ ˆ ˆ, , ,i j ij i j ijx p i u i              (11) 

where  and all the operators are their own 
hermitian conjugate. The quantum Hamiltonian is given 
by,  

, 1, 2i j 

2 2

0

2 2 2 2
0 0

1 1 1 1ˆ ˆ ˆ ˆ ˆ
4 2 2

1 1
ˆ ˆ ˆ .

2 2

i ij j i ij j

i i i i

H p B u B x
m m

u E m u mk x

  



       
  

  



  (12) 

When wanting to complete with the electric field cou- 
pling the square defined by the harmonic potential, one is 
led indeed to the following change of variables [22], 
which is a canonical transformation in phase space,  

2 2
0 0

1ˆ ˆˆ ˆ, ,
2

ji
i i i i ij

EE
U u P p B

m m


 
      (13) 

such that,  

ˆ ˆˆ ˆ, , ,i j ij i j ijx P i U i .             (14) 

We get  
2 2

0

2
2 2 2 2
0 0 2

0

1 1 1 1ˆ ˆ ˆ ˆ ˆ
4 2 2

1 1ˆ ˆ .
2 2 2

i ij j i ij j

i
i i

H P B U B x
m m

E
m U mk x

m

  




       
  

  





 (15) 

Note that these changes of variable are ill-defined if 
one wants to set 0 0 

0

. The reason for this is the 
following: In the presence of a magnetic and an electric 
field with no other confining force, the magnetic center 
moves at a constant velocity, and one needs to apply a 
Galilei boost; quantum states are no longer all 
normalisable. In order to avoid that singularity, when 
wanting to remove the harmonic confining potential, first 
one needs to turn off the electric field  lying in the 
plane, and only then set 

iE
0   [22]. 

From the physics point of view, clearly the system is 
invariant under constant translations in time, and 
constant rotations in space. Consequently, there must 
exist conserved quantities generating the corresponding 
infinitesimal transformations, to which specific quantum 
operators also correspond which then generate these 
transformations for quantum states and operators. It may 
be shown that the generator for time translations is the 
quantum Hamiltonian, equation (15), while the generator 
for the rotations in the plane is given by, 

Noether
ˆ ˆ ˆ ˆˆ .ij i j ij i jL L x P U ˆ           (16) 

From here on, the solution of the quantum Hamil- 
tonian (15) follows a standard path. Let us introduce the 
following quantities [20]: 

0 0 0 02 , 2 , ,c

B
k k

m
            (17) 

2 2 21 1
, .

2 2c c
2                (18) 

0

0

0

ˆ ˆ
2 2

ˆ ,
2 2

i i

c
ij j

m
U i

m

m
i x

m

  
i 

 
 


  

 





 

 



 



        (19) 

† 0

0

0

ˆ ˆ
2 2

ˆ ,
2 2

i i

c
ij j

m
U i

m

m
i x

m

  
i 

 
 


  

 

 



 

 



 




     (20) 

0

0

0

ˆ
4

ˆ ˆ ,
4

c
i i

ij j ij j

m
U

m k

k m
P i x

m k

 


 


 

 



 



 

 

 



 

   (21) 

†

0

0

0

ˆ
4

ˆ ˆ ,
4

c
i i

ij j ij j

m
U

m k

k m
P i x

m k

 


 


 

 



 



 

 

 



 

   (22) 

with  
†,i j ij i j     †, .                (23) 

Consequently, the quantum Hamiltonian and the 
angular momentum may be expressed as follows  

 

† †0 0
0

2
† †

0 0 2
0

2ˆ

2 ,
2

i i i i

c i
i i i i

k
H

E
k

m

  
   

 


     

 

 

 




 

  

 

  
(24) 
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 † †ˆ .ij i j i jL i              (25) 

We may now apply a second change of variables to 
remove the remaining non-diagonal terms in the Hamil- 
tonian. It is straightforward to check that the previous 
commutation relations do not change under the following 
change of variables: 

 

† † †

1
1 1

2
1

1 1
2

i i

i i

a

a

 

 

   

    

,

,

i

i

     (26) 

 

† † †

1
1 1

2
1

1 1
2

i i

i i

b

b

 

 

   

    

,

,

i

i

      (27) 

where  

.
 


 

 

 

               (28) 

We then find,  
†,i j ij i ja a b b     

†,  .        (29) 

The quantum Hamiltonian and the angular momentum 
become  

2
†

0 2
0

2
†

2
0

ˆ 1
4

1 ,
4

i
i i

i
i i

E
H a a

m

E
b b

m











 
    

 


    
 











     (30) 

 † †ˆ ,ij i j i jL i a a b b            (31) 

with  

  1 1
, .

2 2
               (32) 

The angular momentum operator mixes the two chiral 
sectors that were held decoupled in the Hamiltonian. It is 
therefore natural that a last change of variable that mixes 
them is needed to diagonalize the operator . Let us 
introduce the following chiral Fock algebra operators, 

L̂

  † † †
1 2 1 2

1 1
,

2 2
a a ia a a ia    ,    (33) 

  † †
1 2 1 2

1 1
, ,

2 2
b b ib b b ib   †

†, 

   (34) 

with  
†,a a b b         .           (35) 

Note that all these expressions may be inverted to 
express the original quantities  ˆˆi ix U  and  ˆ ˆi iP   in 

terms of  a b   and  † †a b  . 
After a direct substitution, one finds  

2
† †

† †

a a

b b

  

  

 



0  

 





2
0

2

2
0

ˆ 1
4

1 ,
4

i

i

E
H a a

m

E
b b

m





 


 


 
 

 
 

  
 





   (36) 

 † †L a a b b b b     † †a a    ˆ .      (37) 

We have constructed convenient creation and annihila- 
tion operators which span bosonic Fock algebras, and 
diagonalize the main observables of the system, namely 
the Hamiltonian and the angular momentum. To com- 
plete the description of the quantum system, we now 
have to find a representation of these operators. We 
therefore have to construct the Hilbert space of the phy- 
sical states, and associate to each operator a linear trans- 
formation on that space, such that the commutation rela- 
tions hold. We will then be able to determine the energy 
spectrum of quantum Hamiltonian 0Ĥ , as well as the 
spectrum of the angular momentum . L̂

Indeed, the orthonormalised chiral Fock states basis 
with as normalised Fock vacuum a state 

0,0,0,0 ,             (38) 

such that  

0, 0, 1,a b           (39) 

is constructed by  

       † † † †

1
, , ,

! ! ! !

,
m n m n

m n m n
m n m n

a b a b

   
   

   
   



 

    (40) 

, , , ,

, , , , , ,

,m m n n m m n n

m n m n m n m n

   
       

       

   

   


     (41) 

with the property:  

, , , , , , ,m n m n m n m n


        


    (42) 

the notation   standing for , , , 0m n m n     . This 
complete set of states is a basis which diagonalises the 
commuting operators 0Ĥ  and  L̂

 
0

ˆ , , ,

, , , , , , ,

H m n m n

E m n m n m n m n

   

       
    (43) 

 
2

2
0

2

2
0

, , , 1
4

1 ,
4

i

i

E
E m n m n m m

m

E
n n

m





      


  


 
     

 
 

     
 







(44) 
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ˆ , , ,

, , , .

L m n m n

m m n n m n m n

   

          
   (45) 

If we remove the harmonic well-which boils down to 
set  and next 0iE  0 0 k0   --, then we get  

 
free

ˆ , , ,

1 , , ,c

H m n m n

m m m n m n
   

        .

0

     (46) 

Note that in setting 

0 2 ,k                 (47) 

which is a condition that relates the harmonic potentials 
frequencies, we get the following spectrum,  

 , , ,E m n m n E      

  

  
2

2
0

1
1

2

1
1 ,

2 2

c

i
c

E m m

E
n n

m

 

 


 

 

   

    




  (48) 

where  

2 2
08 .c                 (49) 

3. Quantum Dipole in NC Phase Space 

The physics of two nonrelativistic charged particles of 
identical mass , of opposite electric charges  and 

 and respective positions  and 
m q

 q îr îs , in crossed, 
background electric and magnetic fields coupled with a 
confining harmonic potential and connecting by a spring, 
is described by the following quantum Hamiltonian  

2 2

0

2
2 2 2 2
0 0 2

0

1 1 1 1ˆ ˆ ˆ ˆ ˆ
4 2 2

1 1ˆ ˆ ,
2 2 2

i ij j i ij j

i
i i

H P B U B x
m m

E
m U mk x

m

  




       
  

  





 (50) 

where  

   

   

2
0

2
0

1 ˆˆ ˆ ˆ ˆ ˆ, ,
2

1 1ˆ ˆ ˆ ˆ ˆ ˆ, ,
2 2i i i i

i
i i i i i i

j
i r s ij i s r

E
x r s U s r

m

E
P p p B p p

m



 


    

    
 (51) 

ˆ ˆ ˆ, ,i i ix u p  and ˆi  are the relative coordinate operators, 
the center of mass coordinate operators, the total momen- 
tum operators and the relative momentum operators, res- 
pectively. 

These operators verify the following set of commu- 
tation relations, with ,  , 1, 2i j 

ˆ ˆ ˆ, ,

ˆ ˆˆ ˆ, ,

ji r ij i s

i j ij i j

r p i s p

x P i U



 

     
       





Let us denote the operators of coordinates and 
momenta in NC phase space as  ˆ ˆ

i i   and  ˆ ˆ
i is r  

respectively, then the 
 

 ˆ ˆ
i i   and 

i iˆ ˆ s r  in the two- 
dimensional NC phase space satisfy the following 
commutation relations [23]  

 

   

   

ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆ, , ,
i j i j

a b
i j ij i j ij

a b

,

s s ij r r

i i

i i ij

   

  

       
       

   

    

, ,
j

    (53) 

ˆ ˆ ˆ ˆ,
ji s ij i ri     

                (54) 

where  a  and  b  are the real-valued noncom- 
mutativity terms of the space coordinates, while  a  
and  b  are the real-valued noncommutativity terms of 
the momenta, ij  being an anti-symmetric matrix. Fur- 
thermore, the two particles have opposite charges, and 
each of them is supposed to have the same noncom- 
mutativity but with opposite sign  

       , .a b a b               (55) 

Consequently, the relative coordinate operators , 
the center of mass coordinate operators 

ˆ
i

ˆ
i , the total 

momentum operators  and the relative momentum 
operators 

î
ˆ

i  in the NC phase space satisfy the follow- 
ing commutation relations 

ˆˆ ˆ ˆ, , ,

ˆˆ ˆ ˆ, ,

i j ij i j ij

i j ij i j

i i

i

,

,

  



       
        

  

  


     (56) 

while all other commutators vanish. According to this 
recipe, the above quantum Hamiltonian and the angular 
momentum act on an arbitrary function   as follows  

0
ˆ ˆ ˆ ˆ, ,H H L L             (57) 

where the star product  is the Moyal-Weyl product 
defined in [24,25]. 


Ĥ  and L̂  are the NC versions of 

the quantum Hamiltonian 0Ĥ  and of the angular mo- 
mentum , given by  L̂

2 2

2
2 2 2 2
0 0 2

0

1 1 1 1ˆˆ ˆˆ ˆ
4 2 2

1 1ˆ ˆ ,
2 2 2

i ij j i ij j

i
i i

H B B
m m

E
m mk

m

  




        
  

  

  

 





 (58) 

 ˆˆˆ ˆ ,ij i j i jL P             (59) 

respectivily. 
From the relations (56), we have the following expre- 

ssions [26-28], 

ˆˆ ˆ ˆˆ ˆ , ,
2 2i i ij j i i ij jx U P
     
 

   
 

    (60) 

ˆ ,

.

j

         (52) ˆ ˆ ˆ ˆ ˆ, ,

2 2i i ij j i i ijP U
    
 

    
 

 ˆ jx   (61) 
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where   is a scaling constant related to the noncom- 
mutativity of phase space: 

 2 2 2 *4 1 ,       .        (62) 

when 0  , we obtain 1  , where the space-space is 
noncommuting [24], while momentum-momentum is 
commuting [29,30]. 

The constant uniform NC electric and magnetic fields 
Ei and Fij are given by  

1
1 , 1

2 4i i ij ijE B B B
1

.        
   

E F     (63) 

The quantum Hamiltonian written in equation (58) 
becomes in the NC phase space,  

     

   

 

2 2 2 2 2 2 2
1 2 1 2 1 2

2 2 2
1 2 1 2 2 1

2

1 2 2 1 2
2
0

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
4 4

1 1ˆ ˆ ˆ ˆ ˆ ˆ
16 4

ˆ ˆ ˆ ˆ ,
1

2 1
2

c

i
c

H P P m x x
m m

m U U x x

PU PU

B m

   

   


 

     

   

  
  
 


 

 

 E

(64) 

where3  

0 0 2 2
2

2 2

2 , ,

2 16
c

m
k m

m m


  2  


 
 



 

 

2 2
2 2

2 2
,

2 16
cm m     


 

   
 


 

      (65) 

2 2 2
08 ,c c

B

m
       ,  

2
0, cB B

 28 .   


   


        (66) 

2
0

2
,

4c c
c

B
m

    
 

 
   

 


 
       (67) 

while the quantum angular momentum Equation (52) is 
given by  

 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ .ij i j i j i i i iL x P U P x U
      
 

   (68) 

For convenience, in a NC phase space, we define the 
annihilation and creation operators as  

†

2ˆ ˆ ,
8

2ˆ ˆ ,
8

i i

i i

m
U i

m

m
U i

m



†

1 ˆ ˆ ,
2

1 ˆ ˆ ,
2 2

i ij j ij j

i ij j ij

m
P i x

m

m
P i x

m

  


  


  

  


 


  

2

j



, .

     (70) 

satisfying the well-known algebra  
† †,i j ij i j         

             (71) 

Therefore, the quantum Hamiltonian and the angular 
momentum may be written as follows,  

   † † †

2

2
2
0

1 1ˆ
2 2

,
1

2 1
2

i i i i c i i i i

i

H

B m


†         


 

   

 
  
 

         

 E  (72) 

 
 

 

† †

† † † †

† † † †

ˆ

1

4

.

ij i j i j

ij i j i j i j i j

ij i j i j i j i j

L i

im

i
m

     

        

         


  

  

   

  

       

      


   (73) 

Let us now apply a second change of variables to 
remove the remaining non-diagonal terms in the Hamil- 
nian. It is straightforward to check that the previous com- 
tation relations do not change under the following change 
of variables: 

  † † †1 1
, ,

2 2
i i i i ia a         i     (74) 

  † †1 1
, ,

2 2
i i i i ib b         †

i

, .

    (75) 

with  

† †,i j ij i ja a b b      
           (76) 

Next, 

  † † †
1 2 1 2

1 1
, ,

2 2
a a ia a a ia            (77) 

  † †
1 2 1 2

1 1
, ,

2 2
b b ib b b ib        †

, .

   (78) 

with  
† †,a a b b        

            (79) 

i

i

 


 


 

 


 


 

        (69) 

Therefore, the quantum Hamiltonian takes the follow- 
ing form  

2
1 2

2
2
0

ˆ ˆ ˆ ,
1

2 1
2

iH H H

B m
  

 
  

  
 

E
    (80) 

3The condition (47) is used. 
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with  

1 1ˆ
2

H      † † † †1
1 ,

2 ca a b b a a b b                  (81) 

and  

2 1ˆ
2

H      † † † †1
1 ,

2 ca a b b a a b b                  (82) 

while, the quantum angular momentum is issued by  
1 2ˆ ˆ ˆ ,L L L                  (83) 

with  

1̂L    † † 1

4
a a b b m    

    
 

      

† † † † ,a b a b a a b b       
     
           (84) 

and  

2L̂    † † 1

4
a a b b m    

    
 

      

† † † † ,a b a b a a b b       
     
           (85) 

where 

2 2

4
1 ,

.

m


 












 




           (86) 

We note that, in commutating space, the quantum 
Hamiltonian 0Ĥ  and the quantum angular momentum 

 are commuting. But in NC phase space, they do not 
commute any more. The commutator of the 
L̂

Ĥ  and 
L̂  is written as follows 

21ˆ ˆ,
4

H L m         † † † † .a b a b a b a b                (87) 

The next section is devoted to the determination of the 
spectrum of these main observables. 

4. Eigenvalues and Eigenstates 

In this section, we construct the algebra and symmetry 
transformation that will help us to diagonalize skillfully 
the NC phase space Hamiltonian and the NC angular 
momentum of the model. Namely, the Fock basis which 
diagonalizes the Hamiltonian is introduced. Then, the 

 1,1su  algebra is used and by means of the similarity 
transformation, the spectrum of the NC angular momen- 
tum is determined. 

4.1. Fock Space 

The chiral Fock states basis is a natural choice in the way 
of the quantization for our model. This basis is spanned 

by the vectors  

       † † † †

1
, , ,

! ! ! !

,
n nm m

m n m n
m n m n

a b a b
  

   
   

   



   
 (88) 

with  

, , , ,

, , , , , ,

,m m n n m m n n

m n m n m n m n

   
       

       

   

   


        (89) 

, , , , , , .m n m n m n m n              (90) 

These states diagonalise the NC quantum Hamiltonian 
Ĥ , but not the NC angular momentum L̂ : 

   

1ˆ , , ,

1 1
1 ,

2 2 c

H m n m n

m n m n m n m n



 

   

       
       

   , , ,
 

(91) 

   

2ˆ , , ,

1 1
1 ,

2 2 c

H m n m n

m n m n m n m n



 

   

, ,     
       

    

 

(92) 

   

  

1̂ , , ,

1
, , ,

4

1
1 1 1, 1, ,

4

1
1, 1, , ,

4

L m n m n

m n m m n m n m n

m m n m n m

m m n m n m n









   

        

n     

      

      
       
     









 

(93) 

   

  

2ˆ , , ,

1
, , ,

4

1
1 1 , , 1, 1

4

1
, , 1, 1 .

4

L m n m n

m n m m n m n m n

m m n m n m n

m m n m n m n









   

      

      

      

        
      
     








 


 

(94) 
Additional considerations are thus necessary to solve 

the NC angular momentum. 

4.2.  su 1,1  Realizations 

It is well known that if a system is characterized by bo- 
son operators, then the simplest way to find the corres- 
ponding symmetry algebra is to construct the boson reali- 
zations of this algebra. In this section we introduce some 
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basic boson realizations of  1,1su  that we need to sol- 
ve the quantum Hamiltonian (80) and the angular mo- 
mentum (83). 

The Lie algebra  possesses interesting reali- 
zations of bosons and is more appropriate to solve nume- 
rous physical problems. Using the set of boson operators 
(77) and (78) we introduce the operators  

 1,1su



† †

† †
0

, ,

1
1 ,

2

J a b J a b

J a a b b

     

   

 

  

  

   
         (95) 

 

† †

† †
0

, ,

1
1 ,

2

K a b K a b

K a a b b

     

   

 

  

  

  
         (96) 

satisfying the commutation relations  

   0 , , , 02 ,J J J J J J            (97) 

   0 0, , , 2 ,K K K K K K           (98) 

all the others being vanishing. 
The number operators which commute with the gene- 

rators of the  1,1su
†

 algebra are issued by  
† † †, .M a a b b N a a b b                     (99) 

The Casimir operators corresponding to this realiza- 
tion are issued by  

    1 1
1 1 , 1 1

4 4J KC M M C N      .N   (100) 

Therefore, if the eigenvalue of the operators JC  and 

KC  are  and 1j j   1k k  respectively, then 
1 2 M j   and . Consequently, the 

action of the realizations (95) and (96) on the states 
 1 2k N

, ,m n  

),( kj

, , ,j m k n 0,1, 2,

D

, leads to an infinite 
dimensional unitary irreducible representation so-called 
positive representation  and corresponds to 
any , 1 2,1,3 2,j k  . Therefore, the action of the 
operators on the basis states , ,j m ,k n  is issued by  

 0 , , , , , , ,J j m k n j m j m k n       (101 

  , , , 2 1 , 1, , ,J j m k n j m m j m k n      (102) 

 , , , 2 1 , 1, , ,J j m k n j m m j m k n      (103) 

and  

 0 , , , , , , ,K j m k n k n j m k n       (104) 

  , , , 2 1 , , , 1 ,K j m k n k n n j m k n      (105) 

 , , , 2 1 , , , 1 ,K j m k n k n n j m k n      (106) 

and finally  

 , , , 1 , , , ,JC j m k n m m j m k n     (107) 

 , , , 1 , , , .KC j m k n n n j m k n       (108) 

The quantum Hamiltonians 1Ĥ  and 1Ĥ  may be 
expressed in terms of generators of the  algebra,   1,1su

1 2
0 0

1 1ˆ ˆ, .
2 2c cH J M H K              N  (109) 

Likewise, the angular momentums 1̂L  and 2L̂  may 
also be expressed as follows:  

1
0

1ˆ 2 1
4

L M m J J J      ,          (110) 

and  

2
0

1ˆ 2 1
4

L N m K K K     .          (111) 

Obviously, the NC Hamiltonian remains diagonal in 
the  1,1su  basis and the eingenvalue equations are 
written as follows, 

   1 1ˆ , , , 1 2 , , , ,
2 cH j m k n j m j j m k n        

    

(112) 

   2 1ˆ , , , 1 2 , , , .
2 cH j m k n k n k j m k n        

    

(113) 
At the opposite, the NC angular momentum is not yet 

diagonal in this basis:   

   

  

 

1̂ , , ,

1
1 2 2 2 1 , , ,

4

1
2 1 , 1, ,

4

1
2 1 , 1, , ,

4

L j m k n

j m j m j m k n

m j m m j m k n

m j m m j m k n















        
      
      







(114) 

   

  

 

2ˆ , , ,

1
1 2 2 2 1 , , ,

4

1
2 1 , , , 1

4

1
2 1 , , , 1 .

4

L j m k n

k m k n j m k n

m j n n j m k n

m j n n j m k n















         
     
 
     
 







(115) 

Note that the Fock states , , ,m n m n     are equi- 
valent to the  1,1su  states , , ,j m k n  for  

2 1 andn j m m m  ,         (116) 

2 1 andn k n m  .n          (117) 

So far the L -spectrum remains to be determined. 
The next section aims at solving this question by means 
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of a similarity transformation that gives rise to analytical 
results. 

4.3. Similarity Transformation 

To get the analytical solution from the present problem, 
let us introduce the following similarity transformation 
[31] induced by the operators  

   
††

† †, ,
b b b b

S a T a
    

  
   

 


     (118) 

where   and   are constants. 
Since the operators  and  commute, the trans- 

formation of the  and  under  may be obtain- 
ed in setting  

b
 a

b
 †b

 S

† e ,a 
                 (119) 

with the following relations  

†, 0 ,b b .         
            (120) 

One finds  

1Sb S 
   † † 1,b a Sb S

 
  
   † † .b a



     (121) 

The transformations of  and a  are written as follows  †a 

1Sa S 
   1† † † 1,a b b a Sa S

 
          † .a     (122) 

Likewise, the operators transform under  as follows: T

† 1Tb T 
   † † † 1,b a Tb T

 
  
   † † ,b a



        (123) 

1Ta T 
   1† † †,a b b a Ta T

 
          1 † .a     (124) 

Consequently, the algebra  under the trans- 
formations  and T  is closed for 

 1,1su
S 1    . Then, 

one finds the following results  

1Sb S 

  † † 1,b a Sb S 

       1† † ,b a


 
   

1Sa S 
   1† † ,a b b a



        † 1Sa S 


† ,a     (125) 

1Tb T 

  † † 1,b a Tb T 

       1† † ,b a


     

1Ta T 
   1† † ,a b b a



        † 1Ta T 


† .a     (126) 

By the means of the transformed operators (125) and 
(126), the generators of the algebra  take the 
following form  

 1,1su

 
 

† † †

† †
0

, 1

1
2 1 ,

2

b b a a b b

a a b b

        

   

   

  

    

  

 



,b
    (127) 

 
 

† † †

† †
0

, 1

1
2 1 ,

2

b b a a b b

a a b b

        

   

   

  

    

  

 



and satisfy the commutation relations  

   0 0, , ,           2 ,       (129) 

   0 0, , ,           2 ,

† .

      (130) 

all the others are vanishing. 
The transformed number operators which commute 

with the generators of the  algebra are issued by   1,1su
† ,a a a a                  (131) 

If the representations are characterized by fixed num- 
bers †a a      and †a a     , with , 0,1, 2,    , 
then the transformed  1,1su  generators may be expre- 
ssed in term of one boson operator. One finds  

 

 

†

†

†
0

,

1

1
1 2

2

b

b b b b

b b





 

,

,

    

 



  

  



   

 







         (132) 

 

 

†

†

†
0

,

1

1
1 2

2

b

b b b b

b b





 

,

,

    

 



  

  



   

 







        (133) 

satisfying the commutation relations (129) and (130). 
These generators play an important role in the formu- 
lation of the exact solutions for the angular momentum. 
To achieve this goal, let us define the following diffe- 
rential representions of these generators in terms of the 
bosonic variables in the Bargmann-Fock space (see [32]), 

†d
,

d
b b

x
,x  



              (134) 

†d
, .

d
a a y

y  


             (135) 

Consequently, we get  

 
2

2

0

d d
1 ,

d d

1 d
2 1 ,

2 d

,x x
x x

x
x





  
 




   

 
   

 

 





   (136) 

 
2

2

0

d d
1 ,

d d

1 d
2 1 ,

2 d

,x x
x x

x
x





  
 




   

 
   

 

 





   (137) 

, .                (138) 
,b
    (128) 

Therefore, the transformed NC quantum Hamiltonians 
1ˆ
  and 2ˆ

 , and the transformed NC angular momenta 
1̂
  and 2

̂  are respectively given by,  
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1

2

1 d 1ˆ 2 1
2 d 2

1 d 1ˆ 2 1
2 d 2

c

c

x
x

x
x





,

,

   

  







 
    

 
 

    
 

  

  



 

   (139) 

 
2

1
2

1 dˆ 1
4 dd

d
2 ,

d

m x
d

xx

x x
x

   

 

 


 



   


 

    
 



   (140) 

 
2

2
2

1 dˆ 1
4 dd

d
2 .

d

m x
d

xx

x x
x

   

 

 


 



    


 

    
 



   (141) 

The eigenvalue equations for the operators 1ˆ
  and 

2ˆ
  can be written as follows  

       1 1 2 2ˆ ˆ, ,x E x x E x             (142) 

providing the corresponding eigenvalues and eigenstates,  

   1 1 1
, 2 1

2 2 cE ,             

   2 1 1
, 2 1

2 2 cE ,          

, 2, ,

   (143) 

   1 2, , , 0,1x A x x A x           (144) 

where 1 2,A A  are the normalization constants. Concern- 
ing the NC angular momenta 1̂L  and 2L̂ , the eigenva- 
lue equations are given by  

   
   

1 1

2 2

ˆ ,

ˆ ,

x x

x x

 

 

 

 


 





 

 


         (145) 

providing the eigenstates and eigenvalues [33],  

     
     

22

2

22

2

e 1

e 1

x

x

x x Z ix

x x Z ix











 

 


  


  

 

 

,

,

   (146) 

 

 

1

2

,
4

,
4

m

m





  

  





 

  









       (147) 

respectively. Here  

 2

2

1Z ix    and  2

2

1Z ix    

are the Bessel functions satisfying the following diffe- 
rential equations   

   

 

22
2 2

2

2
2 2

2

d d
1 1

dd

1 1
4

ix ix
xx

ix Z ix

 

 

 


 


  


 

0,     
 

  (148) 

   

 

22
2 2

2

2
2 2

2

d d
1 1

dd

1 1
4

ix ix
xx

ix Z ix

 

 

 


 


  


 

0,     
 

  (149) 

The general solutions of (148) and (149) are given by 

   
 

2 2

2 2

2

2

1 1

1

Z ix AJ ix

BN ix

 



 



 



  

 
   (150) 

and 

   
 

2 2

2 2

2

2

1 1

1 ,

Z ix CJ ix

DN ix

 



 



 



  

 
   (151) 

where  

 2

2

1J ix    and  2

2

1N ix    

are the Bessel and Neumann functions of order 
2


 

respectively, and , ,A B C  and  are constants to be 
determined via application of the boundary conditions. 
Since the solution must be finite at , and  

D

0x 

 2

2

1N ix      as , 0x 

the coefficient of  

 2

2

1N ix    

must be vanished, implying , leaving  0B 

 2

2

1Z ix    

to be expressed as follows  

   2 2

2 2

1 1 .Z ix AJ ix        (152) 

By using similar arguments to those given above, we 
set  and write  0=D

   2 2

2 2

1 1 .Z ix CJ ix        (153) 

Consequently, we find  
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22

2

22

2

e 1

e

x

x

x A x J ix

x C x J ix











 




  


  

 



,

1 , 
   (154) 

where A  and  are the normalization constants. C
In comparison with the algebraic method developed in 

Section (4.2), we can see that  and n  are related 
to 

m
  and   by the following relations,  

and ,m n             (155) 

while  and  are related to m n   and   as follows,  

and .m n     

y x



        (156) 

Finally, the spectrum of the system is given by  

 
  

, , ,

, , ,

ˆ , , ,

, , , , , , ,

H y x y x

E y x

    

    



    
   

   
  (157) 

 
  
, , ,

, , ,

ˆ , , ,

, , , , , , ,

L y x y x

y x y x

    

    



    
   

    
   (158) 

with 

   

 
2

2
2
0

1
, , , 2 2 2

2

1
,

2 1
2 1

2

i
c

E

B m

         

  
 

   

  
  
 

E









  (159) 

  , , , ,                (160) 

   
    

1 1

1 1

, , , ,

, , , .

y x y x S T x x

y x y x S T x x

 

 

 
     

 
     

 

 

 





   (161) 

From the expression (62), we obtain that when 1  , 
0  , so 1   and 1  , which corresponds to NC 

space where only momentum-momentum is commuting,  

 

 

 

1

2 2
2

2

22

2
0

, , ,

1
1 2 2

2 2 16

1
1 ,

2 4 2

c

i
c

c

E

m m

Em

m


    

       

   
 



 
       

 
 

    
 


 




2



 

(162) 

  1 , , , .
                (163) 

If 0   and 0  , then the results return to those 
of the quantum dipole in the commutation space  

  

   0 , , , .                (165) 

The energy shift caused by the noncommutativity of 
both space-space and momentum-momentum can be 
given as follows  

  

  

1
2 2 2

2
1

,
2 c c

E      

   

      

  




   (166) 

which can be rewritten as follows,   

 

 

2 2
2 2

2
0

1 1 1

2 2 16

2 2 2

1 1 2
,

2 4

c

c c c

E m m

B m

2 2    


   



      


 
     

 
    

 
     

 


 


 



 

(167) 
while the angular momentum does not present the shift 
term caused by the noncommutativity of both space- 
space and momentum-momentum  

0.E                 (168) 

Finally, we note that our method allows to solve rigo- 
rously the angular momentum in noncommuting phase 
space eventhough this operator does not commute with 
the NC phase space quantum Hamiltonian. 

5. Conclusions 

In this paper, we have studied a generalization of the two 
dimensional quantum dipole coupled to external uniform 
electric and magnetic background fields. We started in 
studying the model in the ordinary commutating varia- 
bles space. The Hamiltonian and the angular momentum 
operators are diagonalized in the standard Fock space 
basis. Then, the quantum dipole is studied in the NC pha- 
se space. We have found that the NC quantum Hamil- 
tonian and angular momentum do not form a complete 
set of commuting observables since the specification of 
their two eigenvalues do not specify uniquely a state of 
the considered basis of states, here the Fock basis. Subse- 
quently, the eigenstates and the corresponding eigen- 
values of the NC quantum Hamiltonian and angular mo- 
mentum have been derived through algebraic and analy- 
tical methods. Specifically, the analytical solutions have 
been made possible by means of the similarity transfor- 
mation of the  1,1su  algebra identified through the 
system. 



 

0

2

2
0

1
, , , 2 2 2

2

1
,

2 2
i

c

E

E

m

        

  


   

  





Note interestingly that when 1  , we have 0  , 
which corresponds to the case where only the space- 
space is noncommuting, while when 0   and 0  , 
the results return to those of the quantum dipole coupled 
to external electric and magnetic background fields in 


  (164) 
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commuting space. We have obtained explicitly the 
energy shift due to the description of the model in NC 
phase space. At the opposite, the NC phase space angular 
momentum doesn't have such a shift term. Our study 
shows that the alternative choice that constitutes the NC 
phase space is compatible with this model. Furthermore, 
we have shown that with a careful observation of the 
hidden symmetries, it is possible to diagonalize an obser- 
vable, in this case the angular momentum. This shows, if 
necessary, the importance of the theory of groups. In pro- 
spect, we envisage to study the thermodynamic pro- 
perties of this model. 
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